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Abstract
Asymptotic sampling (AS) is an efficient simulation-based technique for estimating the small failure probabilities of struc-
tures. AS utilizes the asymptotic behavior of the reliability index with respect to the standard deviations of random variables. 
In this method, the standard deviations of random variables are progressively inflated using a scale parameter to obtain a 
set of scaled reliability indices. The collection of the standard deviation scale parameters and corresponding scaled reli-
ability indices are called support points. Then, least squares regression is performed using these support points to establish 
a relationship between the scale parameter and scaled reliability indices. Finally, extrapolation is performed to estimate the 
actual reliability index. Various extrapolation models have been used in AS to improve accuracy. Moreover, a mean extrapo-
lation formulation using the average value of different extrapolation models was proposed to further improve its accuracy. 
Although the mean extrapolation formulation protects against using the wrong extrapolation model, it did not guarantee a 
reliability estimation better than that of the best available extrapolation model. In this paper, we propose a weighted average 
AS formulation in which the weight factors are optimized to minimize the variance of the reliability index estimation through 
the bootstrapping method. In the weight factor determination, both convex and affine formulations are considered and the 
results are compared. The performance of the proposed method is evaluated using six benchmark example problems and a 
complicated engineering problem. It is found that the proposed weighted average formulation has higher accuracy than the 
mean extrapolation formulation. For weight factor optimization, the affine formulation yields more accurate results than the 
convex formulation in most cases.

Keywords Asymptotic behavior · Bootstrap · Extrapolation models · Reliability index · High reliability · Weight factor

1 Introduction

Structural reliability is predicted using a limit-state function 
(or performance function) to separate the safe and failure 
regions of an input space. The probability of failure estima-
tion requires the calculation of the multi-dimensional inte-
gral of the joint probability density function of all random 
variables over the failure region. It is expressed as

where I is an indicator function that has a value of 1 when 
the condition is true and 0 when the condition is false, fX(x) 
is the joint probability density function of the set of ran-
dom variables X, and g(x) ≤ 0 defines the failure domain 
based on the limit-state function g(x) = 0. For most real-life 
structural problems, the analytical integration of this multi-
dimensional function is not possible; therefore, analytical 
and simulation-based approaches have been proposed to 
estimate the failure probability.

Analytical approaches require a small number of limit-
state function calculations; therefore, they are typically 
computationally inexpensive compared to simulation-based 
approaches. The most popular analytical methods are first-
order (Hasofer and Lind 1974; Rackwitz and Fiessler 1978) 
and second-order reliability methods (Breitung 1984; Tvedt 

(1)Pf = � …� I
[

g(x) ≤ 0
]

fX(x)dx,
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1990), based on first- and second-order expansions of the 
limit-state function at the most probable failure point (MPP), 
respectively. Although analytical approaches are computa-
tionally advantageous compared with other methods, they 
are not necessarily suitable for real-life problems that have 
complex and nonlinear limit-state functions (e.g., problems 
with multiple failure modes).

Simulation-based approaches can yield accurate results, 
provided that a sufficient number of simulations are applied. 
The most popular simulation-based approach is the Monte 
Carlo simulation (MCS) method (Rubinstein and Kroese 
2016). However, MCS is computationally expensive for 
estimating small failure probabilities. Variance reduction 
techniques such as importance sampling (Melchers 1989) 
and adaptive importance sampling (Wu 1994) can be used 
to improve the accuracy of failure probability estimations. 
These methods rely on the concept of an MPP search, and 
most MPP search algorithms may fail or yield erroneous 
results when the limit-state function is highly nonlinear or 
discontinuous. In such cases, simulation-based methods that 
do not rely on an MPP search, such as stratified sampling 
(Iman and Conover 1980), subset simulation (Au and Beck 
2001), or line sampling (Koutsourelakis et al. 2004), can 
be used.

Other alternatives include the utilization of metamodels, 
such as Kriging (Kaymaz 2005; Xiao et al. 2020; Zhou and 
Lu 2020), neural networks (Gondal and Lee 2012; Papado-
poulos et al. 2012), support vector regression (Basudhar and 
Missoum 2010), radial basis functions (Zhou et al. 2019a, 
b), and polynomial chaos expansions (Diaz et al. 2018; Zhou 
et al. 2019a, b). Owing to the extremely high computational 
cost of implicit functions in certain problems, surrogate 
models are widely used as a replacement (Jiang et al. 2019; 
Chojaczyk et al. 2015). However, the performance of sur-
rogate models is affected by high dimensionality. In other 
words, the computational effort required to construct a sur-
rogate model increases dramatically with the number of ran-
dom input variables.

For accurate estimation of high reliabilities (or small fail-
ure probabilities), various approaches have been developed. 
These approaches can be categorized into three: sampling-
based approaches, surrogate-based approaches and statistics 
of extremes-based approaches (Lee et al. 2022). Advanced 
sampling approaches such as importance sampling (Tok-
dar and Kass 2010), subset simulation (Au and Beck 2001), 
asymptotic simulation (Bucher 2009) are few methods that 
have been proven to provide more accurate and more effi-
cient estimations of small probabilities than the crude Monte 
Carlo method. Surrogate-based approaches include the use 
of traditional metamodels and machine learning models. 
Widely used surrogate models include Kriging, support 
vector regression and neural networks. The use of statistics 
of extremes for rare event probability estimation is often 

conducted using generalized Pareto distribution (Kim et al. 
2006), extreme value distribution (Jenkinson 1955; Hosking 
et al. 1985) or other asymptotic distributions.

In the field of high-dimensional reliability analysis, deep 
learning (Erfani et al. 2016; Jampani et al. 2016) have gain 
lots of attention due to its capability of extracting critical 
features from high-dimensional space. Based on the infor-
mation collected from data, deep learning utilizes a layered 
structure of algorithms to make predictions, and it has been 
applied for classification and regression problems in a vari-
ety of fields. By employing deep learning techniques, a high-
dimensional data abstraction framework was first developed 
by training deep neural networks (Li and Wang 2020a, b). 
For reliability analysis of dynamic systems, a long short-
term memory augmented deep learning framework was 
developed to handle time-dependent uncertainties (Li and 
Wang 2022a). The deep learning-based models were also 
utilized for reliability-based design optimization (RBDO) 
problems with limited data (Li and Wang 2022b). The high-
dimensional reliability analysis, in which a surrogate model 
was built to approximate a performance function that is high 
dimensional, computationally expensive and implicit (Sad-
oughi et al. 2018). In the absence of sufficient statistical 
information about the input variables, Bayesian inference 
has been utilized to quantify the epistemic uncertainty due to 
lack of data and further formulate Bayesian reliability-based 
design optimization (Youn and Wang 2008; Srivastava and 
Deb 2013). A Bayesian-enhanced meta-model approach is 
used for managing the heterogeneous uncertainties which is 
due to model imperfection, lack of training data and input 
variations in RBDO (Li and Wang 2020a, b). The reader is 
referred to Ramu et al. (2022) for a more comprehensive lit-
erature review on machine learning techniques in structural 
and multidisciplinary optimization.

Amongst these aforementioned methods, this paper 
focuses on the asymptotic sampling (AS), which is an 
extrapolation-based method for estimating small failure 
probabilities of highly safe structures (Bucher 2009). This 
method extrapolates from low reliability indices to high-
reliability indices based on the asymptotic behavior of 
the failure probability with respect to the standard devia-
tion of the variables. Using a scale parameter, the standard 
deviations of random variables are progressively inflated 
to obtain various smaller-scaled reliability indices that can 
be predicted accurately using a small number of samples. 
Subsequently, least squares regression was used to estab-
lish a relationship between the standard deviation infla-
tion parameter and scaled reliability index values. Finally, 
extrapolation was performed to estimate the actual reliability 
index. This method can reduce the computational cost for 
the estimation of a high reliability index because a low reli-
ability index can be estimated at a lower computational cost. 
Inspired by the multiple tail median formulation of Ramu 
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et al. (2010), where the median of multiple tail model pre-
dictions was used, Zhangchun et al. (2013, 2014) improved 
the accuracy of the AS method using the mean prediction 
of various extrapolation models. Acar (2016) increased the 
effectiveness of AS by reformulating the extrapolation for-
mulation for highly safe structures with separable limit-state 
functions. Kaveh and Eslamlou (2019) used the flexibility 
of weighted simulation, which uses a uniform distribution 
for sampling, to decrease the required calls of the limit-
state function with AS. Bayrak and Acar (2021a) critically 
evaluated the performance of the AS method for highly safe 
structures and provided guidelines for improving its perfor-
mance. They showed that even though the mean extrapola-
tion formulation of Zhangchun et al. (2013, 2014) protects 
against the use of the wrong extrapolation model, it does 
not guarantee a better reliability estimation than that of the 
best available extrapolation model. That is, assigning the 
same importance to all available extrapolation models may 
lead to a deterioration in accuracy. Therefore, we propose 
a weighted average AS formulation where the weight fac-
tors are optimized to minimize the variance of the reliability 
index estimated through the bootstrapping method. In the 
weight factor determination, both convex and affine formula-
tions were considered, and the results were compared.

The remainder of this paper is organized as follows. The 
AS method is described briefly in Sect. 2. The mean extrapo-
lation formulation used in the AS is presented in Sect. 3. 
The proposed weighted average formulation is presented in 
Sect. 4. Numerical examples used in this study are discussed 
in Sect. 5. The results obtained from these example problems 
are presented and discussed in Sect. 6. Finally, a summary 
of important conclusions is presented in Sect. 7.

2  Asymptotic sampling (AS)

Bucher (2009) developed an AS method that enables the 
accurate estimation of high reliability indices. In this 
method, the standard deviations of random variables are 
artificially inflated using a scale parameter to obtain smaller 
reliability indices known as “scaled” reliability indices. Sub-
sequently, a functional relationship is established between 
the scale parameters and scaled reliability indices. Finally, 
the actual reliability index is predicted using the established 
functional relationship.

Bucher first considered a problem involving a linear 
limit-state function and suggested that this problem can be 
reduced to a single variable with a standard deviation of σ 
via an appropriate coordinate transformation. The reliability 
index can then be formulated as

where f is the scale factor, and �f  is the scaled reliability 
index computed for the scaled standard deviation of the ran-
dom variable σf  =  σ/f. The actual reliability index was com-
puted as �act = �(f = 1). For problems with multiple input 
random variables, the standard deviations of all random vari-
ables are scaled using the same scale factor f. To obtain a 
good estimate of �act , the reliability index for a larger value 
of σ (a smaller value of scale factor f) can be computed using 
MCS and then simply extrapolated by multiplying the result 
by f.

Bucher also considered a second analytical problem with 
a hyper circular limit-state function in an n-dimensional 
Gaussian space, in which the failure domain is defined 
through g(X) = R2 −  XTX ≤ 0. In this case, the reliability 
index is expressed in terms of the χ2-distribution with n 
degrees of freedom as.

where Φand�2 are the cumulative distribution functions of 
the standard normal distribution and chi-squared distribu-
tion, respectively. The relationship between the reliability 
index and standard deviation scale parameter f is shown in 
Fig. 1.

Based on the asymptotic behavior of the reliability 
index with respect to the standard deviation scale param-
eter, Bucher assumed the following functional relationship 
between the reliability index and standard deviation scale 
parameter f:

As f → ∞ (that is, σf → 0), the reliability index β → ∞, to 
ensure asymptotic behavior. Coefficients A and B are deter-
mined from a least squares regression analysis based on the 

(2)�(f ) =
�f

f
,

(3)� = Φ−1
[

1 − �2
(

f 2R2, n
)]

,

(4)� = Af +
B

f

Fig. 1  Relationship between reliability index and standard deviation 
scale parameter f for hyper circular limit-state function (Bucher 2009)
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estimates of � for different values of f smaller than 1. That 
is, a set of “support points” [fi, β(fi)], shown in Fig. 2, is used 
in the regression.

To assign equal weights to all the support points for the 
regression analysis, Eq. (4) can be rewritten in terms of a 
scaled reliability index as

It is essential to use a sampling method that yields stable 
results. A typical choice is the Latin hypercube sampling 
(LHS) method (Iman and Conover 1982; Florian 1992). 
Alternatively, pseudo-random sequences with low-discrep-
ancy sampling methods such as Sobol sequences (Bratley 
and Fox 1988), Halton sequences (Halton 1960), or good 
lattice-point sets (Fang et al. 1994) can be utilized. Bay-
rak and Acar (2021a) compared the use of LHS and Sobol 
sequences and found that Sobol sequences yielded better 
results. Therefore, Sobol sequences were used here.

Bucher (2009) initiated the AS algorithm using the scale 
parameter f0 = 1. The required number of samples in the fail-
ure domain was set to N0 = 10. In the first step, the actual 
number of samples NF in the failure domain was inadequate 
(less than N0). Therefore, f was decreased by a factor of 
0.9, and the simulation was repeated until NF was equal to 
or exceeded N0. The support points and regression curves 
obtained from the extrapolation process are shown in Fig. 2. 
Bayrak and Acar (2021a) found that the initial scale param-
eter could be set between 0.3 and 0.4 for a reliability index 
range of 4–6. Here, the initial scale parameter was set to 0.4 
for all example problems.

Bucher (2009) stated that five support points could be 
used. In his later studies, he used a different number of sup-
port points. In a follow-up study, Gasser and Bucher (2018) 
suggested that four or more support points yielded a more 
stable regression. However, this practice resulted in an 
increase in computational effort. Bayrak and Acar (2021a) 

(5)
�

f
= A +

B

f 2

found that using four support points provided the best com-
promise between accuracy and efficiency; if the reliability 
index was extremely high, five support points could be used 
to achieve an acceptable level of accuracy. Here, four sup-
port points were used for all reliability index values.

3  Mean extrapolation formulation

The AS method extrapolates a high reliability index from the 
obtained low reliability indices. This technique can decrease 
the computational cost for the evaluation of a high reliability 
index because a low reliability index can be estimated at a 
lower computational cost. However, Zhangchun et al. (2013) 
discovered that the use of a single extrapolation model was 
not robust. Inspired by the multiple tail median formulation 
of Ramu et al. (2010), Zhangchun et al. (2013) proposed the 
generation of multiple extrapolation models and used the 
mean value of the reliability predictions of these models. 
Specifically, they proposed using 10-extrapolation models 
expressed as

where t = 1,…, 10 represents the extrapolation model index, 
qt (t = 1,…, 10) is the exponent of the extrapolation model, 
and exp(.) is an exponential operation with a natural base 
e. The coefficients At and Bt were determined through least 
squares regression. Then, the actual reliability index was 
estimated using the average of these 10-extrapolation models 
and expressed as

Here, the models in Eq. (6) are called “nor q3,” “nor q2,” 
“nor q1,” “nor q0.5,” and “nor q1/3” in the order they appear 
in the equation. Similarly, the models in Eq. (7) are called 
“exp q3,” “exp q2,” “exp q1,” “exp q0.5,” and “exp q1/3” in the 
order they appear in the equation.

In a follow-up study, Zhangchun et al. (2014) proposed a 
new mean extrapolation formulation that involved six extrap-
olation models to estimate the reliability index. In that study, 
only the models corresponding to  q2,  q3, and  q4 in Eq. (6) 
and to  q7,  q8, and  q9 in Eq. (7) were used. Zhangchun et al. 
(2014) did not compare the accuracy of the two versions. 

(6)
�t(f ) = Atf +

Bt

f qt

(

t = 1, 2, 3, 4, 5; q1 = 3,

q2 = 2, q3 = 1, q4 = 0.5, q5 =
1

3

)

(7)
�t(f ) = Atf +

Bt

exp(f qt )

(

t = 6, 7, 8, 9, 10; q6 = 3,

q7 = 2, q8 = 1, q9 = 0.5, q10 =
1

3

)

,

(8)
�(1) =

1

10

∑10

t=1
�t(1) =

1

10

(

∑5

t=1

(

At + Bt

)

+
∑10

t=6

(

At + Bt∕e
)

)

Fig. 2  Concept of asymptotic sampling (Bucher 2009)
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Bayrak and Acar (2021a) compared the six- and ten-model 
mean extrapolation formulations and found the six-model 
mean extrapolation formulation to be more accurate. How-
ever, in this paper, a weighted average extrapolation model 
is used instead of the mean extrapolation formulation. There-
fore, in our weighted average formulation, we use both six 
and ten different individual extrapolation models and com-
pared the results.

Note also that parametric models are used in the extrap-
olation function. However, non-parametric surrogate or 
machine learning models can also be used. In an earlier work 
(Bayrak and Acar 2021b), we compared the performances 
of the existing parametric models to those of the Gaussian 
process, support vector regression, and Kriging models and 
found that the parametric models resulted in better accura-
cies. Therefore, parametric models are used in the extrapola-
tion function in this study.

4  Proposed weighted average formulation

We showed in our earlier study (Bayrak and Acar 2021a) 
that even though the mean extrapolation formulation pro-
tects against using the wrong extrapolation model, it does 
not guarantee a better reliability estimation than that of the 
best available extrapolation models. That is, assigning the 
same importance to all available extrapolation models may 
lead to a deterioration in accuracy. Therefore, we propose a 
weighted average AS formulation inspired by an ensemble of 
metamodels (Acar and Rais-Rohani 2009). In the weighted 
average AS formulation, the prediction of the reliability 
index was obtained as

where β is the predicted reliability index, n is the number of 
extrapolation models in the weighted average formulation 
(n = 6 or 10), wi is the weight factor for the ith reliability 
index, and βi is reliability index prediction of ith model in 
the weighted average formulation.

4.1  Weight factor determination

The weight factors in Eq. (9) were optimized to minimize the 
variance in the reliability index estimation. The optimization 
problem for determining the weight factor can be formulated 
using an affine or convex formulation (Strömberg, 2021). 
In the case of the affine formulation, the weight factors are 
calculated from

(9)� =
∑n

i=1
wi�i,

where w is the weight factor vector and 1 is the vector of 
ones. Additionally, as suggested by Breiman (1996) and dis-
cussed by Viana et al. (2009), a natural constraint to include 
in the optimization formulation is that the weight factors 
should be non-negative. For the convex formulation, the 
weight factors are calculated from

4.2  Variance estimation using bootstrap method

The bootstrap method is an efficient numerical method for 
estimating the distribution of a statistical parameter from a 
sample set of results (Chernick 2011). The main idea of the 
bootstrapping method is to generate a number of bootstrap 
samples by resampling with replacement from the original 
samples and then approximating the distribution of the sta-
tistical parameter of interest (e.g., mean, standard deviation, 
probability of failure) from the bootstrap samples. Because 
the resampling procedure is based on selecting data ran-
domly with replacement, the statistical properties of boot-
strap samples are different from those of the original sam-
ples. Therefore, for any bootstrap sample, the value of the 
statistical parameter of interest is different, allowing the esti-
mation of the statistical distribution of the statistical param-
eter of interest. The framework of the bootstrap method is 
shown in Fig. 3. In this study, the bootstrap method was used 
to estimate the variance in the reliability index prediction. 
First, we used N = 512 Sobol samples in the AS method and 
stored the support points. Next, we created a p = 10 set of 
bootstrap samples for each support point and computed the 
corresponding scaled reliability index values. Because we 
have four support points and 10 sets of bootstrap samples (10 
scaled reliability index values), we performed least square 
regression  104 = 10,000 times and obtained 10,000 different 
extrapolated reliability index values for each extrapolation 
model, leading to 10,000 reliability index estimations for 
mean and weighted average extrapolation formulations.

(10)
���� w

��� Var(�)

�.�.wT
� = 1

,

(11)

Find w

Min Var(�)

S.t. wT1 = 1, and w
i
≥ 0 for i = 1,… 6(or 10).
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5  Example problems

To test the performance of the proposed technique with opti-
mized weight factors, six simple example problems and one 
complex engineering problem were selected as structural 
mechanics problems. The first example is a simple two-var-
iable problem involving a linear limit-state function; there-
fore, an analytical solution can easily be obtained. Starting 
from this simple example, the dimensionality of the func-
tions (i.e., the number of random variables) was varied (see 

Table 1). The complicated engineering design problem of a 
crane bridge was investigated under light (L) and heavy (H) 
loading conditions.

5.1  Connecting‑rod problem

The connecting-rod problem under axial loading is illus-
trated in Fig. 4. The simple two-variable problem involved 
the linear limit-state function

where R and C are the stress (response) and strength (capac-
ity), respectively, and both are random variables. The statis-
tical properties of the random variables are listed in Table 2.

The mean value of the stress µR can be changed to 
obtain various reliability index values. To solve this prob-
lem, the actual reliability index can be easily obtained 
using Eq. (13) because the limit-state function was linear 
and both random variables followed a normal distribution. 
In Eq. (13), μ and σ are the mean and standard deviation 
of the corresponding quantities, respectively.

(12)g = C − R,

(13)� =
�C − �R
�

�2

C
+ �2

R

=
100 − �R
√

82 + 62
= 10 −

�R

10

Fig. 3  Framework for bootstrap 
method (Picheny et al. 2010)

Table 1  Dimensionality of 
example problems

ID Problem Dimen-
sionality
(nvar)

1 Connection rod 2
2 Cantilever beam 3
3 Central crack 4
4 Fortini's clutch 4
5 Roof truss 6
6 I-beam 8
7 Crane bridge 6

Fig. 4  Connecting-rod under axial loading

Table 2  Statistical properties of random variables in connecting-rod 
problem

Random variable Distribution Mean Standard 
deviation

R Normal µR 6
C Normal 100 8

t
w

Fig. 5  Cantilever beam under vertical and lateral bending
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5.2  Cantilever‑beam problem

The cantilever-beam problem (Wu et al. 2001) is illus-
trated in Fig. 5. The limit-state occurs when the tip dis-
placement exceeds the allowable Do and is expressed as

where E is the modulus of elasticity, X and Y are mutually 
independent random loads, and the width w = 2.7″ and thick-
ness t = 3.4″ are the design parameters. The definitions of 
random variables are presented in Table 3. The allowable 
displacement D0 was varied to obtain various reliability lev-
els as shown in Appendix A.

5.3  Central‑crack problem

In this example (Bayrak and Acar 2018), a rectangular plate 
of finite width W with a central through-thickness crack of 

(14)g = D0 −
4L3

Ewt

√

(

Y

t2

)2

+
(

X

w2

)2

,

length 2a loaded in tension with a uniform stress S was con-
sidered (see Fig. 6). The limit-state function for this problem 
can be written as

where a is the half-crack length, W is the plate width, S is 
the applied stress, and KIC is the fracture toughness, all of 
which were selected randomly. The probability distributions 
and the means and standard deviations of the random vari-
ables are given in Table 4. The mean value of the fracture 
toughness 

(

K
IC

)

 was varied to adjust the reliability level (see 
Appendix A).

5.4  Fortini’s clutch problem

The Fortini’s clutch used in many tolerance analysis studies 
(Creveling 1997) is illustrated in Fig. 7. The contact angle 
y is given in terms of the independent component variables 
X1, X2, X3, and X4 as

(15)g = KIC −

�

sec
�

�a

W

�

S
√

�a,

(16)y = arccos

(

X1 + 0.5(X2 + X3)

X4 − 0.5(X2 + X3)

)

Table 3  Statistical properties of random variables in cantilever-beam 
problem

Random variable Distribution Mean Standard deviation

X [lb] Normal 500 100
Y [lb] Normal 1000 100
E [psi] Normal 29 ×  106 1.45 ×  106

Fig. 6  Central-cracked plate 
with finite width

Table 4  Statistical properties of random variables in central-rack 
problem

Random variable Distribution Mean Standard deviation

a [mm] Normal 25 0.75
W [mm] Normal 500 5
S [MPa] Normal 100 10
KIC [ MPa

√

m] Normal K
IC

0.1 K
IC

Fig. 7  Fortini’s clutch (Lee and Kwak 2006)

Table 5  Statistical properties of random variables in Fortini’s clutch 
problem

*For  X1, the scale parameter was λ = 4.01 and the shape parameter 
was ζ = 0.0014. For  X4, the location parameter was µ = 101.6 and the 
scale parameter was β = 0.062

Random variable Distribution Mean Standard deviation

X1 [mm]* Log-normal 55.29 0.0793
X2 [mm] Normal 22.86 0.0043
X3 [mm] Normal 22.86 0.0043
X4 [mm]* Extreme type I 101.6 0.0793



 G. Bayrak et al.

1 3

127 Page 8 of 21

The statistical properties of the random variables are 
listed in Table 5. The limit-state function for this problem 
is expressed as

where ycrit was adjusted to obtain various reliability levels 
as presented in Appendix A.

(17)g = y − ycrit,

5.5  Roof‑truss problem

A roof truss subjected to uniform loads introduced by Song 
et al. (2009) is shown in Fig. 8. The top boom and compres-
sion members were made of concrete, and the bottom boom 
was made of steel. The limit-state function is expressed as

where c is the vertical deflection at the peak of the structure 
(node C in Fig. 8), q is the uniform load, l is the length, As 
and Ac are the sectional areas, and Es and Ec are the moduli 
of elasticity. The definitions of random variables are given in 
Table 6. The value of the vertical deflection c was changed 
to arrange the reliability level of the problem as shown in 
Appendix A.

5.6  I‑beam problem

A simply supported I-beam is illustrated in Fig. 9. The 
beam was subjected to a concentrated load as described by 
Huang and Du (2006). This problem involves a limit-state 
function defined as the difference between the strength (S) 
and maximum normal stress (σmax) owing to bending and 
is expressed as

where

(18)g = c −

(

ql2

2

)

(

3.81

AcEc
+

1.13

AsEs

)

,

(19)g = S − �max,

Fig. 8  Roof truss

Table 6  Statistical properties of random variables in roof-truss prob-
lem

Random variable Distribution Mean Standard deviation

q [N] Normal 20 ×  103 1400
l [m] Normal 12 0.12
As  [m2] Normal 9.82 ×  10–4 5.892 ×  10–5

Ac  [m2] Normal 0.04 4.8 ×  10–3

Es [Pa] Normal 1 ×  1011 6 ×  109

Ec [Pa] Normal 2 ×  1010 1.2 ×  109

Fig. 9  Cross section and load-
ing for simply supported I-beam

Table 7  Statistical properties of random variables in I-beam problem

Random variable Distribution Mean Standard 
deviation

P Normal 6070 200
L Normal 120 6
a Normal 72 6
S Normal S 0.15 S
d Normal 2.3 1/24
bf Normal 2.3 1/24
tw Normal 0.16 1/48
tf Normal 0.26 1/48
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The statistical properties of the random variables used 
in this example are listed in Table 7. The mean value of 
strength was tailored to accommodate the reliability level 
of the problem as given in Appendix A.

(20)�max =
Pa(L − a)d

2LI
, I =

bf d
3 − (bf − tw)(d − 2tf )

3

12

5.7  Crane‑bridge problem

The crane-bridge problem is a complicated engineering 
problem owing to the complexity of the loading and geom-
etry. Farkas (1986) was the first to consider the overhead-
crane problem. Van Hai et al. (2020) estimated the failure 
probabilities of overhead-crane girders with uncertain design 
parameters. To simplify the problem, we defined the crane 
design problem within a set of analytical stress constraints.

Here, the double-girder overhead crane consisting of 
two main bridge girders, two end girders, and a trolley 
hoist as shown in Fig. 10a is discussed. The trolley hook 

a. Structure of overhead crane

b. Simplified crane-girder model

c. Girder cross-section

Fig. 10  Crane configuration and girder calculation schema
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moves loads on rails mounted or welded on top of bridge 
beams. Figure 10b shows the loading conditions used 
to design the double-girder overhead crane. This design 
consisted of girders with a span of length L. For a single 
girder, the wheel load F is equal to one-quarter of the 
sum of the carriage mass Gt and the working load H. The 
linearly distributed load q represents the weight of the 
girder and the other distributed loads. The loads caused by 
wind and other external factors were neglected. The cross-
section of the girder is shown in Fig. 10c. The section was 
assumed to be constant across the span, and the rail and 
reinforcement parts were neglected when calculating the 
section properties.

The static stress function on the bottom flange at the mid-
span owing to biaxial bending was used as the limit-state 
function and is expressed as

where Mx and My are the bending moments, Wx and Wy are 
the section moduli, �allow = �d(�sYs) is the allowable stress 
value, Ys is the yield strength, αd is the duty factor, and 
αs = 0.59.

The moments of inertia were calculated as

and

The section moduli were calculated as 

The bending moment owing to vertical loads was calcu-
lated as 

where (�dH + Gt)∕4 is the wheel load, q = (kgA� + pr + ps) 
is the linear distributed weight with kgA� being the girder-
distributed mass when considering stiffeners and diaphragms 
by a factor of kg = 1.05, A = 2[htw + (b + 2d)tf ] is the given 
girder cross-sectional area, K = 1.9 m is the distance between 
the trolley axes, g = 10 m/s2, and ρ = 7850 kg/m3.

The bending moment owing to horizontal loads was cal-
culated as

(21)�s =
Mx

Wx

+
My

Wy

≤ �allow,

(22)Ix =
twh

3

6
+ 2

[

(b + 2d)t3
f

12
+

(

h

2
+

tf

2

)2

(b + 2d)tf

]

(23)Iy =
tf (b + 2d)3

6
+ 2

[

ht3
w

12
+

(

b

2
−

tw

2

)2

htw

]

(24)Wx =
2Ix

h + 2tf
,Wy =

2Iy

b + 2d

(25)Mx =
L2q

8
+

�dH + Gt

8L

(

L −
k

2

)2

,

where kM = 0.3 × 0.5 , and a factor of 0.3 represents the 
effect of inertial forces, and a factor of 0.5 indicates that 
two of the four trolley wheels are driven.

Finally, the static stress limit-state function is given as

Here, two types of girder overhead cranes with different 
geometrical properties and loading conditions were used. 
Because we investigated the effect of AS in systems with 
high reliability, girders with a high reliability index were 
selected from Farkas's (1986) study. The abbreviations L 
and H represent light and heavy loadings, respectively. The 
reliability index values of these loading cases were 5.82 and 
4.58, respectively. The parameters of the girders under dif-
ferent loading conditions are listed in Table 8.

The deterministic data used for the beams are as fol-
lows: L = 22.5 m, Gt = 42.25x103 N, pr + ps = 190 kg/m, 
E = 2.1x105 N/mm2, d = 10 mm. H, Ys, h, tw, b, and tf are 
random variables with a normal distribution, mean µi, and 
variance coefficient  COVi. The mean of random variables µH 
= 200x103 N, µYs = 355 N/mm2, and µx = kgeoxop (kgeo = 1.05) 
for the other geometric parameters. The coefficients of 
variation were  COVF = 0.05 for loadings (H and Ys) and 
 COVgeo = 0.025 for geometric parameters (h, tw, b, and tf).

6  Results

6.1  Numerical procedure

The numerical procedure in this study consisted of the fol-
lowing steps:

 i. For each support point, N = 512 Sobol samples were 
generated, from which p = 10 sets of bootstrap samples 
were generated.

 ii. p = 10 scaled reliability index values correspond-
ing to each set of bootstrap samples were calculated. 
Because there were ten scaled reliability indices and 
four support points, there were  104 different [f, β] 
combinations.

(26)My = kM

[

L2q

8
+

Gt

8L

(

L −
k

2

)2
]

,

(27)g = �allow − �s

Table 8  Optimum geometric parameters xop of girders (Farkas 1986)

Girder hop (mm) twop (mm) bop (mm) tfop (mm)

L 950 5 375 14
H 1000 6 325 18
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 iii. Extrapolation was performed for each [f, β] combina-
tion to obtain  104 extrapolated reliability index values 
corresponding to each individual extrapolation model.

 iv. The variance of the reliability index estimation was 
obtained using the weighted average extrapolation for-
mulation in terms of weight factors and the optimiza-
tion of the weight factors to minimize this variance. 
For the optimization, we used both convex and affine 
formulations and compared the results.

To reduce the effect of random sampling, the above pro-
cedure was repeated 1000 times. The performances of differ-
ent reliability index extrapolations (individual extrapolation 
models and mean and weighted average extrapolation formu-
lations) were measured through the RMSE values obtained 
from these 1,000 runs. We investigated the performance of 
the AS for these example problems for reliability index val-
ues of 4, 4.5, 5, 5.5, and 6, which correspond to failure prob-
abilities of 3.17 ×  10−5, 3.40 ×  10−6, 2.87 ×  10−7, 1.90 ×  10−8, 
and 9.87 ×  10−10, respectively. Note that the number of 

Table 9  Bootstrapping-based weighted average AS results for cantilever-beam problems for a reliability index of 4.0

Bootstrapping results

Normal Exponential Mean Ext. 
Formula-
tion

Weighted Average

q = 1/3 q = 0.5 q = 1 q = 2 q = 3 q = 1/3 q = 0.5 q = 1 q = 2 q = 3 Average Convex Affine

Std dev. of β 0.475 0.445 0.372 0.278 0.223 0.503 0.498 0.509 0.575 0.640 0.451 0.223 0.095
wi (convex) 0 0 0 0 1 0 0 0 0 0 – – –
wi (affine)  − 1.501  − 2.747  − 3.375  − 0.495 1.652 1.771 2.619 6.714 4.760  − 8.397 – – –

AS (repeated 1000 times)

Normal Exponential Mean Ext. 
Formula-
tion

Weighted Average

q = 1/3 q = 0.5 q = 1 q = 2 q = 3 q = 1/3 q = 0.5 q = 1 q = 2 q = 3 Average Convex Affine

Mean of β 4.139 4.115 4.057 3.980 3.933 4.161 4.157 4.166 4.218 4.268 4.119 3.933 3.780
Std dev. of β 0.362 0.342 0.295 0.237 0.207 0.380 0.377 0.384 0.428 0.471 0.345 0.207 0.148
RMSE 0.377 0.352 0.296 0.243 0.228 0.402 0.397 0.407 0.467 0.528 0.357 0.228 0.291
Bias 0.109 0.085 0.027  − 0.050  − 0.097 0.131 0.127 0.136 0.188 0.238 0.089  − 0.097  − 0.250

Table 10  Bootstrapping-based weighted average AS results for cantilever-beam problems for a reliability index of 4.0

Bootstrapping results

Normal Exponential Mean Ext. 
Formulation

Weighted Average

q = 0.5 q = 1 q = 2 q = 0.5 q = 1 q = 2 Average Convex Affine

Standard dev. of β 0.445 0.372 0.278 0.498 0.510 0.576 0.446 0.278 0.095
wi (convex) 0 0 1 0 0 0 – – –
wi (affine) − 16.766 − 6.888 5.903 5.637 29.303 − 16.190 – – –

AS (repeated 1000 times)

Normal Exponential Mean Ext. 
Formulation

Weighted Average

q = 0.5 q = 1 q = 2 q = 0.5 q = 1 q = 2 Average Convex Affine

Mean of β 4.115 4.057 3.982 4.157 4.166 4.218 4.115 3.980 3.780
Standard dev. of β 0.342 0.295 0.238 0.377 0.384 0.428 0.342 0.238 0.148
RMSE 0.352 0.296 0.243 0.397 0.407 0.467 0.352 0.243 0.291
Bias 0.085 0.027  − 0.050 0.127 0.136 0.188 0.085  − 0.050 − 0.250
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function evaluations required for the reliability prediction 
of a given problem is 2048. This increases the computational 
burden for real engineering black-box problems that require 
heavy computation.

6.2  Cantilever‑beam results

The results obtained for the cantilever-beam problem are 
presented in Tables 9, 10, 11 for reliability index values 
of 4–6, respectively. The tables present the results for the 
individual extrapolation models, mean extrapolation for-
mulation (proposed by Zhangchun et al. 2013, 2014), and 
proposed bootstrapping-based weighted average AS method 
with affine and convex formulations. The overall process was 
repeated 1000 times, and the RMSE values for the reliability 
index estimations were computed. Note that RMSE includes 
variance and bias error. In this study, the weight factors are 
selected such that the variance is minimized, because the 
bias error could not be measured through bootstrapping.

Bootstrapping-based weighted average AS results for 
cantilever-beam problems for a reliability index of 4.0 are 
presented in Tables 9 and 10 for ten-model and six-model 
extrapolations, respectively. Tables 9 and 10 show that 
the standard deviations of the reliability indices estimated 
through bootstrapping were larger than the standard devia-
tions of the reliability indices obtained through AS. The 
bootstrapping successfully ordered the standard devia-
tions of different extrapolation models. In Table 9, the 
“nor q3” model had the smallest standard deviation, the 
“nor q2” model had the second-smallest standard devia-
tion, etc., according to the bootstrapping and repeated 
sampling. Similarly, in Table 10, the “nor q2” model had 
the smallest standard deviation, the “nor q1” model had 
the second-smallest standard deviation, etc., according to 
the bootstrapping and repeated sampling.

Table 9 shows that the standard deviation and the RMSE 
of the reliability index obtained using the weighted aver-
age formulation were smaller than those obtained using the 
mean extrapolation formulation. When the weight factors 
were optimized using a convex formulation, the weight 
factor of the extrapolation model with the smallest stand-
ard deviation had a value of 1, whereas the other extrapo-
lation models had a value of 0. Table 9 shows that even 
though the affine weighted average formulation led to a 
smaller standard deviation of the reliability index than that 
of the convex weighted average formulation, the RMSE of 
the reliability index obtained using the convex weighted 
average formulation was smaller than that of the affine 
weighted average formulation.

Table 10 also shows that the standard deviation and the 
RMSE of the reliability index obtained using the weighted 
average formulation were smaller than those obtained 
using the mean extrapolation formulation. That is, both Ta
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ten-model and six-model weighted average formulations 
provided more accurate results than the mean extrapolation 
formulation. Comparison of the RMSE results in Tables 9 
and 10 reveals that the ten-model weighted average model 
leads to more accurate reliability index prediction than the 
six-model weighted average model.

The comparison of the accuracies of the ten-model and 
six-model weighted average extrapolation models over all 
numeric example problems are given in Appendix B. It 
is found that accuracy of the ten-model convex weighted 
average extrapolation formulation is always better than or 
that of the six-model convex weighted average extrapola-
tion formulation. It is also found that the accuracies of the 
ten-model affine weighted average extrapolation and the 
six-model affine weighted average extrapolation are close.

Table 11 shows that the cantilever beam resulted in 
a reliability index of 5. The bootstrapping successfully 
ordered the standard deviations of different extrapolation 
models. The extrapolation model “nor q3” had the small-
est standard deviation; therefore, its weight factor was 
1, and the weight factors of the other models were 0 in 
the convex weighted average formulation. Table 10 also 
shows that the affine weighted average formulation led to 
a smaller standard deviation and the RMSE of the reli-
ability index obtained using the convex weighted average 
formulation was smaller than that of the affine weighted 
average formulation.

Table 12 shows that the cantilever beam resulted in a reli-
ability index of 6. The results presented in Table 12 were simi-
lar to those in Tables 9, 10, 11. Although the affine weighted 
average formulation led to a smaller standard deviation of the 
reliability index than that of the convex weighted average for-
mulation, the RMSE of the reliability index obtained using the 
convex weighted average formulation was smaller than that of 
the affine weighted average formulation.

6.3  Results of other simple example problems

The results of the other example problems are given in detail in 
Appendix C. For all considered problems, the weighted aver-
age extrapolation formulation resulted in smaller standard 
deviations and smaller RMSE values in the reliability indi-
ces than the mean extrapolation formulation. A summary of 
the comparison of the performance of the affine and convex 
extrapolation formulations over all simple example problems 
is listed in Table 13. The affine formulation led to smaller 
RMSE values for the central crack and connecting rod and to 
smaller RMSE values. Out of 30 cases, the convex formulation 
provided the smallest RMSE values in 16 cases, whereas the 
affine formulation provided the smallest RMSE values in the 
remaining 14 cases. Although lower standard deviation values 
were obtained with the affine formulation in the 16 cases, the 
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reason for the lower RMSE value of the convex formulation 
was the higher bias error of the affine formulation.

6.4  Results of crane‑bridge problem

The results obtained for the crane-bridge problem are pre-
sented in Tables 14 and 15 for reliability index values of 
4.58 and 5.82, respectively. As in the earlier simple exam-
ple problems, bootstrapping successfully ordered the stand-
ard deviations of different extrapolation models. In both 
cases, the RMSE of the reliability index obtained using the 
weighted average formulation was smaller than that obtained 
using the mean extrapolation formulation. The weight factor 
of the extrapolation model with the smallest standard devia-
tion had a value of 1, whereas the other extrapolation mod-
els had values of 0. The standard deviation and RMSE for 

the dependability index were lower with the affine weighted 
average formulation than with the convex weighted average 
formulation.

7  Concluding remarks

A bootstrapping-based weighted average AS formulation in 
which the weight factors were optimized to minimize the 
variance of the reliability index estimation was proposed. 
For the weight factor determination, both convex and affine 
formulations were considered, and the results were com-
pared. The performance of the proposed method was evalu-
ated using six benchmark example problems and one com-
plicated engineering problem. From the obtained results, the 
following conclusions can be drawn:

Table 13  Results of weighted 
average AS regarding RMSE 
values

Rel. ind. (β) 4 4.5 5 5.5 6

Problem Cantilever beam Convex Convex Convex Convex Convex
Central crack Affine Affine Affine Affine Convex
Connecting rod Affine Affine Affine Affine Affine
Fortini's clutch Convex Convex Convex Convex Convex
I-beam Affine Affine Affine Affine Affine
Roof truss Convex Convex Convex Convex Convex

Table 14  Bootstrapping-based weighted average AS results for crane-bridge problems for a reliability index of 4.58

Bootstrapping results

Normal Exponential Mean Ext. 
Formula-
tion

Weighted Aver-
age

q = 1/3 q = 0.5 q = 1 q = 2 q = 3 q = 1/3 q = 0.5 q = 1 q = 2 q = 3 Average Convex Affine

Std dev. of β 0.517 0.4841 0.4038 0.2997 0.239 0.548 0.542 0.555 0.628 0.698 0.490 0.239 0.097
Weight factors (convex) 0 0 0 0 1 0 0 0 0 0 – – –
Weight factors (affine) 2.935 2.854 3.048 − 

1.182
− 

8.179
4.835 6.336 8.496 0.385 − 18.526 – – –

AS (repeated 1000 times)

Normal Exponential Mean Ext. 
Formula-
tion

Weighted Aver-
age

q = 1/3 q = 0.5 q = 1 q = 2 q = 3 q = 1/3 q = 0.5 q = 1 q = 2 q = 3 Average Convex Affine

Mean of β 4.660 4.648 4.620 4.581 4.558 4.671 4.669 4.674 4.699 4.724 4.651 4.558 4.485
Std dev. of β 0.451 0.427 0.370 0.300 0.263 0.474 0.470 0.480 0.533 0.586 0.432 0.263 0.196
RMSE 0.458 0.433 0.372 0.300 0.264 0.483 0.478 0.488 0.546 0.603 0.437 0.264 0.217
Bias 0.080 0.068 0.040 0.001 − 

0.022
0.091 0.089 0.094 0.119 0.144 0.071 − 

0.022
− 0.095
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• Bootstrapping successfully orders the standard deviations 
of different extrapolation models,

• the standard deviation and RMSE of the reliability index 
obtained using the weighted average formulation were 
smaller than those obtained using the mean extrapolation 
formulation,

• when the weight factors were optimized using a convex 
formulation, the weight factor of the extrapolation model 
with the smallest standard deviation had a value of 1, 
whereas the other extrapolation models had value of 0,

• of the 32 cases (including the crane-bridge problem) con-
sidered, the convex formulation provided the smallest 
RMSE values in 16 cases, whereas the affine formulation 
provided the smallest RMSE values in 16 cases,

• for the 16 cases the convex formulation provided the 
smallest RMSE values, it was observed that bias errors 
of the affine formulation were also larger.

In this paper, we aimed to enhance the accuracy of reli-
ability estimation in highly safe structures. Investigation of 
the improvements in terms of computational efficiency is 
left for a future study.

Appendix

Reliability levels of numerical example 
problems

For the numerical example problems, five different reliabil-
ity levels were considered by changing the proper term in 
the LSF (see Table 16). The reliability index values reported 
in Table 16 were predicted using crude MCSs with sample 
sizes of  107,  108,  109,  1010, and  1011 for reliability indices 
4, 4.5, 5, 5.5, and 6, respectively. The reliability indices of 
4, 4.5, 5, 5.5, and 6 correspond to the failure probabilities 
of 3.17 ×  10–5, 3.40 ×  10–6, 2.87 ×  10–7, 1.90 ×  10–8, and 
9.87 ×  10–10, respectively.

Comparison of the accuracies of ten‑model 
and six‑model weighted average extrapola‑
tion models over all example problems
Figure 11 provides a comparison of RMSE values of ten-
model and six-model weighted average extrapolation 
models over all example problems. Figure 11a shows that 
the RMSE of the best individual model in the ten-model 
extrapolation formulation is always smaller than or equal to 
that of the six-model extrapolation formulation, as expected. 
Figure 11b shows that the RMSE values of the ten-model 
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mean extrapolation and the six-model mean extrapolation 
are close, and the six-model mean extrapolation formulation 
is slightly more accurate. Figure 11c shows that the RMSE 
of the ten-model convex weighted average extrapolation 
formulation is always smaller than or that of the six-model 
convex weighted average extrapolation formulation. Finally, 

Fig. 11d shows that the RMSE values of the ten-model aff-
ine weighted average extrapolation and the six-model affine 
weighted average extrapolation are close.

Table 16  Reliability levels considered for example problems

a Term in limit-state function was varied to change reliability level
b Value of term
c Corresponding reliability index

ID Problem Terma Valueb βc Valueb βc Valueb βc Valueb βc Valueb βc

1 Connection rod µR 60 4.00 55 4.50 50 5.00 45 5.50 40 6.00
2 Cantilever beam D0 2.50 4.03 2.62 4.51 2.75 5.00 2.89 5.54 3.04 6.05
3 Central crack K

IC
52 4.01 57 4.52 63 5.01 70 5.52 79 6.04

4 Fortini's clutch ycrit 4.05 4.02 3.55 4.53 3.02 5.01 2.31 5.50 1.20 6.04
5 Roof truss c 0.0360 4.07 0.0378 4.53 0.0400 5.01 0.0425 5.50 0.0466 6.07
6 I-beam S 410  ×  103 4.07 490  ×   103 4.50 630 ×  103 5.01 880 ×  103 5.49 1700 ×  103 6.06

(a) best individual models (b) mean extrapolation model

(c) convex weighted average model (d) affine weighted average model

Fig. 11  Comparison of RMSE values of ten-model and six-model weighted average extrapolation models over all example problems
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Standard deviation and RMSE results 
for example problems

(See Tables 17, 18, 19, 20, 21, 22, 23).

Table 17  Results of cantilever-
beam problem for all reliability 
levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.451 0.556 0.591 0.912 0.831
Std of β 0.346 0.383 0.449 0.559 0.621
RMSE 0.358 0.390 0.453 0.560 0.627

Convex Std of β in bootstrap 0.223 0.269 0.278 0.449 0.388
Std of β 0.207 0.227 0.243 0.302 0.322
RMSE 0.228 0.246 0.261 0.333 0.349

Affine Std of β in bootstrap 0.095 0.113 0.110 0.185 0.167
Std of β 0.148 0.162 0.204 0.215 0.220
RMSE 0.291 0.278 0.263 0.349 0.442

Best individual 
model

(nor q3)

RMSE 0.228 0.246 0.261 0.333 0.349

Table 18  Results of central-
crack problem for all reliability 
levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.567 0.575 0.582 0.752 0.998
Std of β 0.349 0.437 0.493 0.577 0.628
RMSE 0.348 0.438 0.494 0.580 0.630

Convex Std of β in bootstrap 0.287 0.266 0.260 0.334 0.426
Std of β 0.208 0.231 0.267 0.284 0.305
RMSE 0.208 0.231 0.268 0.285 0.305

Affine Std of β in bootstrap 0.111 0.100 0.103 0.138 0.169
Std of β 0.162 0.201 0.218 0.215 0.309
RMSE 0.162 0.202 0.220 0.217 0.313

Best individual 
model

(nor q3)

RMSE 0.208 0.231 0.268 0.285 0.305

Table 19  Results of connecting-
rod problem for all reliability 
levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.623 0.529 0.352 0.676 0.857
Std of β 0.325 0.403 0.435 0.488 0.580
RMSE 0.325 0.403 0.435 0.490 0.583

Convex Std of β in bootstrap 0.276 0.247 0.165 0.316 0.364
Std of β 0.182 0.204 0.220 0.271 0.275
RMSE 0.182 0.204 0.220 0.272 0.275

Affine Std of β in bootstrap 0.117 0.097 0.072 0.125 0.144
Std of β 0.149 0.161 0.167 0.189 0.219
RMSE 0.149 0.161 0.167 0.189 0.219

Best individual 
model

(nor q3)

RMSE 0.182 0.204 0.220 0.272 0.275
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Table 20  Results of Fortini’s 
clutch problem for all reliability 
levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.528 0.595 0.547 0.946 0.721
Std of β 0.357 0.387 0.440 0.537 0.591
RMSE 0.383 0.431 0.499 0.620 0.738

Convex Std of β in bootstrap 0.295 0.299 0.282 0.482 0.327
Std of β 0.197 0.235 0.244 0.280 0.294
RMSE 0.286 0.381 0.428 0.506 0.611

Affine Std of β in bootstrap 0.098 0.118 0.123 0.154 0.139
Std of β 0.146 0.175 0.162 0.189 0.203
RMSE 0.319 0.433 0.476 0.549 0.682

Best individual 
model

(nor q3)

RMSE 0.286 0.381 0.428 0.506 0.611

Table 21  Results of I-beam 
problem for all reliability levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.523 0.833 0.660 0.799 0.842
Std of β 0.358 0.408 0.448 0.482 0.521
RMSE 0.357 0.409 0.451 0.486 0.521

Convex Std of β in bootstrap 0.267 0.420 0.306 0.372 0.399
Std of β 0.211 0.245 0.248 0.275 0.289
RMSE 0.219 0.255 0.255 0.283 0.293

Affine Std of β in bootstrap 0.103 0.140 0.115 0.152 0.144
Std of β 0.170 0.185 0.221 0.210 0.221
RMSE 0.208 0.215 0.248 0.232 0.231

Best individual 
model

(nor q3)

RMSE 0.219 0.255 0.255 0.283 0.293

Table 22  Results of roof-truss 
problem for all reliability levels

Rel. Index (β) 4.0 4.5 5.0 5.5 6.0

Average Std of β in bootstrap 0.409 0.521 0.711 0.568 0.900
Std of β 0.361 0.419 0.482 0.523 0.624
RMSE 0.362 0.422 0.489 0.554 0.678

Convex Std of β in bootstrap 0.193 0.269 0.369 0.290 0.445
Std of β 0.214 0.242 0.275 0.272 0.321
RMSE 0.436 0.474 0.519 0.594 0.671

Affine Std of β in bootstrap 0.080 0.118 0.155 0.130 0.174
Std of β 0.165 0.169 0.183 0.251 0.217
RMSE 0.640 0.731 0.779 0.761 0.859

Best individual 
model

(nor q3)

RMSE 0.436 0.474 0.519 0.594 0.671
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