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Abstract Approximate mathematical models (meta-
models) are often used as surrogates for more computa-
tionally intensive simulations. The common practice is
to construct multiple metamodels based on a common
training data set, evaluate their accuracy, and then to
use only a single model perceived as the best while
discarding the rest. This practice has some shortcom-
ings as it does not take full advantage of the resources
devoted to constructing different metamodels, and it is
based on the assumption that changes in the training
data set will not jeopardize the accuracy of the selected
model. It is possible to overcome these drawbacks and
to improve the prediction accuracy of the surrogate
model if the separate stand-alone metamodels are com-
bined to form an ensemble. Motivated by previous
research on committee of neural networks and ensem-
ble of surrogate models, a technique for developing
a more accurate ensemble of multiple metamodels is
presented in this paper. Here, the selection of weight
factors in the general weighted-sum formulation of an
ensemble is treated as an optimization problem with
the desired solution being one that minimizes a selected
error metric. The proposed technique is evaluated by
considering one industrial and four benchmark prob-
lems. The effect of different metrics for estimating the
prediction error at either the training data set or a
few validation points is also explored. The results show
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that the optimized ensemble provides more accurate
predictions than the stand-alone metamodels and for
most problems even surpassing the previously reported
ensemble approaches.
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1 Introduction

The design of modern engineering systems relies on
high-fidelity computer simulations for accurate analysis
of system characteristics. Venkataraman and Haftka
(2004) note that analysis models of acceptable accuracy
have required at least 6 to 8 h of central processing
unit (CPU) time throughout the last 30 years, even
though computer processing power along with mem-
ory and storage capacities have drastically increased.
This perceived lack of improvement in computational
efficiency can be explained by the fact that the fidelity
and complexity of the analysis models have also steadily
increased over the same period.

When high-fidelity simulations are combined with
numerical design optimization, the computational cost
tends to increase; moreover, when using gradient-based
techniques, the accuracy and convergence of the opti-
mization solution are jeopardized if the response char-
acteristics that appear in the objective or constraint
functions are noisy.

Hence, there is a growing interest in utilizing design
and analysis of computer experiments methods to re-
place the computationally expensive simulations with
smooth analytic functions (metamodels) that can serve
as surrogate models for efficient response estimation.
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Metamodeling techniques aim at regression and/or
interpolation fitting of the response data at the speci-
fied training (observation) points that are selected us-
ing one of the many designs of experiments (DOE)
techniques. There are many metamodeling techniques
including polynomial response surface (PRS) approx-
imations (Myers and Montgomery 2002), multivariate
adaptive regression splines (Friedman 1991), radial ba-
sis functions (RBF; Hardy 1971; Dyn et al. 1986; Mullur
and Messac 2004), Kriging (KR; Sacks et al. 1989;
Armstrong and Champigny 1989; Martin and Simpson
2005), Gaussian process (GP; MacKay 1998; Daberkow
and Marvis 2002; Wang et al. 2005), neural networks
(Smith 1993), and support vector regression (SVR;
Gunn 1997; Clarke et al. 2005).

A review of literature provides many examples
where the accuracy and efficiency of various meta-
models for linear, nonlinear, smooth, and noisy re-
sponses have been investigated (Giunta and Watson
1998; Simpson et al. 2001a, b; Jin et al. 2001; Papila et al.
2001; Stander et al. 2004; Clarke et al. 2005; Fang et al.
2005; Wang et al. 2006). For instance, Fang et al. (2005)
found RBF gives accurate metamodels for highly
nonlinear responses whereas Simpson et al. (2001b)
found Kriging to be most suitable for slightly nonlinear
responses in high-dimension spaces. Jin et al. (2001)
proposed the use of PRS for slightly nonlinear and
noisy responses, while Clarke et al. (2005) found SVR
metamodels to be the best in their study. Queipo et al.
(2005) provide a good review of different metamodel-
ing techniques. In addition, a more recent and extensive
review of metamodeling can be found in Wang and
Shan (2007). While the studies cited above identify a
single metamodel as being accurate for a particular
form of response, in this study we will show that it is
possible to find a more accurate metamodel by gener-
ating an ensemble based on optimized weight factors.

The lack of sufficient information describing the re-
lationship between the response and the input variables
makes it difficult for an engineer to know which meta-
model is the best for a specific response. In addition,
due to the dependence of metamodel accuracy on the
selected DOE type, the number of design points in the
training data set, and the form (e.g., linear, nonlinear,
noisy, smooth) of the response, there is uncertainty in
metamodel predictions as noted by Goel et al. (2007).
Therefore, as an alternative to using a single meta-
model for a response of interest, it would be beneficial
to combine multiple metamodels in a weighted-sum
formulation. The resulting hybrid metamodel takes
advantage of the prediction ability of each individual
stand-alone metamodel to enhance the accuracy of the
response predictions.

The idea of combining different approximate mod-
els into a single hybrid model can be traced to the
development of committees of neural networks by
Perrone and Cooper (1993) with further refinement
by Bishop (1995). More recently, Zerpa et al. (2005)
and Goel et al. (2007) have extended this approach for
developing ensembles of metamodels. In a related field,
the recent development of ensemble of Kalman filters
(Evensen 2003) is also a good example. It is possible
to consider an ensemble approach as an alternative
to model selection in statistics; there is a large body
of work in this area including those by Madigan and
Raftery (1994) and Buckland et al. (1997).

Motivated by the previous research, this paper offers
a different approach for building an ensemble of meta-
models by finding the optimized values of weight fac-
tors that would minimize a selected error metric (e.g.,
root mean square error). To demonstrate the capability
of the proposed approach, the ensemble is assumed to
be made up of five different stand-alone metamodels
(i.e., PRS, RBF, KR, GP, and SVR) with a summary of
each technique provided in the “Appendix.”

The remainder of the paper is organized as follows.
“Section 2” presents the basic weighted-sum formula-
tion and the different approaches that can be followed
for selecting the weight factors for the individual meta-
models. “Section 3” describes the example problems
considered and the numerical procedure for finding an
ensemble with optimized weight factors. The presen-
tation and discussion of results appear in “Section 4,”
followed by the summary of important conclusions in
“Section 5.”

2 Ensemble of metamodels

2.1 Weighted-sum formulation

If all the stand-alone metamodels developed for a given
response happen to have the same level of accuracy,
then an acceptable form for the ensemble would be
a simple average of the metamodels. However, this is
not generally the case because some metamodels tend
to be more accurate than others. Hence, in attempting
to enhance the accuracy of the ensemble, the stand-
alone metamodels (members of the ensemble) have to
be multiplied by different weight factors. By using a
weighted-sum formulation (Bishop 1995), an ensemble
of metamodels for approximation of response y(x) is
expressed as

ŷe (x) =
M∑

i=1

wi (x)ŷi (x) (1)
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where ŷe is the ensemble-predicted response, M is
the number of metamodels in the ensemble, wi is the
weight factor for the ith metamodel, ŷi is the response
estimated by the ith metamodel, and x is the vector of
independent input variables. The weight factors in (1)
are calculated while satisfying the requirement

M∑

i=1

wi (x) = 1 (2)

In general, the weight factors are selected such that
the metamodels with high accuracy have large weight
factors and vice versa.

2.2 Weight factors selection based on error correlation

The training data set represents a collection of N design
points (i.e., training points) that are identified according
to the DOE technique used. The response values at
these training points are used to fit a stand-alone meta-
model. For forming a committee of neural networks,
Bishop (1995) proposed selecting the weight factors as

wi =
M∑

j=1

(
C−1

)

ij

/
M∑

m=1

M∑

j=1

(
C−1

)
mj (3)

where C is the error correlation matrix whose elements
are calculated from

C ij = 1

N

N∑

k=1

(
ŷk

i − yk) (ŷk
j − yk

)
(4)

where yk is the true response value corresponding to
input vector xk, with ŷk

i and ŷk
j the corresponding

predicted values by the ith and jth neural networks,
respectively. Equations (3) and (4) can also be used in
generating an ensemble of metamodels.

Selecting weight factors from (3) minimizes the error
in the whole domain of input variables (Bishop 1995)
based on the assumption that the errors of different
neural networks are uncorrelated and unbiased (that
is, with zero mean), which is not always true. In ad-
dition, even though this approach may be suitable for
application to committee of neural networks, it may be
unsuitable for ensembles based on other metamodeling
techniques. In the case of neural networks, because
there is a difference between the true response com-
puted at each training point and the prediction of a
neural network, ŷk

i , the error correlation matrix C is
nonvanishing. However, if the error metric is chosen
as the difference between the predicted and true re-
sponses at the training points (see (4)), then for some

types of metamodels (e.g., RBF and KR) the difference
is zero and the correlation matrix C becomes a null
matrix. A possible solution to this problem is to use
k-fold cross-validation errors instead.

2.3 Weight factors selection based on prediction
variance

Motivated by the work of Bishop (1995), Zerpa et al.
(2005) proposed the use of a weighted-sum model
of different metamodels (RS, KR, and RBF) for the
optimization of an alkali surfactant-polymer flooding
process. They chose the prediction variance as the error
metric and set the value of weight factor for each
metamodel to be inversely proportional to the point-
wise estimate of the prediction variance as

wi = 1

Vi

/
M∑

j=1

1

Vj
(5)

where Vi is the prediction variance of the ith meta-
model. The selection of weights via (5) minimizes the
prediction variance of the weighted-sum model based
on the assumption that the metamodel predictions are
unbiased and uncorrelated.

2.4 Weight factors selection based on GMSE or RMSE

The generalized mean square cross-validation error
(GMSE) is very similar to prediction error sum of
squares statistic. If there are N training points, then a
metamodel is constructed N times, each time leaving
out one of the training points. Then the difference
between the exact response at the omitted point and
that predicted by each variant metamodel is used to
evaluate the global error as

GMSE = 1

N

N∑

k=1

(
yk − ŷ(k)

)2
(6)

where yk is the true response at xk and ŷ(k) is the
corresponding predicted value from the metamodel
constructed using all except the kth design point. As
evident by (6), the greater the number of training points
the higher the cost of calculating the GMSE metric.
This metric gives an average error in the estimated
response at the selected training points. Therefore,
depending on the number and distribution of training
points, GMSE may not necessarily provide an evidence
of global error in the whole domain of input variables.
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Goel et al. (2007) considered an ensemble of three
metamodels (RS, KR, and RBF), used the GMSE of
the individual metamodels, and selected the appropri-
ate weight factors as

wi = w∗
i

/
M∑

j=1

w∗
j (7a)

w∗
i = (

Ei + α Ē
)β

(7b)

Ē = 1

M

M∑

i=1

Ei (7c)

whereEi is the GMSE of the ith metamodel with β <0
and α < 1. In this approach, the analyst specifies the
values of parameters α and β based on the importance
of Ei and Ē. According to (7), a metamodel with a
large GMSE shall have a small role in the ensemble by
receiving a small weight factor and vice versa.

Whereas the freedom of selecting the parameters α

and β gives the analyst some flexibility, the optimal
choice of these parameters requires experimentation.
For example, Goel et al. (2007) found that α = 0.05 and
β = −1 leads to a good model in their study. Here, we
suggest that these parameters could have been selected
so as to minimize the GMSE of the ensemble. In fact,
when the selection of weight factors is based on the
minimization of GMSE, then a parametric model such
as (7b) and (7c) is not necessary as will be shown later.

In general, Goel et al. (2007) showed that the GMSE
is a reasonably good substitute for the root mean
square error (RMSE); however, they noted that GMSE
overestimated RMSE for PRS while underestimated it
for KR and RBF metamodels. Similarly, Martin and
Simpson (2005) found that if a metamodel’s predicted
R2 (based on GMSE) is greater than 0.90, then the
metamodel’s actual R2 (based on RMSE) is also greater
than 0.90.

Besides GMSE, it is also possible to use the RMSE
as the error metric, Ei in (7b) and (7c). In that case,
RMSE is calculated based on data at some randomly
selected design points belonging to a test data set; these
test points are separate from the training points and as
such provide a less biased measure of global error in
the model. Depending on the precision level sought for
estimating the error, the number of test points, denoted
by T, can vary with a typical value in the range of
0.1N to 0.4N. Whereas for GMSE calculation, N vari-
ants of the same metamodel are constructed based on

responses evaluated at N design points, in RMSE only
a single metamodel is constructed, but the response val-
ues at N(training) + T(test) points are needed. Hence,
for the former error metric, the computational cost is
tied to the development of multiple variants of the
metamodel, while for the latter error metric the cost
burden is in the additional simulations for response
determination. Depending upon the type of metamodel
and the computational cost of response calculation, one
error metric would be less expensive to evaluate than
the other.

2.5 Weight factors selection based on error
minimization

Here, the weight factors in (1) are selected by solving
an optimization problem of the form

Find wi, i =∈ M that would

min εe = Err
{

ŷe

(
wi, ŷi

(
xk))y

(
xk) , k = 1 ∈ N

}

s.t.
M∑

i=1

wi = 1 (8)

where Err{} is the selected error metric that measures
the accuracy of the ensemble-predicted response, ŷe.

It is worth noting that the availability and diversity of
metamodels are the two basic criteria for membership
in the ensemble (1). Should one stand-alone metamodel
be significantly less accurate than the rest, its corre-
sponding weight factor would be reduced accordingly
in the solution of (8).

Because only one (global) ensemble is sought to
describe the response variation over the range of all
input variables, the problem in (8) is solved only once.
Hence, the computational cost of solving (8) depends
only on the form of the objective function (i.e., error
metric) and the number of design variables, which is
the same as the number of members in the ensemble;
as such, it would constitute only a small fraction of
the overall computational cost. Optimization cost is on
par with fitting a response surface model. The weight
selection in (8) is also different from the adaptive meta-
modeling approaches (Wang et al. 2001; Wujek and
Renaud 1998a, b) where the metamodels are updated
during the process as new data points are used.

If, for example, GMSE is chosen as Err{} in (8),
then its value for the ensemble is found using (6) with
ŷ(k)

e replacing ŷ(k). Likewise, if RMSE is chosen as
the error metric, then the weight factors are evaluated
by minimizing this error at an arbitrary set of points
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referred to here as the validation points. In this context,
RMSE can be defined as

RMSEv = 1

Nv

√√√√
Nv∑

i=1

[
y
(
xv

i

)− ŷe
(
w, xv

i

)]2 (9)

where Nv is the number of validation points and xv
i

is the vector of input variables corresponding to the
ith validation point. After the optimal values of the
weight factors are found, (1) is used to estimate the
response of interest. When using RMSEv , the accuracy
of the resulting ensemble depends on the value of Nv ,
and as such, the best value for Nv would be problem
dependent as will be shown in the example problems.

The general procedure based on the formulation in
(8) is independent of the error metric selected. For
example, it is possible to use any of the other global
error metrics reported in the literature such as corre-
lation coefficient between the predicted and the actual
responses, coefficient of multiple determination (R2)

and also its adjusted value (R2
adj), average absolute

error, or maximum absolute error. Likewise, it is also
possible to make the selection via local error measures
(e.g., prediction variance) as was done by Sanchez et al.
(2006). However, it is important to note that the ac-
curacy of the resulting ensemble does depend on the
error metric used. In the following example problems,
we present the solution to (8) using two global error
metrics (i.e., GMSE and RMSEv).

3 Example problems

To test the performance of the proposed ensemble
technique with optimized weight factors, five example
problems are considered. In the first four, the true re-
sponse is described by analytic functions that are com-
monly used as benchmark problems in the literature
whereas in the last one the true responses are obtained
from nonlinear transient dynamic finite element simu-
lations of an automobile model in frontal crash with two
barriers, one rigid and one deformable.

3.1 Benchmark problems

The benchmark problems are defined by the following
four analytical functions:

Branin–Hoo

y (x1, x2) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos (x1) + 10 (10)

where x1 ∈ [−5, 10], and x2 ∈ [0, 15].

Camelback

y (x1, x2)=
(

4 − 2.1x2
1+

x4
1

3

)
x2

1+x1x2+
(−4 + 4x2

2

)
x2

2

(11)

where x1 ∈ [−3, 3], and x2 ∈ [−2, 2].

Goldstein–Price

y (x1, x2) = [
1 + (x1 + x2 + 1)2

× (
19 − 4x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]

× [30 + (2x1 − 3x2)
2

× (
18 − 32x1 + 12x2

1 + 48x2

−36x1x2 + 27x2
2

)]
(12)

where x1, x2 ∈ [−2, 2].

Hartman

y (x) = −
m∑

i=1

ci exp

⎡

⎣−
n∑

j=1

aij
(
x j − pij

)2

⎤

⎦ (13)

where xi ∈ [0, 1]. Both the three-variable (n = 3) and
the six-variable (n = 6) models of this function are
considered. The values of function parameters ci, aij

and pij for Hartman-3 and Hartman-6 models, taken
from Goel et al. (2007), are given in Tables 1 and 2.
The value of the parameter m for both cases is taken
as four.

Table 1 Parameters used in
Hartman-3 function, j ∈ 1, 3 i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828
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Table 2 Parameters used in Hartman-6 function, j ∈ 1, 6

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

3.2 Automobile crash problem

A finite element (FE) model of a c-class passenger car
shown in Fig. 1 is used for full frontal impact (FFI)
and offset-frontal impact (OFI) simulations using the
FE code, LS-DYNA. Here, metamodels are sought
that can accurately estimate the intrusion distances
and average peak accelerations at the floor pan, the
driver seat, and steering wheel locations in FFI and OFI
scenarios for a crash duration of 100 ms; hence, there
are 12 responses of interest.

The input-variable vector consists of the geometric
parameters that control the shape (x1 to x4) and wall
thickness (x5) of the two side rails (see Fig. 1) as
well as the parameters that define variability or un-
certainty in the material stress–strain relationship (x6),
offset distance (x7), impact speed (x8), and occupant
mass (x9). In an earlier investigation by Rais-Rohani
et al. (2006), these responses were modeled using the
multiquadric formulation of RBF for subsequent use
in the reliability-based design optimization of the side
rails. Here, we will consider different metamodeling
techniques to compare the estimation accuracies of the
stand-alone and ensemble of metamodels for the 12
responses of interest.

3.3 Design and analysis of computer experiments

For the benchmark problems in (10) through (13),
Latin hypercube sampling (LHS) technique is used to

select the locations of the training points such that the
minimum distance between the design points is maxi-
mized. The MATLAB® routine lhsdesign and maximin
criterion with a maximum of 20 iterations is used to
obtain the locations of the training points.

To reduce the effect of random sampling, 1,000
different training sets are used for all the benchmark
problems except the Hartman-6, which is based on 100
different training sets. Depending on the number of
input variables, the training set for each benchmark
problem is composed of 12 to 56 design points. Hence,
all the corresponding metamodels (stand-alone and en-
semble) are constructed multiple times with the error
estimate being the average value corresponding to mul-
tiple versions (replicates) of the same metamodels. The
low computational cost is the reason for considering
such a large quantity of training sets and replicates.
Ordinarily, it would not be necessary or practical to
perform such an elaborate evaluation.

The accuracy of each stand-alone and ensemble
model for the benchmark problems is measured using
the mean and the coefficient of variation (COV) of
GMSE and RMSE error metrics. The COV of error
metrics for different examples specifies the variation
of function values on data set for different examples.
While the GMSE error metric is calculated at the de-
sign points in each independent training set and then
averaged over the multiple training sets, the RMSE
is calculated using the response prediction errors at
the individual test points in a single test data set and

Fig. 1 Perturbed geometry
of the right side rail at the
upper and lower limits
of x1 through x4
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Table 3 Summary of training
and test data used in each
problem

Problem Training sets Design points in Test points
a training set

Branin–Hoo 1,000 12 441
Camelback 1,000 12 441
Goldstein–Price 1,000 12 441
Hartman-3 1,000 20 512
Hartman-6 100 56 496
Automobile crash 1 100 40

then averaged over the multiple training sets. Similar
to the locations of the training points, the locations of
validation points used in (9) are also selected in random
based on LHS.

For the automobile crash problem, the LHS
technique is also used; however, because of the
computational cost of each high-fidelity simulation
(13 CPU hours for FFI and 17 CPU hours for
OFI using a 32-processor IBM Corp. Linux Clus-
ter with Intel Pentium III 1.266-GHz processors
and 607.5-GB random-access memory), the meta-
modeling calculations are done using only a single
training set with 100 training points (∼11 times the
number of input variables). Therefore, a total of 200
simulations are performed to generate the pool of true
responses for the two crash scenarios.

For the ensemble models found using (8), the fmin-
con function (optimizer) of MATLAB® based on the
sequential quadratic programming algorithm is used
to solve the optimization problem. In all the example
problems, the initial values for the weight factors in
both the GMSE and RMSE minimization problems
are chosen to be 1

/
M = 0.2. Because the optimization

routine is a gradient-based optimizer and the objective
function being minimized is not necessarily convex,
there is a possibility for the solution to represent only a
local optimum.

Additional information about the training and test
data sets is provided in Table 3. Depending upon the
size of input-variable vector, the number of test points
is adjusted to assure accuracy of the error estimates.
In the benchmark problems, the number of design
points in each training set is equal to twice the num-
ber of coefficients in the corresponding quadratic PRS
metamodel, while the number of design points in the
automobile crash problem is the same as that used in
Rais-Rohani et al. (2006).

3.4 Metamodeling techniques

Five different metamodeling techniques are considered
here; they include: PRS, RBF, KR, GP, and SVR.

These metamodels are also used as the five members
of the ensemble that is developed based on the four
previously described techniques.

The PRS metamodel is represented by a second-
order (i.e., fully quadratic polynomial) model. The RBF
metamodel is based on the multiquadric formulation
with the constant, c = 1. A Gaussian correlation func-
tion and a linear trend model are used in KR meta-
model. The covariance function in GP metamodel is
selected as the sum of a squared exponential function
with automatic relevance determination and covariance
function for the input-independent noise (i.e., white
noise). In SVR metamodel, a Gaussian kernel function
is used with the size of the insensitive zone selected
as 1% of the response range. The mathematical de-
scriptions of the five metamodels are provided in the
“Appendix.”

While for metamodeling of the benchmark prob-
lems, the range of values for each input variable is
that shown below the function in (10) to (13), for the
automobile crash problem, the nine input variables are
normalized in the scale of −1.0 to 1.0.

4 Results and discussion

With the exception of the automobile crash example,
the error values reported in this section represent the
average value over the number of training sets used in
each case. The abbreviated symbols introduced previ-
ously are used to identify the individual metamodels.
For the ensembles, the model based on simple averag-
ing is labeled as EA, the one based on the technique of
Goel et al. (2007) is denoted by EG, the one based on
GMSE minimization (at the training points) is labeled
as EP, and the one derived from RMSE minimization
(at the validation points) is denoted by EV_Nv . The
effectiveness of each model is measured according to its
ability to reduce the selected error metric. To facilitate
the comparison of different models, the error values
are normalized with respect to the stand-alone meta-
model having the lowest error among the five meta-
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Fig. 2 Development and evaluation steps for each metamodel

models considered. Henceforth, the word ‘normalized’
is dropped when referring to the error. The flowchart
in Fig. 2 shows the steps in development and accuracy
assessment of a metamodel for each of the benchmark
problems. For the automobile crash problem, the mul-
tiple overlapping boxes in Fig. 2 should be treated as a
single box.

4.1 Branin–Hoo

The results for this problem are given in Table 4, where
the lowest error value in each category is shown in
bold for ease of comparison. According to the average
value of GMSE, SVR is found to be the best stand-
alone metamodel for this function whereas RBF is the
best when considering the average value of RMSE.
Here, EP based on the GMSE minimization yields the
smallest GMSE overall. With an average GMSE of
0.81, EP is 20% more accurate than the best stand-
alone metamodel and ∼15% more accurate than the
EG ensemble. However, when considering the RMSE
metric, EV_Nv ensemble based on RMSE minimiza-
tion at Nv validation points gives better results, and
the improvement is amplified by increasing the number
of validation points (Nv = 2, 3, or 5) with EV_5 being
the best ensemble in Table 4. The fact that EP gives
the lowest mean GMSE value is not surprising as the
corresponding weight factors were optimized for that
condition. However, when the value of RMSE at the
test points is used as the error criterion, EV_Nv gives
a superior ensemble. It should also be mentioned that
the results presented in Table 4 are sensitive to the
number of test points used as well as the possibility of
encountering outliers. Therefore, the selection of test
points requires additional care and oversight.

Recall that the mean and COV values in Table 4
are calculated based on 1,000 different training sets.
Hence, the mean values of the GMSE and the RMSE
over the selected population sample has a COV of
1
/√

1, 000 times that of the native COV of the GMSE
and the RMSE (reported in rows 4 and 6 of Table 4),
respectively. For instance, the COV of the mean GMSE
for PRS model is 0.41

/√
1, 000 = 0.013. This number

provides an estimate of the standard error in the pre-
diction of mean GMSE over 1,000 training sets, which
is fairly small in this case.

The mean values of weight factors over multiple
replicates of each ensemble are listed in Table 5. The
values inside parentheses in Table 5 are the standard

Table 4 Comparison of accuracies of stand-alone and ensemble models for Branin–Hoo

Error metric Stand-alone Ensemble

PRS RBF KR GP SVR EA EG EP EV_2 EV_3 EV_5

GMSE (mean) 1.25 1.02 1.30 1.06 1.00 0.99 0.95 0.81 1.09 1.09 1.07
GMSE (COV) 0.41 0.31 0.33 0.31 0.26 0.31 0.32 0.35 0.35 0.33 0.33
RMSE (mean) 1.22 1.00 1.18 1.01 1.07 0.97 0.97 1.02 0.95 0.94 0.91
RMSE (COV) 0.15 0.21 0.38 0.38 0.23 0.27 0.27 0.23 0.29 0.28 0.28
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Table 5 Means and standard
deviations of weight factors
in ensemble models for
Branin–Hoo

Type of Weight factors
ensemble

PRS RBF KR GP SVR

EA 0.200 (0) 0.200 (0) 0.200 (0) 0.200 (0) 0.200 (0)
EG 0.189 (0.057) 0.214 (0.027) 0.171 (0.030) 0.210 (0.040) 0.216 (0.034)
EP 0.251 (0.296) 0.189 (0.285) 0.029 (0.119) 0.209 (0.320) 0.322 (0.353)
EV_3 0.157 (0.283) 0.144 (0.296) 0.195 (0.334) 0.254 (0.376) 0.249 (0.367)

deviations. For the Branin–Hoo function, SVR has the
largest weight factor in all the weighted-sum ensemble
models. For the EG, EP, and EV_3 models, the prefer-
ence for the other metamodels is mixed. Whereas after
SVR, EG ensemble favors the RBF metamodel; EP
and EV_3 ensembles favor PRS and KR metamodels,
respectively. The standard deviation values show rela-
tively large variability in the individual weight factors in
EP and EV_3 models but a somewhat small variation in
the case of EG.

When considering the results in Tables 4 and 5,
it appears that the stand-alone metamodel with the
lowest GMSE value is most often the one with the
highest weight factor in the weighted-sum ensemble
models. However, no trend is found in the relationship
between GMSE and weight factors for the other four
metamodels.

Figures 3 and 4 show the boxplots for the error met-
rics, GMSE and RMSE, respectively, corresponding
to the nine different metamodels for the Branin–Hoo
function. The boxplots provide a graphical depiction of
how the normalized value of each metric varies over
the range of training sets used. The bottom and top of
each box represent the lower and upper quartile values,
respectively, with the interior line representing the me-
dian. The broken line (whiskers) extending from each

Fig. 3 Boxplots of normalized GMSE over 1,000 training sets

end of the box indicates the extent of the remaining
data relative to the lower and upper quartiles. Here,
the maximum whisker length is set at 1.5 times the
interquartile range, and the data beyond this limit (if
present) are characterized as outliers and represented
by the + symbols.

When comparing the effectiveness of EP and EV_Nv

ensembles, it is important to note the difference in
the number of design points (and responses) used in
each case. For GMSE minimization in this problem,
responses at 12 training points are used whereas for
RMSE minimization with Nv = 3, there are three ad-
ditional responses (15 total).

To determine what happens under an equivalent
condition, we evaluated a test case in which 15 train-
ing points are used in GMSE minimization while 12
training plus 3 validation points are used in RMSEv

minimization.
The results in Table 6 indicate that, in this case,

GP is the best stand-alone metamodel for both error
metrics, which is different from the previous results in
Table 4. This finding shows that the performance of
metamodels has a strong dependency on the number
of training points used. Similarly, the performance of
the ensemble of metamodels is altered as the number
of training points is changed. In Table 6, EP has the

Fig. 4 Boxplots of normalized RMSE over 1,000 training sets
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Table 6 Comparison of
accuracies of stand-alone and
ensemble models for
Branin–Hoo based on an
equivalent number of data
points

Error metric Stand-alone Ensemble

PRS RBF KR GP SVR EA EG EP EV_3

GMSE (mean) 1.42 1.09 1.24 1.00 1.09 1.03 0.98 0.84 1.03
GMSE (COV) 0.34 0.31 0.35 0.37 0.30 0.32 0.33 0.37 0.32
RMSE (mean) 1.52 1.15 1.11 1.00 1.27 1.06 1.04 1.07 1.06
RMSE (COV) 0.12 0.22 0.51 0.37 0.22 0.30 0.31 0.31 0.30

best performance overall. Note also that the values in
the last column of Table 6 (for EV_3) are different from
the corresponding values in Table 4. The reason for this
difference is the use of different data sets for Tables 4
and 6. This difference shows the high variability in
function values and dependence on data sets.

4.2 Other benchmark problems

For the Camelback, Goldstein–Price, Hartman-3, and
Hartman-6 functions, the values of GMSE and RMSE
for the stand-alone and ensemble of metamodels are

compared in Fig. 5. The general trend in Fig. 5 is that
the best metamodel based on GMSE is different from
that based on RMSE metric. When the GMSE metric
is used, the EP ensemble clearly works the best. On
average, the error of EP ensemble is 13% less than that
of the most accurate stand-alone metamodel. When
the RMSE metric is used, then the EV_Nv ensem-
ble provided the best model; of course, the perfor-
mance of EV_Nv improves as the number of validation
points is increased. Average weight factors (average
over 1,000 DOEs) of metamodels in different ensem-
bles for Camelback, Goldstein–Price, Hartman-3, and
Hartman-6 functions are presented in Fig. 6. Note that

Fig. 5 Comparison of stand-alone and ensemble of metamodels for a Camelback, b Goldstein–Price, c Hartman-3, and d Hartman-6
functions
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Fig. 6 Weight factors of metamodels (averaged over 1,000 training sets) in different ensembles for a Camelback, b Goldstein–Price,
c Hartman-3, and d Hartman-6 functions

the weight factors of the metamodels for EA ensemble
is equal to 1

/
M = 0.2.

4.3 Automobile crash problem

Table 7 identifies the best stand-alone and ensemble of
metamodels for the 12 responses of interest. In terms

Table 7 Accuracy of metamodels for crash problem

Metamodel type Number of responses most
accurately modeled based on

GMSE RMSE

PRS 0 0
RBF 1 9
KR 4 1
GP 7 2
SVR 0 0
EA 0 0
EG 0 0
EP 12 0
EV_40 0 12

of GMSE, GP is found to be the best stand-alone
metamodel for the majority of responses whereas RBF
appears the best in terms of RMSE metric. As for the
ensembles, EP gives the best ensemble based on GMSE
metric whereas EV_40 is the best according to RMSE
value. As an example, the accuracies of the metamodels

Fig. 7 Comparison of stand-alone and ensemble of metamodels
for one of the responses (acceleration at driver seat under full
frontal impact) in the crash problem
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for one critical response (i.e., acceleration at driver seat
under full frontal impact) are compared in Fig. 7 where
EV_40 is shown to be the best model overall.

4.4 General findings

After the examination of results for the five example
problems, the general findings can be summarized as
follows:

1. An ensemble of metamodels with optimized weight
factors based on EP or EV_Nv formulation always
outperforms its stand-alone members when judged
by the same error metric.

2. Although the choice of error metric does not
change the overall approach, which circles around
the solution to the optimization problem in (8),
it can influence the accuracy of the resulting
ensemble.

3. When using GMSE (i.e., focusing on average error
at the training points), EP ensemble with its weight
factors found through GMSE minimization outper-
forms the other ensembles.

4. When using RMSE (i.e., focusing on average er-
ror at the test points), EV_Nv ensemble with its
weight factors found through RMSEv minimization
outperforms the other ensembles.

5. While the general trend indicates that the higher
the value of Nv the better the ensemble, the rate of
improvement varies from one problem to another.
Because the best value for Nv tends to be prob-
lem dependent, it is not possible to establish strict
guidelines on its selection. However, in general, the
required value for Nv is far less than the number of
design points in the training set.

6. While the use of EV_Nv ensemble can be advanta-
geous, it tends to be more expensive due to addi-
tional simulations.

7. While it is easy to safeguard against outliers among
the test points, it is not as easy to do the same
with the validation points. Although not used here,
the use of an outlier analysis can help alleviate this
problem.

5 Conclusions

A new approach for selecting the weight factors in an
ensemble of metamodels was presented. This approach
extends earlier efforts on development of ensembles
by treating the weight factors as design variables in

an optimization problem whereby a global or local
error metric is selected as the objective function to be
minimized. Although the approach is not tied to any
specific error metric, we illustrated the procedure using
GMSE and RMSEv as two examples.

The effectiveness of the proposed approach was
tested on four analytic functions or benchmark prob-
lems as well as an automobile crash problem requir-
ing high-fidelity simulations of a complex model with
nonlinear responses. We considered five stand-alone
metamodels and four alternative ensemble techniques
in these test problems.

The results generally favored the proposed ensemble
approach over the other techniques considered. As to
be expected, the accuracy of the ensemble and the com-
putational cost of finding the optimum weight factors
depend on the choice of error metric used. Of the two
error metrics used, the one based on GMSE is more
efficient as it uses information from the training set
whereas the one based on RMSEv is more accurate as
it also includes additional responses at the validation
points. The computational cost of using the proposed
ensemble approach, similar to the other approaches, is
in finding the responses at multiple design points and
the fitting of stand-alone metamodels. By contrast, the
solution of the optimization problem requires only a
very short computational time.

Topics being contemplated for future work include:
the use of other error metrics that can be considered
as better representatives of error in the whole design
domain, deeper investigation into the minimum num-
ber of test points and validation points for an ensemble
with a specified level of accuracy, the effect of selective
inclusion of specific stand-alone metamodels on the
accuracy of the ensemble.
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Appendix

A.1 Description of selected metamodeling techniques

In this appendix, a brief overview of the mathematical
formulation of PRS, RBF, GP, KR, and SVR metamod-
eling techniques is provided.
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A.2 Polynomial response surface approximations

The most commonly used PRS model is the second-
order model in the form of a second-degree algebraic
polynomial function as

f̂ (x) = b 0 +
L∑

i=1

bixi +
L∑

i=1

biix2
i +

L−1∑

i=1

L∑

j=i+1

bijxix j (14)

where f̂ is the response surface approximation of the
actual response function, f , L is the number of vari-
ables in the input vector x, and b 0, bi, bii, bij are the
unknown coefficients to be determined by the least
squares technique.

A.3 Radial basis function

RBF methods were originally developed to approxi-
mate multivariate functions based on scattered data.
For a data set consisting of the values of input variables
and response values at n sampling points, the true
function f (x) can be approximated as

f̃ (x) =
n∑

i=1

λiφ (‖x − xi‖) (15)

where x is the vector of input variables, xi is the vector
of input variables at the ith sampling point, ‖x − xi‖ =√

(x − xi)
T (x − xi) is the Euclidean norm represent-

ing the radial distance, r from design point x to the
sampling point or center xi, φ is a radially symmetric
basis function, and λi, i = 1,n are the unknown inter-
polation coefficients. Equation (15) represents a linear
combination of a finite number of radially symmet-
ric basis functions. Some of the most commonly used
RBF formulations include: φ (r) = r2 log (r) (thin-plate
spline); φ (r) = e−αr2

, α > 0 (Gaussian); φ (r) = √
r2 + c2

(multiquadric); and φ (r) = 1
/√

r2 + c2 (inverse mul-

tiquadric). The parameter c in the multiquadrics is a
constant. If the r values are normalized to the range of
(0, 1), then 0 < c ≤ 1. The choice of c = 1 is found to be
suitable for most function approximations. The feature
that makes these functions excellent candidates for φ

is not simply their radial symmetry but their smooth-
ness and certain properties of their Fourier transform
(Buhmann 2003). In this study, we have chosen the
multiquadric formulation of RBF because of its predic-
tion accuracy and its commonly linear and possibly ex-
ponential rate of convergence with increased sampling
points.

Given the design coordinates of n sampling points
and associated responses, the unknown coefficients in
(15) are found by minimizing the residual or the sum of
the squares of the deviations expressed as

R =
n∑

j=1

[
f
(
x j
)−

n∑

i=1

λiφ
(∥∥x j − xi

∥∥)
]2

(16)

Expressed in matrix form, (16) appears as

[
A
] {λ} = {f} (17)

where [A]=[φ ∥∥x j−xi
∥∥] , j=1, n; i=1, n, {λ}T = {λ1,

λ2, . . .λn}T , and {f}T={f(x1) ,f(x2) ,. . ., f (xn)}T . The co-
efficient vector λ is obtained by solving (17).

A.4 Gaussian process

Gaussian process assumes that the output variables
fN = {

fn
(
x1

n, x2
n, · · · , xL

n

)}N
n=1 are related to each other

with a Gaussian joint probability distribution

P ( fN| CN, XN) = 1√
(2π)N |CN|

× exp

[
−1

2
( fN −μ)

T C−1
N ( fN −μ)

]

(18)

where XN = {xn}N
n=1 are N pairs of L-dimensional input

variables xn = (
x1

n, x2
n, · · · , xL

n

)
, CN is the covariance

matrix with elements of Cij = C
(
xi, x j

)
. μ is the mean

output vector. GP estimates the output at a prediction

point xp =
(

x1
p, x2

p, · · · , xL
p

)
as

f̂
(
xp
) = kTC−1

N fN (19)

where k = [
C
(
x1, xp

)
, · · · , C

(
xN, xp

)]
. One of the nice

properties of the GP is that the standard deviation
at the prediction point is readily available without a
requirement of any extra simulations. This standard
deviation can be utilized as an error measure and can
be calculated from

σ f̂(xp) = κ − kTC−1
N k (20)

where κ = C
(
xp, xp

)
.
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We notice from (19) that the GP prediction depends
on the covariance matrix CN . The elements of this
matrix are calculated from

Cij = θ1 exp

⎡

⎢⎣−1

2

L∑

l=1

(
x(l )

i − x(l )
j

)2

r2
l

⎤

⎥⎦+ θ2 (21)

Cij = θ1 exp

⎡

⎢⎣−1

2

L∑

l=1

(
x(l )

i − x(l )
j

)2

r2
l

⎤

⎥⎦+ θ2 + δijθ3 (22)

where θ1, θ2, θ3, and rl (l = 1,2, ...., L) are called “hyper-
parameters.” Here, δij is the Kronecker delta and θ3 is
an independent noise parameter. The hyperparameters
are selected so as to maximize the logarithmic likeli-
hood that the model prediction matches the training
response data. The logarithmic likelihood function L is
given in (23).

L = −1

2
log |CN| − 1

2
f T

N C−1
N fN − N

2
log 2π + ln P (θ)

(23)

where P(θ) is the prior distribution of the hyperpara-
meters. In most of the applications, there is no prior
knowledge of the values of the hyperparameters, so the
prior distribution is uniform. Then, the last term of (23),
ln P(θ), is a constant and can be taken as zero for the
purpose of optimization, as we did in this work.

The covariance function given in (21) defines the
interpolation mode of the GP metamodel that passes
through all the training data points exactly. On the
other hand, (22) defines the regression mode of the
model, which allows us to build smoother surfaces for
problems with noisy data.

With the noise of the output values filtered out,
the predicted surface becomes less complex and may
not pass through all the training points; however, it
provides a better prediction at the nontraining points.
In this work, we used Gaussian process code from
Rasmussen and Williams (2006).

A.5 Kriging

The basic assumption of KR is the estimation of the
response in the form

f (x) = p (x) + Z(x) (24)

where f is the response function of interest, p is
a known polynomial that globally approximates the
response, and Z (x) is the stochastic component that
generates deviations such that the Kriging model

interpolates the sampled response data. The stochastic
component has a mean value of zero and covariance of

COV
[
Z (xi) , Z

(
x j
)] = σ 2R

[
R
(
xi, x j

)]
(25)

where R is N × N correlation matrix if N is the number
of data points, R(xi,x j) is correlation function between
the two data points xi and x j. Mostly, the correlation
function is chosen as Gaussian, that is,

R (θ) =
L∏

k=1

exp
(−θkd2

k

)
(26)

where L is the number of variables, dk = xi
k − x j

k is the
distance between the kth components of the two data
points xi and x j, and θk are the unknown parameters to
be determined.

Once the correlation function has been selected, the
response f is predicted as

f̂ (x) = β̂ + rT (x) R−1
(

f − β̂ p
)

(27)

where rT(x) is the correlation vector of length N be-
tween a prediction point x and the N sampling points,
f represents the responses at the N points and p is an
L-vector of ones (in the case that p(x) is taken as a
constant). The vector r and scalar β̂ are given by

rT (x) = [
R
(
x, x1

)
, R

(
x, x2

)
, · · · , R

(
x, xN)]T

,

β̂ = (
pTR−1p

)−1
pTR−1f (28)

The variance of the output model (which is different
than the variance of the sampled output) can be esti-
mated as

σ̂ 2 =
(

f − β̂ p
)T

R−1
(

f − β̂ p
)

N
(29)

The unknown parameters θk can be estimated by solv-
ing the following constrained maximization problem
(Simpson et al. 2001a, b)

Max �() = − [N ln
(
σ̂ 2
)+ ln |R|]

2
s.t.  > 0

(30)

where � is the vector of unknown parameters θk, and
both σ̂ and R are functions of �.

In this work, we use a MATLAB® Kriging toolbox
developed by Lophaven et al. (2002).
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A.6 Support vector regression, SVR

The prediction via SVR can be performed through
linear or nonlinear regression. When linear regression
is performed, then the function is predicted as

f̂ (x) = 〈w · x〉 + b (31)

where 〈w · x〉 is the dot product of w and x. We would
like to have the approximation function as flat as possi-
ble. For that purpose, we solve the following optimiza-
tion problem

Min
1

2
|w|2

s.t. yi − 〈w · xi〉 − b ≤ ε

〈w · xi〉 + b − yi ≤ ε

(32)

This formulation assumes that the function f̂ (x) can
approximate all the yi training points within an ε pre-
cision. However, this may not be true for all training
points and two slack variables can be introduced to
yield a modified formulation (Vapnik et al. 1997). Now,
the optimization problem is

Min
1

2
|w|2 + C

l∑

i=1

ξi + ξ ∗
i

s.t. yi − 〈w · xi〉 − b ≤ ε + ξi

〈w · xi〉 + b − yi ≤ ε + ξ ∗
i

ξi, ξ
∗
i ≥ 0

(33)

where C determines the tradeoff between the flatness
and tolerance. The second term in the objective func-
tion is referred as ε-insensitive loss function (Vapnik
et al. 1997). If we write the Lagrangian function, assess
the Karush–Kuhn–Tucker (KKT) conditions, and sub-
stitute KKT conditions into the Lagrangian function,
we can write the optimization problem in dual form as

Max − 1

2

l∑

i, j=1

(
αi − α∗

i

) (
α j − α∗

j

) 〈
xi · xj

〉

− ε

l∑

i=1

(
αi − α∗

i

)+
l∑

i=1

yi
(
αi − α∗

i

)

s.t.
l∑

i=1

(
αi − α∗

i

) = 0

(
αi − α∗

i

) ∈ [0, C
]

(34)

The weights and the linear regression are then calcu-
lated through

w =
l∑

i=1

(
αi − α∗

i

)
xi, f̂ (x) =

l∑

i=1

(
αi − α∗

i

) 〈
xi · xj

〉+ b

(35)

Instead of using linear regression, nonlinear regression
can also be used by replacing the dot product of the
input vectors with kernel functions. Commonly used
Kernel functions include nonlinear polynomials and
Gaussian and sigmoid kernel functions. In this case, the
optimization function is written as

Max − 1

2

l∑

i, j=1

(
αi − α∗

i

) (
α j − α∗

j

)
k
(
xi · xj

)

− ε

l∑

i=1

(
αi − α∗

i

)+
l∑

i=1

yi
(
αi − α∗

i

)

s.t.
l∑

i=1

(
αi − α∗

i

) = 0

(
αi − α∗

i

) ∈ [0, C
]

(36)

Then, the support vector regression approximation is
obtained through

f̂ (x) =
l∑

i=1

(
αi − α∗

i

)
k (xi · x) + b (37)

More detailed information can be found in Clarke et al.
(2005). In this work, we used the MATLAB® code
developed by Gunn (1997).
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