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Due to the scale and computational complexity of current simulation codes for vehicle crashworthiness analysis, metamodels
have become indispensable tools for exploring and understanding the design space. Traditional application of metamodelling
techniques is based on constructing multiple types of metamodels based on a common data set, selecting the most accurate
one and discarding the rest. However, this practice does not take full advantage of the resources devoted for constructing
different metamodels. This drawback can be overcome by combining individual metamodels in the form of an ensemble.
Two case studies with a high-fidelity finite element vehicle model subject to offset-frontal and side impact conditions are
presented for demonstration. The prediction accuracies of the individual metamodels and the ensemble of metamodels are
compared, and it is found for all the crash responses of interest that the ensemble of metamodels outperforms all individual
metamodels. It is also found that as the number of metamodels included in the ensemble increases, the prediction accuracy
of the ensemble of metamodels increases.

Keywords: metamodelling; ensemble; automobile; crashworthiness; side impact; offset-frontal impact; finite element
analysis

Nomenclature

Err( ) the error metric that measures the accuracy of
the ensemble of metamodels

FE finite element
GMSE generalised mean square cross-validation error
GP Gaussian process
KR Kriging
LHS Latin hypercube sampling
NN neural networks
NM number of metamodels
OFI offset-frontal impact
PRS polynomial response surface
RBF radial basis function
R1 intrusion distance in offset-frontal impact
R2 intrusion distance in side impact
R3 energy absorption in offset-frontal impact
R4 energy absorption in side impact
SI side impact
SLRSM sequential linear response surface method
SVR support vector regression
wi the weight factor the ith metamodel
ŷi is the prediction of the ith metamodel
ŷens the prediction of the ensemble of metamodels

∗Corresponding author. Email: acar@etu.edu.tr

1. Introduction

Computer simulation codes for vehicle crashworthiness
evaluation have contributed greatly to shortening the de-
velopment periods for new vehicles with the advantages
of numerical simulation techniques and computational ca-
pabilities. Designers of new vehicles must suggest a ‘best
design’, which satisfies a variety of crash regulations along
with other structural static and dynamic performance crite-
ria. The main purpose of crashworthiness simulations is to
evaluate structural performance and occupant injury criteria
under various crash scenarios in the early stages of the de-
sign process. Even though modern parallel computing sys-
tems have made large-scale system-level simulations possi-
ble, high-fidelity crash simulations are still computationally
expensive. For instance, a single crash analysis takes 15–
20 hr utilising a high level of computational power [9].
Therefore, sensitivity analysis, design space exploration or
optimisation studies, which requires repeated analyses, are
computationally intractable.

Large computational expense of the high-fidelity
analysis models led researchers to focus on various
approximation methods that mimic the behaviour of
the simulation model as closely as possible while being
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computationally more efficient to evaluate. These approxi-
mate models are known as metamodels or surrogate models.
The most commonly used metamodelling techniques in-
clude polynomial response surface approximations (PRS)
[21], multivariate adaptive regression splines [10], radial
basis functions (RBF) [8,20], Kriging (KR) [19,25],
Gaussian process (GP) [7,18], neural networks [27] and
support vector regression (SVR) [4,13]. A recent and
extensive review of metamodelling techniques in support
of engineering design optimisation can be found in [31].

The accuracies of metamodels in predicting critical
crash responses of an automobile have been investigated
by many researchers. Yang et al. [32] evaluated different
metamodels for crashworthiness safety optimisation and
recommended the use of quadratic response surface ap-
proximations. Stander et al. [28] compared sequential lin-
ear response surface method (SLRSM), neural networks
(NN) and Kriging (KR) for crashworthiness optimisation,
and reported SLRSM as the most reliable one even with
the deficiency of not being able to provide global approx-
imations after the iterative optimisation. They also found
NN to be slightly more stable than KR. Hamza and Saitou
[14] evaluated the performances of RSA, RBF and NN for
crashworthiness optimisation and reported RBF to be the
most accurate. Fang et al. [9] compared several metamod-
elling methods for multi-objective crashworthiness optimi-
sation and recommended the use of RBF. The evaluation
of the use of metamodels in predicting the responses of
crash simulations can also be found in the works of Gu [12],
Horstemeyer et al. [15], Craig et al. [5] and Yang et al. [33].
As seen, different researchers found different types of meta-
models performing the best for their problems. In general,
it is difficult for an analyst to know which model is the best
for a specific response for a specific crash scenario.

Traditional application of metamodelling techniques is
based on constructing many different metamodels and then
selecting the best one and discarding the rest. This practice
has two major shortcomings. First, effort spent on con-
structing different metamodels is wasted. Second, since the
performances of different metamodels are dependent on the
training data set used, the selected metamodel is not guar-
anteed to be the optimal choice with the new data set. These
drawbacks can be overcome by the use of an ensemble of
metamodels rather than a single one. The resulting ensem-
ble of metamodels takes advantage of the prediction ability
of each individual metamodel to increase the accuracy of
the predicted response [1,11,36].

To achieve high accuracy with limited number of finite
element (FE) analyses, this paper utilises an ensemble of
metamodels to estimate the crash performance of an au-
tomobile. The two main unique contributions presented in
this paper are as follows: (a) The ensemble of metamodels
is used for the first time to approximate the crash responses
of a vehicle. (b) The effects of the prediction performances
of individual metamodels on the performance of an ensem-

ble are investigated. The number of individual metamodels
in the ensemble is increased progressively to explore the
evolution of the weights of individual metamodels as well
as the error of the ensemble of metamodels.

The rest of the paper is organised as follows. Section 2
presents the concept of an ensemble of metamodels. Section
3 describes the automobile crash problem considered in the
present paper. The results are presented and discussed in
Section 4, followed by a summary of important conclusions
provided in Section 5.

2. Ensemble of metamodels

The main premise behind the use of an ensemble of meta-
models is to protect against the error and variability in the
prediction of individual metamodels. The use of an ensem-
ble of different models is first introduced by Bishop [2] and
alternative formulations are proposed by Zerpa et al. [36],
Goel et al. [11] and Acar and Rais-Rohani [1].

An ensemble is constructed by using a weighted average
of different metamodels. The prediction of the ensemble of
metamodels can be defined as

ŷens(x) =
NM∑
i=1

wi(x)ŷi(x) (1)

where ŷens is the prediction of the ensemble, NM is the
number of metamodels used, wi is the weight factor for the
ith metamodel and ŷi is the prediction of the ith metamodel.
The weighting factors satisfy

NM∑
i=1

wi = 1 (2)

Construction of an accurate ensemble requires judicious
selection of the weight factors. The weight factors wi for
the metamodels need to be selected such that the prediction
accuracy of the ensemble is maximised. Different weight
selection procedures followed by different researchers are
briefly discussed in the following paragraphs.

Zerpa et al. [36] proposed the use of a weighted aver-
age model of different metamodels (RS, KR and RBF) for
the optimisation of an alkali surfactant–polymer flooding
process. They chose the prediction variance as the error
metric of their interest and set the value of the weight fac-
tor for each metamodel to be inversely proportional to the
point-wise estimate of the prediction variance as

wi =
1
Vi

M∑
j=1

1
Vj

(3)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
0
6
:
3
2
 
1
1
 
A
p
r
i
l
 
2
0
0
9



International Journal of Crashworthiness 51

where Vi is the prediction variance of the ith metamodel.
The selection of weights via Equation (3) minimises the
prediction variance of the weighted average model based on
the assumption that the metamodel predictions are unbiased
and uncorrelated, which is not always the case.

Goel et al. [11] considered an ensemble of three meta-
models (RS, KR and RBF), used the generalised mean
square cross-validation error (GMSE) of the individual
metamodels and selected the weight factors as

wi = w∗
i

M∑
j=1

w∗
j

(4)

w∗
i = (Ei + αĒ)β (5)

Ē = 1

M

M∑
i=1

Ei (6)

where Ei is the GMSE of the ith metamodel calculated
from

GMSE = 1

N

N∑
k=1

(
yk − ŷ(k)

)2
(7)

where yk is the true response at xk and ŷ(k) is the corre-
sponding predicted value from the metamodel constructed
using all except the kth design point.

The parameters β < 0 and α < 1 are selected by the
analyst based on the importance of Ei and Ē. According
to Equations (4–6), a metamodel with a large GMSE shall
have a small role in the ensemble by receiving a small
weight factor and vice versa. Goel et al. [11] found α =
0.05 and β = −1 lead to a good model in their study. Even
though the analyst has flexibility in selecting the values of
these parameters, the optimal values of these parameters
may not be known beforehand.

Acar and Rais-Rohani [1] also used the GMSE as the
error metric of interest and proposed that the weight factors
of different metamodels can be selected via solving the
following optimisation problem.

Table 1. Summary of FE models.

Barrier model

Item Vehicle model OFI SI

Component 328 7 23
Node 320, 872 167, 182 232, 984
Shell element 546, 812 48, 640 54, 761
Solid element 30, 649 157, 520 192, 174
Beam element 63 0 0
Total mass (kg) 1210 128 1388

Find

wi (8)

Minimise

f = Err[ŷens(wi)] (9)

such that

NM∑
i=1

wi = 1 (10)

where Err( ) is the error metric that measures the accuracy
of the ensemble ŷens. In this study, five different individ-
ual metamodels (i.e., PRS, RBF, KR, GP and SVR) are
used in the ensemble. The weight factors of the individual
metamodels are found by solving the optimisation problem
stated in Equations (8–10). A brief summary of individ-
ual metamodelling techniques is provided in the appendix.
In this paper, GMSE is used as the error metric of inter-
est, while the other error metrics such as the prediction
variance, correlation coefficient or coefficient of multiple
determination can also be used as long as they are proven
to be good surrogates for the actual error.

3. Automobile crash problem

3.1. Problem description

In safety design of automobiles, crashworthiness considera-
tions are particularly important. An automobile is designed
such that the impact energy in a possible crash scenario
needs to be absorbed through structural deformation, while
the intrusion distances of some structural elements must be
smaller than their tolerable values. In this paper, two crash

Table 2. The description of the design variables and their
initial (or baseline) values.

Initial
Input Normalised thickness
variable variable Component (mm)

T1 X1 Left and right front doors 0.85
T2 X2 Left and right rear doors 0.83
T3 X3 Inner hood 0.65
T4 X4 Left and right outer B-pillars 1.61
T5 X5 Left and right middle B-pillar 0.71
T6 X6 Inner front bumper 1.96
T7 X7 Front floor panel 0.71
T8 X8 Left and right outer CBN 0.83
T9 X9 Left and right front fenders 1.52
T10 X10 Left and right inner front rails 1.90
T11 X11 Left and right outer front rails 1.52
T12 X12 Rear plate 0.71
T13 X13 Suspension frame 2.61
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Figure 1. Full-scale FE models for impact simulations. (a) offset-frontal impact; (b) side impact.

scenarios are considered: (a) offset-frontal impact (OFI)
and (b) side impact (SI), whereas other possible scenarios
such as full-frontal impact, roof crush and rear impact are
not included. In these two crash scenarios, the energy ab-
sorption and intrusion distances of structural elements are
taken as critical responses. Thus, there exist four critical
crash responses of interest: (1) the average intrusion dis-
tance of the front panel in OFI, (2) the average intrusion
distance of the door in SI, (3) the total energy absorption
of the vehicle at 40 ms in OFI and (4) the total energy
absorption of the vehicle at 40 ms in SI.

In this study, a single full-scale FE model of a 1996
Dodge Neon is used in simulations of full frontal and side
impacts. The model was originally developed at the U.S.
National Crash Analysis Center [9,15,34,35]. The full-scale

FE vehicle model used in this study has detailed meshes of
328 components that consist of 320,872 nodes and 577,524
elements. Approximately 95% of the elements were shell
elements. The total vehicle mass is 1210 kg. This unified
model is used in simulating two types of impacts, OFI in
which the vehicle impacted a deformable barrier at 40%
offset in the front and SI in which a moving deformable
barrier impacted the vehicle from the side. In OFI, the de-
formable barrier model has 167,182 nodes and 206,160
elements with 76% being solid elements. The moving de-
formable barrier model in SI has a mass of 1388 kg and
consists of 232,984 nodes and 246,935 elements with 78%
being solid elements. Combining the FE models of the ve-
hicle and deformable barriers, the model for OFI has a total
of 488,054 nodes and 783,684 elements, and the model for

Figure 2. Plan view of test configurations (not drawn in scale). (a) offset-frontal impact; (b) side impact.
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Figure 3. The components that have major influence on crash characteristics of the automobile.

Table 3. Design of experiments and critical responses.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 R1 R2 R3 R4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 226 370 3.08 4.18
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 164 385 3.13 3.79
2 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 135 370 3.05 4.22
3 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 87 355 2.90 4.05
4 −1 0 0 0 −1 −1 −1 0 0 0 1 1 1 247 383 2.99 3.87
5 −1 0 0 0 0 0 0 1 1 1 −1 −1 −1 80 364 3.02 3.98
6 −1 0 0 0 1 1 1 −1 −1 −1 0 0 0 145 378 3.03 3.81
7 −1 1 1 1 −1 −1 −1 1 1 1 0 0 0 224 366 2.97 3.95
8 −1 1 1 1 0 0 0 −1 −1 −1 1 1 1 201 384 3.24 3.75
9 −1 1 1 1 1 1 1 0 0 0 −1 −1 −1 227 364 3.02 3.92

10 0 −1 0 1 −1 0 1 −1 0 1 −1 0 1 244 376 3.02 3.82
11 0 −1 0 1 0 1 −1 0 1 −1 0 1 −1 239 362 3.05 3.93
12 0 −1 0 1 1 −1 0 1 −1 0 1 −1 0 186 337 3.01 4.08
13 0 0 1 −1 −1 0 1 0 1 −1 1 −1 0 231 375 3.23 3.95
14 0 0 1 −1 0 1 −1 1 −1 0 −1 0 1 227 361 2.99 4.04
15 0 0 1 −1 1 −1 0 −1 0 1 0 1 −1 260 376 2.97 3.87
16 0 1 −1 0 −1 0 1 1 −1 0 0 1 −1 193 365 3.05 4.31
17 0 1 −1 0 0 1 −1 −1 0 1 1 −1 0 251 378 2.88 3.82
18 0 1 −1 0 1 −1 0 0 1 −1 −1 0 1 235 357 3.16 3.95
19 1 −1 1 0 −1 1 0 −1 1 0 −1 1 0 242 371 3.01 3.85
20 1 −1 1 0 0 −1 1 0 −1 1 0 −1 1 207 354 2.98 4.02
21 1 −1 1 0 1 0 −1 1 0 −1 1 0 −1 204 340 3.22 4.41
22 1 0 −1 1 −1 1 0 0 −1 1 1 0 −1 163 367 2.88 3.95
23 1 0 −1 1 0 −1 1 1 0 −1 −1 1 0 198 345 3.20 4.07
24 1 0 −1 1 1 0 −1 −1 1 0 0 −1 1 263 365 3.08 3.84
25 1 1 0 −1 −1 1 0 1 0 −1 0 −1 1 224 361 3.05 4.07
26 1 1 0 −1 0 −1 1 −1 1 0 1 0 −1 229 373 3.00 3.92
27 1 1 0 −1 1 0 −1 0 −1 1 −1 1 0 207 355 3.02 4.29
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Table 4. Actual values and ensemble of metamodel predictions of the responses.

R1 Intrusion OFI R2 Intrusion SI R3 Energy OFI R4 Energy SI

Act. Pred. Act. Pred. Act. Pred. Act. Pred.

1 226 227.0 370 366.9 3.08 3.05 4.18 4.00
2 164 163.6 385 385.0 3.13 3.16 3.79 3.85
3 135 135.1 370 371.7 3.05 3.06 4.22 4.02
4 87 87.0 355 354.8 2.9 2.88 4.05 3.99
5 247 248.0 383 377.5 2.99 3.01 3.87 3.93
6 80 80.2 364 359.8 3.02 3.02 3.98 4.16
7 145 144.9 378 381.1 3.03 3.05 3.81 3.87
8 224 222.9 366 371.9 2.97 2.97 3.95 3.95
9 201 201.6 384 384.5 3.24 3.20 3.75 3.82

10 227 226.9 364 365.6 3.02 2.99 3.92 3.89
11 244 244.3 376 372.8 3.02 3.02 3.82 3.85
12 239 239.7 362 363.0 3.05 3.05 3.93 3.92
13 186 186.8 337 344.8 3.01 2.99 4.08 4.08
14 231 231.6 375 378.6 3.23 3.23 3.95 4.08
15 227 226.3 361 361.5 2.99 3.02 4.04 4.09
16 260 259.8 376 371.9 2.97 2.98 3.87 3.93
17 193 193.8 365 363.4 3.05 3.02 4.31 4.11
18 251 252.0 378 377.8 2.88 2.89 3.82 3.86
19 235 234.8 357 360.2 3.16 3.18 3.95 3.98
20 242 243.0 371 374.9 3.01 3.00 3.85 3.88
21 207 206.1 354 353.3 2.98 2.97 4.02 3.97
22 204 203.7 340 336.5 3.22 3.23 4.41 4.12
23 163 163.5 367 365.3 2.88 2.89 3.95 4.01
24 198 197.0 345 348.3 3.2 3.16 4.07 4.12
25 263 262.1 365 363.5 3.08 3.05 3.84 3.89
26 224 223.3 361 360.9 3.05 3.04 4.07 4.06
27 229 228.3 373 377.5 3 3.02 3.92 3.93
28 207 207.2 355 358.0 3.02 3.02 4.29 4.08
% error∗ 0.3 0.7 0.6 1.9

∗Mean absolute error is used as the error metric.

SI has 553,856 nodes and 824,459 elements. Details of the
OFI and SI models are given in Table 1; the two FE models
are illustrated in Figure 1.

A simulation of 100-ms OFI using LS-DYNA MPP
v970 takes approximately 17 hr with 36 processors on an
IBM Linux Cluster with Intel Pentium III 1.266 GHz pro-
cessors and 607.5 GB RAM. A simulation of 100-ms SI
takes approximately 29 hr with the same conditions as that
of the OFI simulation. The initial speeds for OFI and SI are
60.8 km/hr and 52.5 km/hr, respectively. Figure 2 illustrates
in detail the test configurations for OFI and SI.

3.2. Input variables for the metamodels

The input variables for the metamodels are the thicknesses
of the components that have major influence on crash char-
acteristics of the automobile (see Figure 3). The input vari-
ables, description of the components and the initial values of
the design variables are provided in Table 2. Normalised val-
ues of the design variables Xi are used instead of the actual
values of the design variables Ti to construct the metamod-
els, as this practice improves the accuracy of metamodels.

The lower and upper bounds for the normalised variables
are set to −1 and 1, respectively.

3.3. Design of experiments

Two main families of design of experiments exist [31]: (1)
classic designs and (2) space filling designs. The most com-
monly used classic experimental designs include fractional
factorial, central composite design and Box-Behnken de-
signs [21]. Popular space filling designs include maximum
entropy designs [6], minimax and maximin designs [16],

Table 5. Normalised GMSE of individual and ensemble of meta-
models for different responses.

Response PRS RBF KR GP SVR ENS

R1 (intrusion, OFI) 1.431 1.020 1.107 1.240 1.0 0.918
R2 (intrusion, SI) 4.012 6.590 1.462 1.0 3.518 0.938
R3 (energy, OFI) 6.491 9.547 4.745 1.0 4.759 0.991
R4 (energy, SI) 6.066 2.535 1.481 1.224 1.0 0.926
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Table 6. Weight factors of individual metamodels in the
ensemble.

Response PRS RBF KR GP SVR

R1 (intrusion, OFI) 0.079 0.000 0.325 0.036 0.560
R2 (intrusion, SI) 0.000 0.000 0.235 0.763 0.002
R3 (energy, OFI) 0.002 0.000 0.000 0.973 0.025
R4 (energy, SI) 0.021 0.000 0.000 0.294 0.685

Latin hypercube sampling (LHS) designs [22] and orthog-
onal arrays [29].

The main purpose of using a design of experiments
method is to better represent the design space using a mini-
mal set of design points. Taguchi orthogonal array L27 was
used to generate the sampling points given in rows 1 to 27
and columns X1 to X13 of Table 3. Recall that the descrip-
tions of the responses in the last four columns of Table 3
were presented in Section 3.1.

4. Results

In this section, first the comparison of actual crash simu-
lation results and cross-validation metamodel predictions
for OFI and SI scenarios are presented. Then, the effects of
using an ensemble of metamodels on the accuracy of pre-
dicting critical system responses are investigated. Finally,
the effects of the performance of individual metamodels on
the performance of the ensemble are explored.

4.1. Comparison of actual simulations and
metamodel predictions for OFI and SI

Comparison of actual simulation results and cross-
validation of an ensemble of metamodel predictions is pro-
vided in Table 4. It is found that the metamodels constructed
for intrusion distances are more accurate than the metamod-
els constructed for the energy absorption. In addition, it is
observed that the metamodels built for OFI responses are
more accurate than those built for SI responses. The ensem-
ble of metamodels constructed for energy absorption pre-
diction under SI crash scenario resulted in the largest mean
absolute cross-validation error. The magnitude of this er-
ror, ‘1.9%’, is clearly acceptable for crash, which is a highly
non-linear phenomenon.

Table 7. The change in the normalised GMSE for the intru-
sion distance in OFI (R1) as the number of metamodels in the
ensemble increases.

Metamodels SVR, SVR, RBF, SVR, RBF,
included in the SVR, RBF, KR, KR, GP,
ensemble SVR RBF KR GP PRS

Normalised error 1 0.948 0.923 0.922 0.918

Table 8. Evolution of the weight factors of individual metamod-
els for the intrusion distance in OFI (R1) as the number of meta-
models in the ensemble increases.

Metamodels SVR, SVR,
included SVR, RBF, RBF,
in the SVR, RBF, KR, KR, GP,
ensemble SVR RBF KR GP PRS

Weight
factors (in
the same
order as
given in
the first
row)

1 0.542,
0.458

0.613,
0.000,
0.387

0.596,
0.000,
0.379,
0.025

0.560,
0.000,
0.325,
0.036,
0.079

4.2. Improved accuracy by using the ensemble
of metamodels

The normalised error estimates for the four critical re-
sponses are listed in Table 5. Depending on the response of
interest and the crash scenario, different individual meta-
models outperform other metamodels. For instance, for in-
trusion distances, the SVR is the most accurate for OFI,
while GP is the most accurate for SI. In the case of ener-
gies, on the other hand, GP outperforms the others for OFI,
whereas SVR performs the best for SI. The dependency
of the optimal metamodel on the response of interest and
crash scenario indicates the necessity to examine multiple
metamodels. The last column of Table 5 shows that the er-
ror of the ensemble of metamodels is smaller than the error
of the best individual metamodel. For instance, the error
of the ensemble was 8% smaller than the best individual
metamodel for R1. For R3, on the other hand, Table 5 shows
that the advantage of the ensemble over the best individual
metamodel is the least apparent, because GP is far more
superior than the other individual metamodels in the en-
semble. The performance of the ensemble of metamodels
is problem-dependent. Nevertheless, the error of the en-
semble is smaller than those of the individual metamodels.

The weight factors of the individual metamodels in the
ensemble for all the responses of interest are provided in Ta-
ble 6. In general, the metamodels with smaller errors are as-
signed with larger weight factors to increase the prediction

Table 9. The change in the normalised GMSE for the intrusion
distance in SI (R2) as the number of metamodels in the ensemble
increases.

Metamodels GP, GP, KR, GP, KR,
included in the GP, KR, SVR, SVR, PRS,
ensemble GP KR SVR PRS RBF

Normalised error 1 0.938 0.938 0.938 0.938
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Table 10. Evolution of the weight factors of individual meta-
models for the intrusion distance in SI (R2) as the number of
metamodels in the ensemble increases.

Metamodels GP, GP, KR,
included GP KR, SVR,
in the GP, KR, SVR, PRS,
ensemble GP KR SVR PRS RBF

Weight
factors (in
the same
order as
given in
the first
row)

1 0.764,
0.236

0.763,
0.235,
0.002

0.763,
0.235,
0.002,
0.000

0.763,
0.235,
0.002,
0.000,
0.000

accuracy of the ensemble. However, the relation between
the errors and the weight factors is complex. For instance,
even though RBF is the second most accurate model for
R1, the weight factor for RBF is zero. Similarly, although
the errors of RBF and KR are much smaller than the error
of PRS for R4, the weight factor of PRS is larger than the
weight factors of RBF and KR.

4.3. The effect of performance of individual
metamodels on the performance of the
ensemble

The results presented in the previous section show that by
using an ensemble of metamodels with properly selected
weight factors, the accuracy of response predictions can be
improved. In this section, the effects of the performances of
individual metamodels on the performance of the ensemble
are investigated. One may argue that including inaccurate
models in the ensemble may reduce the predictive capabil-
ity of the ensemble. To question this argument, the ensem-
ble is formed progressively by adding the metamodels one
by one, starting from the most accurate metamodel to the
worst accurate one. Table 7 shows that as the number of
metamodels included in the ensemble increases, the error
of the ensemble in predicting the intrusion distance in OFI,
R1, reduces. For R1, the most accurate metamodel is SVR.
By forming an ensemble of metamodels composed of SVR
and the second most accurate metamodel, RBF, the error
in R1 prediction can be reduced by 5.2%. The addition of

Table 11. The change in the normalised GMSE for the energy
absorption in OFI (R3) as the number of metamodels in the en-
semble increases.

Metamodels GP, GP, KR, GP, KR,
included in the GP, KR, SVR, SVR, PRS,
ensemble GP KR SVR PRS RBF

Normalised error 1 0.999 0.994 0.991 0.991

Table 12. Evolution of the weight factors of individual meta-
models for the energy absorption in OFI (R3) as the number of
metamodels in the ensemble increases.

Metamodels GP, GP, KR,
included GP KR, SVR,
in the GP, KR, SVR, PRS,
ensemble GP KR SVR PRS RBF

Weight
factors (in
the same
order as
given in
the first
row)

1 0.997,
0.003

0.982,
0.002,
0.016

0.973,
0.000,
0.025,
0.002

0.973,
0.000,
0.025,
0.002,
0.000

KR, GP and PRS into the ensemble further improves the
prediction capability of the ensemble.

The evolution of the weight factors of the individual
metamodels in the ensemble is presented in Table 8. As
noted earlier, the general trend is that the metamodels with
smaller errors are assigned with larger weight factors.

The variation of the normalised GMSE for intrusion
distance in SI, R2, is presented in Table 9. Recall that for
R2, the most accurate metamodel is GP. Table 9 shows that
combining GP with the second most accurate metamodel,
KR, reduces the error in R2 prediction by 6.2%. The vari-
ation of error of the ensemble is different compared to the
behaviour observed for R1 (see Table 7) such that the ad-
dition of KR, GP and PRS to the ensemble does not have a
significant effect on the error in R2 prediction. The weight
factors of the individual metamodels of the ensembles for
R2 estimation are provided in Table 10, which depicts that
the weight factors for KR, GP and PRS are almost zero.

The variations of the normalised GMSE for absorbed
energies in OFI and SI, R3 andR4, are presented in Tables
11 and 13, respectively. The general trend is the same:
the addition of new members to the ensemble increases
the accuracy of the ensemble. The weight factors of the
individual metamodels of the ensembles for R3 and R4

are provided in Tables 12 and 14, respectively. In addition,
the variations of the normalised error with the number of
metamodels for all the responses are depicted in Figure 4.

Table 13. The change in the normalised GMSE for the energy
absorption in SI (R4) as the number of metamodels in the ensem-
ble increases.

Metamodels SVR, SVR, GP, SVR, GP,
included in the SVR, GP, KR, KR, RBF,
ensemble SVR GP KR RBF PRS

Normalised error 1 0.934 0.931 0.931 0.926
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Figure 4. The variation of the normalised GMSE as the number of metamodels in the ensemble increases. (a) for R1, (b) for R2, (c) for
R3 and (d) for R4.

Table 14. Evolution of the weight factors of individual meta-
models for the energy absorption in SI (R4) as the number of
metamodels in the ensemble increases.

Metamodels SVR, SVR,
included SVR, GP, GP, KR,
in the SVR, GP, KR RBF,
ensemble SVR GP KR RBF PRS

Weight
factors (in
the same
order as
given in
the first
row)

1 0.689,
0.311

0.633,
0.308,
0.059

0.634,
0.307,
0.059,
0.002

0.685,
0.295,
0.000,
0.000,
0.021

5. Conclusions

This paper investigated the use of a weighted average en-
semble of metamodels for improving the accuracy of au-
tomobile crash response approximations. The prediction
capability of the ensemble of metamodels was compared to
the best individual metamodel. In addition, the effects of the
prediction performances of individual metamodels on the
performance of ensemble were examined. From the results
obtained in this study, the following points were observed:

� For all the crash responses considered, the ensem-
ble of metamodels outperformed all individual meta-
models such that the error of the ensemble was
smaller than that of the most accurate individual
metamodel.

� In general, the metamodels with smaller errors were
assigned with larger weight factors to increase the
prediction accuracy of the ensemble. However, the
relation between the errors and the weight factors
was complicated and in such a case an optimisation
problem needs to be solved to attain the most accurate
prediction.

� As the number of metamodels included in the ensem-
ble increases, the prediction accuracy of the ensemble
increases.

� If one of the individual metamodels is much more ac-
curate than the other metamodels, the performance
of the ensemble is dictated by that individual meta-
model; hence constructing an ensemble of metamod-
els is not very advantageous.

� It is found that the metamodels constructed for in-
trusion distances are more accurate than the meta-
models constructed for the energy absorption. In ad-
dition, it is observed that the metamodels built for
OFI response predictions are more accurate than the
metamodels built for SI response predictions.
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Appendix: Description of selected metamodelling
techniques
In this appendix, a brief overview of the mathematical formulation
of PRS, RBF, GP, KR and SVR metamodelling techniques is
provided.

Polynomial response surface approximations
(PRS)
The most commonly used PRS model is the second-order model
in the form of a second-degree algebraic polynomial function as

f̂ (x) = b0 +
L∑

i=1

bixi +
L∑

i=1

biix
2
i +

L−1∑
i=1

L∑
j=i+1

bij xixj (A1)

where f̂ is the response surface approximation of the actual re-
sponse function f , L is the number of variables in the input vector
x and b0, bi , bii , bij are the unknown coefficients to be determined
by the least squares technique.

Radial basis function (RBF)
RBF methods were originally developed to approximate multi-
variate functions based on scattered data. For a data set consisting
of the values of input variables and response values at n sampling
points, the true function f (x) can be approximated as

f̃ (x) =
n∑

i=1

λiφ(‖x − xi‖) (A2)

where x is the vector of input variables, xi is the vec-
tor of input variables at the ith sampling point, ‖x − xi‖ =√

(x − xi)T(x − xi) is the Euclidean norm representing the radial
distance r from design point x to the sampling point or centre xi , φ
is a radially symmetric basis function and λi, i = 1, n are the un-
known interpolation coefficients. Equation (A2) represents a linear
combination of a finite number of radially symmetric basis func-
tions. Some of the most commonly used RBF formulations include
φ(r) = r2 log (r) (thin-plate spline); φ(r) = e−αr2

, α > 0 (Gaus-
sian); φ(r) = √

r2 + c2(multi-quadric); and φ(r) = 1/
√

r2 + c2

(inverse multi-quadric). The parameter c in the multi-quadrics is a
constant. If the r values are normalised to the range of (0,1), then
0 < c ≤ 1. The choice of c = 1 is found to be suitable for most
function approximations. The feature that makes these functions
excellent candidates for φ is not simply their radial symmetry but
their smoothness and certain properties of their Fourier transform
(Buhmann, 2003)[3]. In this study, we have chosen the multi-
quadric formulation of RBF because of its prediction accuracy

and commonly linear and possibly exponential rate of conver-
gence with increased sampling points.

Given the design coordinates of n sampling points and asso-
ciated responses, the unknown coefficients in Equation (A2) are
found by minimising the residual or the sum of the squares of the
deviations expressed as

R =
n∑

j=1

[
f (xj ) −

n∑
i=1

λiφ(‖xj − xi‖)

]2

(A3)

Expressed in matrix form, Equation (A3) appears as

[A] {λ} = {f} (A4)

where [A] = [φ‖xj − xi‖], j = 1, n; i = 1, n, {λ}T =
{λ1, λ2, ..., λn}T and {f}T = {f (x1), f (x2), ..., f (xn)}T. The
coefficient vector λ is obtained by solving Equation (A4).

Gaussian process (GP)
Gaussian process assumes that the output variables fN =
{fn(x1

n, x
2
n, K, xL

n )}N
n = 1 are related to each other with a Gaussian

joint probability distribution

P (fN |CN, XN ) (A5)

1√
(2π)N |CN |

exp

[
−1

2
(fN − µ)TC−1

N (fN − µ)

]

where XN = {xn}N
n=1 are N pairs of L-dimensional input variables

xn = (x1
n, x

2
n, K, xL

n ), CN is the covariance matrix with elements
of Cij = C(xi, xj ) and µ is the mean output vector. GP estimates
the output at a prediction point xp = (x1

p, x2
p , K, xL

p ) as

f̂ (xp) = kTC−1
N fN (A6)

where k = [C(x1, xp), K, C(xN, xp)]. One of the nice properties
of the GP is that the standard deviation at the prediction point is
readily available without a requirement of any extra simulations.
This standard deviation can be utilised as an error measure and
can be calculated from

σf̂ (xp ) = κ − kTC−1
N k (A7)

where κ = C(xp, xp).
We notice from Equation (A6) that the GP prediction depends

on the covariance matrix CN . The elements of this matrix are
calculated from

Cij = θ1 exp

⎡
⎢⎣−1

2

L∑
l=1

(
x

(l)
i − x

(l)
j

)2

r2
l

⎤
⎥⎦ + θ2 (A8)

Cij = θ1 exp

⎡
⎢⎣−1

2

L∑
l=1

(
x

(l)
i − x

(l)
j

)2

r2
l

⎤
⎥⎦ + θ2 + δij θ3

(A9)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
0
6
:
3
2
 
1
1
 
A
p
r
i
l
 
2
0
0
9



60 E. Acar and K. Solanki

where θ 1, θ 2, θ 3 and rl (l = 1, 2, . . . , L) are called ‘hyperparam-
eters’. Here δij is the Kronecker delta and θ 3 is an independent
noise parameter. The hyperparameters are selected so as to
maximise the logarithmic likelihood that the model prediction
matches the training response data. The logarithmic likelihood
function L is given in Equation (A10).

L = −1

2
log |CN | − 1

2
f T

NC−1
N fN − N

2
log 2π + ln P (θ )

(A10)
where P (θ ) is the prior distribution of the hyperparameters. In
most of the applications, there is no prior knowledge of the values
of the hyperparameters, so the prior distribution is uniform. Then
the last term of Equation (A10), lnP(θ ), is a constant and can be
taken as zero for the purpose of optimisation, as we did in this
work.

The covariance function given in Equation (A8) defines the in-
terpolation mode of the GP metamodel that passes exactly through
all the training data points. On the other hand, Equation (A9) de-
fines the regression mode of the model, which allows us to build
smoother surfaces for problems with noisy data.

With the noise of the output values filtered out, the predicted
surface becomes less complex and may not pass through all the
training points; however, it provides a better prediction at the non-
training points. In this work, we used Gaussian process code from
Rasmussen and Williams (2006)[24].

Kriging (KR)
The basic assumption of KR is the estimation of the response in
the form

f (x) = p (x) + Z (x) (A11)

where f is the response function of interest, p is a known poly-
nomial that globally approximates the response and Z(x) is the
stochastic component that generates deviations such that the KR
model interpolates the sampled response data. The stochastic com-
ponent has a mean value of zero and covariance of

COV[Z(xi), Z(xj )] = σ 2R[R(xi, xj )] (A12)

where R is N × N correlation matrix if N is the number of data
points, R(xi , xj ) is the correlation function between the two data
points xi and xj . Mostly, the correlation function is chosen as
Gaussian, that is,

R (θ ) =
L∏

k=1

exp
(−θkd

2
k

)
(A13)

where L is the number of variables, dk = xi
k − x

j

k is the
distance between the kth components of the two data
points xi and xj and θk are the unknown parameters to be
determined.

Once the correlation function has been selected, the response
f is predicted as

f̂ (x) = β̂ + rT(x)R−1(f − β̂ p) (A14)

where rT(x) is the correlation vector of length N between a predic-
tion point x and the N sampling points, f represents the responses

at the N points and p is an L-vector of ones (in the case p(x) is
taken as a constant). The vector r and scalar β̂ are given by

rT(x) = [R(x, x1), R(x, x2), K, R(x, xN )]T, β̂

= (pTR−1p)−1pTR−1f (A15)

The variance of the output model (which is different from the
variance of the sampled output) can be estimated as

σ̂ 2 = (f − β̂ p)TR−1(f − β̂ p)

N
(A16)

The unknown parameters θk can be estimated by solving the
following constrained maximisation problem (Simpson et al.
2001[26])

Max 
 (�) = −[N ln(σ̂ 2)+ln|R|]
2

s.t. � > 0
(A17)

where � is the vector of unknown parameters θk , and both σ̂ and
R are functions of �.

In this work, we use a MATLAB Kriging toolbox developed
by Lophaven et al. (2002)[17].

Support vector regression (SVR)
The prediction via SVR can be performed through linear or non-
linear regression. When linear regression is performed, then the
function is predicted as

f̂ (x) = 〈w · x〉 + b (A18)

where 〈w · x〉 is the dot product of w and x. We would like to have
the approximation function as flat as possible. For that purpose,
we solve the following optimisation problem:

Min 1
2
|w|2

s.t. yi − 〈w · xi〉 − b ≤ ε
〈w · xi〉 + b − yi ≤ ε

(A19)

This formulation assumes that the function f̂ (x) can approximate
all the yi training points within an ε precision. However, this
may not be true for all training points and two slack variables
can be introduced to yield a modified formulation (Vapnik et al.
1997)[30]. Now, the optimisation problem is

Min 1
2
|w|2 + C

l∑
i=1

ξi + ξ ∗
i

s.t. yi − 〈w · xi〉 − b ≤ ε + ξi

〈w · xi〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(A20)

where C determines the tradeoff between the flatness and toler-
ance. The second term in the objective function is referred to
as ε-insensitive loss function (Vapnik et al. 1997)[30]. If we
write the Lagrangian function, assess the Karush-Kuhn-Tucker
(KKT) conditions and substitute KKT conditions into the La-
grangian function, we can write the optimisation problem in dual
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form as

Max − 1

2

∑
i

, j = 1l(αi − α∗
i )(αj − α∗

j )〈xi · xj 〉

−ε
∑

i

= 1l(αi − α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

s.t.

l∑
i=1

(αi − α∗
i ) = 0

(αi − α∗
i ) ∈ [0, C] (A21)

The weights and the linear regression are then calculated through

w =
l∑

i=1

(αi − α∗
i )xi, f̂ (x) =

l∑
i=1

(αi − α∗
i )〈xi · xj 〉 + b

(A22)
Instead of using linear regression, non-linear regression can also
be used by replacing the dot product of the input vectors with
kernel functions. Commonly used Kernel functions include non-
linear polynomials, Gaussian and Sigmoid kernel functions. In

this case, the optimisation function is written as

Max − 1

2

∑
i

, j = 1l(αi − α∗
i )(αj − α∗

j )k(xi · xj )

−ε

l∑
i=1

(αi − α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

s.t.

l∑
i=1

(αi − α∗
i ) = 0

(αi − α∗
i ) ∈ [0, C] (A23)

Then, the support vector regression approximation is obtained
through

f̂ (x) =
l∑

i=1

(αi − α∗
i )k(xi · xj ) + b (A24)

More detailed information can be found in [4]. In this work, we
used the MATLAB code developed by Gunn [13].
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