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Abstract
Design of structural and multidisciplinary systems under uncertainties requires estimation of their reliability or equivalently 
the probability of failure under the given operating conditions. Various high technology systems including aircraft and nuclear 
power plants are designed for very small probabilities of failure, and estimation of these small probabilities is computationally 
challenging. Even though substantial number of approaches have been proposed to reduce the computational burden, there 
is no established guideline to decide which approach is the best choice for a given problem. This paper provides a review 
of the approaches developed for small probability estimation of structural or multidisciplinary systems and enlists the crite-
rion/metrics to choose the preferred approach amongst the existing ones, for a given problem. First, the existing approaches 
are categorized into the sampling-based, the surrogate-based, and statistics of extremes based approaches. Next, the small 
probability estimation methods developed for time-independent systems and the ones tailored for time-dependent systems 
are discussed, respectively. Then, some real-life engineering applications in structural and multidisciplinary design studies 
are summarized. Finally, concluding remarks are provided, and areas for future research are suggested.

Keywords  Extreme value statistics · High reliability · Machine learning · Rare event · Sampling · Small failure probability · 
Surrogate model

1  Introduction

1.1 � Motivation of small probability or rare event

Rare event can be defined as an event that occurs at low 
frequency, thereby associated with a small probability. 
Wikipedia states that rare events encompass natural phe-
nomena (major earthquakes, tsunamis, asteroid impacts, 
etc.), anthropogenic hazards (industrial accidents, financial 
and commodity market crashes, etc.), as well as phenom-
ena for which natural and anthropogenic factors interact in 

complex ways (epidemic disease spread, global warming-
related changes in climate and weather, etc.). In engineering, 
the term “rare event” is often applied to catastrophic fail-
ures, including aircraft accidents, collapse of structures (e.g., 
bridges, dams, etc.) and failure of nuclear power plants.

In the case of aircraft engineering, errors in the navigation 
system, natural disasters, and failure of components rarely 
occur but can lead to fatal accidents (Löbl and Holzapfel 
2015). To ensure structural safety, structural failures that 
rarely occur due to various uncertainties in external exci-
tations and structural factors should be prevented (Zhou 
and Li 2022). Due to the small failure probability related 
to the structure, the lifespan of the structure may be short-
ened and a collapse accident may occur. For nuclear power 
plants, there are uncertainties such as natural circulation, 
pressure, and convection due to incomplete knowledge as 
well as geometrical dimensions, material properties, and 
natural disasters (Zio and Pedroni 2010a, b). When the load 
on a nuclear power plant exceeds its capacity due to various 
uncertainties, serious accidents such as the Chernobyl disas-
ter and the Fukushima nuclear disaster can occur even with a 
small probability. To prevent the accidents aforementioned, 
estimation of small failure probability that can be obtained 
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through a very large number of simulations or experiments 
is required to detect failure caused by uncertainties with 
small probability. The estimation of small failure probability 
estimation is computationally challenging and the compu-
tational cost required for estimation of small failure prob-
ability is often not feasible when high-fidelity simulation is 
involved to secure the confidence of the estimation.

1.2 � Definition of small probability or rare event

There is no consensus on the value of the probability that 
defines a rare event. According to Lagnoux (2006), a rare 
event is defined by a very low probability of occurrence, 
between 10−9 and 10−12. In the Foreword section of Morio 
and Balesdent (2016), Haftka associates the rare event with 
a low probability, typically less than 10−6. Balesdent et al. 
(2016) along with Wang and Wang (2016) attribute the prob-
ability of failure being less than 10−5 to a rare event. In 
this review, an event with a probability of occurrence being 
less than 10−5 is considered to be a rare event for a time-
independent event, whereas an event with a probability of 

occurrence being less than 10−3 is considered to be a rare 
event for a time-dependent event.

In order to track the literature relevant to small probability 
estimation, a ‘Publish or Perish’ study was performed using 
Google Scholar database with the keywords ‘low’, ‘small’, 
‘failure’, ‘probability’, ‘structural’, ‘design’. The year-wise 
publication during the last decade for the mentioned key-
word search is presented in Fig. 1. The increasing trend in 
the year-wise publications indicates that there is significant 
growth and interest in the estimation methods for small fail-
ure probability. Current work is intended to review the paper/
articles on various methods associated with the low failure 
probability estimation. Since Google Scholar database keeps 
on updating from time to time, the actual numbers of publi-
cation may change but the trend remains the same.

1.3 � Brief categorization of the approaches 
and the organization of the paper

For accurate estimation of rare event probabilities, vari-
ous approaches have been developed. In this paper, these 
approaches are categorized into three: (1) sampling-based 
approaches, (2) surrogate-based approaches, and (3) statis-
tics of extremes based approaches (see Fig. 2).

Advanced sampling approaches such as importance 
sampling, subset simulation, asymptotic simulation are few 
methods among advanced sampling-based approaches that 
have been proven to provide more accurate and more effi-
cient estimations of rare event probabilities than the crude 
Monte Carlo method. The sampling-based approaches are 
reviewed in Sect. 2. Surrogate-based approaches include 
the use of traditional metamodels and machine learning 
models. Widely used surrogate models include Kriging, 
support vector regression, and neural networks. Rare event 
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Fig. 1   Publish or Perish study of year-wise publications using Google 
Scholar database

Fig. 2   Brief categorization of the approaches for estimation of small failure probability
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probability estimation using surrogate-based approaches is 
detailed in Sect. 3. The use of statistics of extremes for rare 
event probability estimation is often conducted using gen-
eralized Pareto distribution, extreme value distribution or 
other asymptotic distributions. The approaches based on the 
statistics of extremes are reviewed in Sect. 4. The rare event 
probability prediction methods tailored for time-dependent 
systems are discussed in Sect. 5. Use of rare event prob-
ability estimation methods applied to industrial application 
type engineering problems is reviewed in Sect. 6. Finally, the 
paper culminates with some concluding remarks and sugges-
tions for future research provided in Sect. 7.

2 � Sampling‑based approaches

Probability of failure of a structural or multidisciplinary 
system is defined as the probability for exceeding a limit. 
Mathematically, it is defined as

where I is an indicator function that takes a value of 1 if 
[.] is true and 0 if [.] is false, g is the limit-state function 
(or performance function), f is the joint probability density 
function (PDF) of the input random variables, and E is the 
expectation operator. Since the analytical calculation of this 
multi-dimensional integral is burdensome, sampling-based 
techniques are often used.

Sampling-based techniques are based on sampling the 
input variables according to their probabilistic properties and 
propagating the uncertainty to the corresponding output(s). 

(1)

Pf = Pr
[
g(�) ≤ 0

]
= � I

[
g(�) ≤ 0

]
f (�)d� = E

[
I
[
g(�) ≤ 0

]]

Crude Monte Carlo (CMC) is the straightforward application 
of this approach. In CMC, independent and identically dis-
tributed (iid) samples X1, …, XN are generated with the joint 
PDF of X, and the corresponding outputs (or responses) 
g1, …, gN are computed by using a response function g(X). 
Then, the probability of failure Pf can be estimated from 

The variance of the estimation P̂CMC
f

 can be computed 
from (Rubinstein and Kroese 2016):

It is clear from Eq.  (3) that for a given number of 
sampling points N, the accuracy decreases rapidly with 
decreasing Pf. For example, for a Pf of 10─6, 108 (100 mil-
lion) simulations are required for 10% accuracy and 4 × 108 
simulations are required for 5% accuracy. Since CMC is 
not convenient for estimating small probabilities of rare 
events in terms of the excessive number of simulations 
required, variance reduction methods and other efficient 
simulation techniques have been developed to reduce the 
computational cost by using a priori information about the 
problem of interest. A general framework for sampling-
based methods for estimation of small failure probability 
is shown in Fig. 3. Note that these methods can also be 
used efficiently to estimate larger probabilities without any 
limitation or a special treatment.

(2)P̂CMC
f

=
1

N

N∑
i=1

I
[
g(Xi)

]

(3)Var
(
P̂CMC
f

)
=

P̂CMC
f

(
1 − P̂CMC

f

)

N

Fig. 3   General framework for sampling-based methods for estimation of small failure probability. X0 is the initial sample, Xa is the adaptive or 
additional sample and Xt is the total samples available for LSF evaluation or budget in terms of LSF
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2.1 � Separable Monte Carlo (SMC)

The SMC method is a conditional MC method since it 
may use the cumulative distribution function (CDF) of a 
control variable in the limit state to estimate the probabil-
ity of failure. In the conditional MC method (Ayyub and 
Chao-Yi 1992), the conditional expectation.

E[H(x)|y] is computed for the probability of failure esti-
mation, noting that E[H(x)] = E

[
E
[
H(x)|y]] . It is proven 

that the conditional MC always leads to variance reduction 
compared to CMC (Rubinstein and Kroese 2016).

The SMC method is applicable when the limit state 
function can be separated into response and capacity 
terms, and they are stochastically independent random 
variables. Then, the probability of failure can be formu-
lated as (Smarslok et al. 2010):

where FC is the CDF of the capacity and fR is the PDF 
of the response. Then, Pf estimation can be obtained by 
using iid response samples ri

Alternate formulations are also available and discussed 
in Smarslok et al. (2010). Chaudhuri and Haftka (2013) 
combined SMC method with importance sampling method 
to further improve its accuracy. They considered a com-
posite plate example and a tuned mass damper example, 
and find that SMC and importance sampling reduced the 
error individually by factors of two to five, and the com-
bination reduced it further by about a factor of two. The 
main drawback of the SMC method is that it requires the 
limit-state function to be expressed in a separable form, 
otherwise this method is not applicable.

2.2 � Stratified sampling and Latin hypercube 
sampling

Stratified sampling and Latin hypercube sampling (LHS) 
use the common idea that the sampling space can be 
divided into strata (or hypercubes) and that only a few of 
the many possible samples be selected in each strata (or 
hypercube) for probability of failure estimation (Melchers 
and Beck 2018). For a particular choice of strata, the sam-
ple size can be obtained in an optimal manner (Rubinstein 
and Kroese 2016).

Even though the stratified sampling and LHS methods 
substantially reduce the number of limit-state function 

(4)Pf = ∫ FC(r)fR(r)dr,

(5)P̂smc =
1

N

N∑
i=1

FC(ri)

evaluations compared to the CMC method, their compu-
tational cost is still high for rare event probability estima-
tion. Stratified sampling and LHS can be used together 
with other techniques to improve their efficiency. Olsson 
et al. (2003) combined LHS with importance sampling 
and showed that more than 50% of the computing effort 
can be saved by using LHS instead of CMC in importance 
sampling. Similarly, Vaisman (2021) combined stratified 
sampling with subset simulation to improve the efficiency 
of the subset simulation. The details of importance sam-
pling and subset simulation are discussed in the later 
subsections.

2.3 � Weighted sampling (WS)

The WS method is based on determining the probability 
of failure by using the concept of the weight index for the 
generated samples (by using any of the simulation methods). 
The weight indices for a given sample can be computed as 
the product of the probability density function (pdf) of the 
random variables present in that sample. Next, the samples 
are computed for limit state function evaluation. The tail 
region is determined by the sign of the limit state function. 
Finally, the failure probability is computed as the fraction of 
the weight indices located in the failed region. Associated 
equations and references are provided in Appendix A. The 
major advantage of the WS method is that it can estimate the 
most probable point (MPP) with high accuracy and without 
any excessive computation.

The WS method has been used in various engineering 
reliability prediction studies, including reliability analysis of 
a bridge crane (Li et al. 2021) as well as mathematical test 
problems (Rashki et al. 2012; Efraimidis and Spirakis 2006; 
Okasha 2016; Rashki 2021).

2.4 � Importance sampling (IS)

The IS method is based on the idea that an auxiliary PDF 
distribution hV(x) can be used to generate more samples in 
the failure region (Rubinstein and Kroese 2016). A weight 
term is then incorporated in Pf estimation to account for the 
use of hV(x) instead of the original PDF fX(x) to generate the 
samples. Associated equations and discussions are presented 
in Appendix A.

To improve the efficiency of the IS method (i.e., to reduce 
the number of limit state function calculations), adaptive 
sampling strategies and surrogate models have been uti-
lized. Appendix B lists the studies that used the original IS 
method, its adaptive sampling variants, its surrogate-based 
variants, and also its variants enhanced with both adaptive 
sampling and surrogate models.
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2.5 � Subset simulations (SS)

The SS method is based on expressing a small failure prob-
ability as a product of larger conditional probabilities by 
introducing intermediate failure events, thereby converting 
a small failure probability problem into a series of larger 
probability problems that are easier to handle (Au and Beck 
2001). In the implementation of this method, samples condi-
tional on intermediate failure events are adaptively generated 
to gradually populate from the large probability regions to 
small probability regions. The SS method was also named as 
the adaptive multilevel splitting technique by various authors 
(Balesdent et al. 2015; Bréhier et al. 2015, 2016; Cérou and 
Guyader 2007; Lagnoux and Lezaud 2017, Vaisman et al. 
2017; Wadman et al. 2014). In addition, a simulation method 
based on thermodynamic integration and parallel tempering 
(TIPT), which was proposed to estimate small failure prob-
abilities (Xiao et al. 2019b) is also similar to subset simula-
tion. Both of these methods convert a complex problem into 
a series of simple problems and use Markov chain Monte 
Carlo methods to solve these simple problems. In the SS 
method, all the Markov chains are constructed sequentially 
and the latter chains depend on the former chains. In the 
TIPT method, all the Markov chains are constructed simul-
taneously and can assist each other in all directions. Associ-
ated equations and discussions are presented in Appendix A.

The SS method utilizes the relationship between the input 
random variables and the output variable(s) as a black box. 
That is, the limit-state function is not needed to be expressed 
explicitly. This privilege is attractive for complex systems 
where it is difficult to use other methods (e.g., the IS method) 
that require prior information (e.g., the auxiliary PDF dis-
tribution hV(x) in the IS method). The main drawback of the 
SS method is that the geometric structure of the limit state 
surface is not modeled, which can slow down the procedure 
or even lead to incorrect estimates (Breitung 2019).

To improve the efficiency of the SS method, various adap-
tations have been made. Surrogate models such as Krig-
ing (Huang et al. 2016; Ling et al. 2019a, b; Tong et al. 
2015; Wang and Shafieezadeh 2021; Xiao et al. 2019a; Xu 
et al. 2020), neural networks (Papadopoulos et al. 2012; 
Xia et al. 2017), support vector machines (Bourinet et al. 
2011), hybrid polynomial correlated function expansion 
(Chakraborty and Chowdhury 2017), multiple response 
Gaussian process (Qian et al. 2021), high dimensional model 
representation (Wei et al. 2019b) and surrogate models com-
bined with dimension reduction methods (Jiang et al. 2021) 
have been used to reduce the number of limit-state function 
calculations. The SS method has also been combined with 
other simulation methods such as the IS method and hybrid 
SS methods have been developed (Chen and Li 2017; Rashki 
2021; Song et al. 2021a; Tong et al. 2015; Wagner et al. 
2020; Wang et al. 2015). Furthermore, the failure threshold 

was modified and the variabilities of input variables were 
amplified (Cheng et al. 2022). Appendix B provides the lit-
erature relevant to the regular and improved subset simula-
tion method.

2.6 � Line sampling

Line sampling (LS) employs a line to obtain information on 
the failure region and efficiently calculates the failure prob-
ability by adding samples on a hyperplane, which is perpen-
dicular to the important direction heading towards the fail-
ure region (Pradlwarter et al. 2007). In the LS method, the 
failure probability of the original high-dimensional problem 
in the standard normal space is estimated through several 
conditional one-dimensional failure probabilities. Associ-
ated equations and discussions are presented in Appendix A.

There have been several attempts to estimate small fail-
ure probabilities based on LS. De Angelis et al. (2015) 
proposed an advanced line sampling (ALS) approach that 
adaptively adjusts the important direction during simula-
tion. Peng et al. (2015a) proposed an artificial bee colony-
based line sampling (ABCLS) method that combines the 
artificial bee colony (ABC) algorithm and line sampling. 
The ABCLS method quickly finds the important direction 
of line sampling by solving a multi-constrained optimization 
model. Shi et al. (2016) introduced LS to a problem includ-
ing multiple failure modes, and estimated a gravity dam's 
failure probability and the sensitivity of reliability. Shayanfar 
et al. (2017) proposed an adaptive line sampling method that 
adaptively updates the important direction as the MPP of the 
limit state surface changes. Under the interpretation that the 
ALS estimator is a special case of a combination of line sam-
pling estimators, Papaioannou and Straub (2021) proposed 
a combination line sampling (CLS) that optimizes the ALS 
estimator through an alternative combination of estimators.

2.7 � Directional simulation (DS)

The DS method is one of the variance reduction techniques 
used when the failure probability is small (Ditlevsen et al. 
1990; Nie and Ellingwood 2004; Zhang et al. 2020a). The 
DS method is implemented in the standard normal space U, 
and the accuracy of the DS method depends on the determi-
nation of the direction vectors on the unit hypersphere (Nie 
and Ellingwood 2000). The failure probability is estimated 
as a sum of chi square distribution estimates at points along 
the unit direction. Associated equations and discussions are 
presented in Appendix A.

Various methods based on DS have been studied to esti-
mate small failure probabilities. Nie and Ellingwood (2004) 
introduced a deterministic point set as sample points instead 
of randomly generated sample points for directional sam-
pling, and identified that Fekete point set is useful in terms 
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of accuracy and efficiency. Grooteman (2011) proposed an 
adaptive directional importance sampling (ADIS) method 
that combines an adaptive response surface approach with 
a directional sampling scheme in which the most important 
directions are sampled exactly. Zuniga et al. (2012) pro-
posed an adaptive directional stratification (ADS) method 
that combines stratified sampling and directional sampling. 
Shayanfar et al. (2018) combined importance sampling and 
directional sampling and proposed a closed form update rule 
to obtain a sampling function that performs sampling in ran-
dom directions.

The DS method has been successfully applied to sys-
tem reliability problems (Nie and Ellingwood 2004; Guo 
et al. 2020). The DS method has been combined with other 
techniques to improve their efficiency. Zuniga et al. (2011, 
2012) combined the DS method with stratified sampling 
and proposed the so-called adaptive directional stratifica-
tion method. They applied their proposed method to a flood 
model and a nuclear reactor pressurized vessel model, to 
practically demonstrate their interest in real industrial exam-
ples. Zhu et al. (2017) used the DS method to calculate the 
small probability of slope failure. They compared the results 
of DS, IS and SS methods, and found that the DS method 
leads to the same accuracy level by using a smaller number 
of sampling, indicating that it is more efficient than the other 
two methods. Guo et al. (2020) combined the DS method 
with the IS method and active learning Kriging model. The 
main advantage of their proposed method was its ability 
to have great computational efficiency and deal with small 
failure probability problems. Also, the efficacy of the DS 
method in dealing with multi-failure model reliability prob-
lems was used to apply the proposed method to system reli-
ability analysis in a successful manner. Zhang et al. (2021) 
combined DS with adaptive Kriging to reduce the size of 
the sample pool by generating samples of the direction vec-
tor, uniformly distributed in the unit hypersphere. It was 
shown that the DS greatly accelerates the learning process 
by significantly reducing the sample pool compared to adap-
tive Kriging combined with MCS (AK-MCS), especially for 
small failure probability.

2.8 � Extrapolation methods

2.8.1 � Asymptotic sampling (AS)

The AS method is an efficient simulation-based technique 
used for estimating the small failure probabilities of struc-
tures. The concept of asymptotic sampling utilizes the 
asymptotic behavior of the reliability index with respect 
to the standard deviations of the random variables. In this 
method, the standard deviations of the random variables 
are artificially inflated using a scale parameter to obtain 
smaller reliability indices, known as “scaled” reliability 

indices. Subsequently, a functional relationship is estab-
lished between the scale parameters and scaled reliability 
indices. Finally, the actual reliability index is predicted using 
the established functional relationship.

Sichani et al. (2011a, 2011b) applied the asymptotic 
sampling method on high dimensional structural dynamic 
problems and first passage probability of high-dimensional 
nonlinear systems. Zhangchun et al. (2013) discovered that 
the use of a single extrapolation model was not robust. 
Inspired by the multiple tail median formulation (Ramu et al. 
2010), where the median of multiple tail model predictions 
was used, they proposed to generate multiple extrapola-
tion models and use the mean value of the reliability pre-
dictions of these models. In a follow-up study, Zhangchun 
et al. (2014) proposed a new mean extrapolation technique 
that involves six extrapolation models to estimate the actual 
reliability index. Acar (2016) increased the effectiveness of 
the asymptotic sampling by re-formulating the extrapola-
tion formulation for highly safe structures with separable 
limit state functions. The accuracy and performance of the 
asymptotic sampling method are affected by various factors 
including the sampling method used, the values of the scale 
parameters, the number of support points, and the formula-
tion of extrapolation models. Bayrak and Acar (2021) made 
a critical evaluation of the performance of the asymptotic 
sampling method for highly safe structures, and established 
some guidelines to improve the performance of the asymp-
totic sampling method. They found that generating the ran-
dom variables by Sobol sequences and using the 6-model 
mean extrapolation formulation gave slightly more accurate 
results. Besides, the optimum initial scale parameter was 
approximately around 0.3 and 0.4, and the optimum number 
of support points is typically four for all problems. They also 
found that as the reliability level increases, the optimum 
initial scale parameter value decreases, and the optimum 
number of support points increase.

The “scaled-sigma sampling” method, proposed by Sun 
et al. (2015), is close to asymptotic sampling. This method 
generates random samples from a distorted distribution for 
which the standard deviation (i.e., sigma) is scaled-up. Sun 
et al. (2015) used this method to conduct reliability analysis 
of rare circuit failure events.

2.8.2 � Enhanced simulation (ES)

Asymptotic sampling is based on the asymptotic behavior of 
failure probabilities as the standard deviation of the random 
variables tends to zero. Enhanced simulation (ES), on the 
other hand, uses the asymptotic behavior of failure prob-
abilities as the limit state function is shifted away from the 
mean values of the random variables.

In the ES method, instead of artificially inflating the 
standard deviations of the random variables, an artificial 
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limit-state function is formulated by introducing a scaling 
parameter that also shifts the limit-state function (Naess 
et al. 2009, 2012). This method was applied to reliability 
analysis of corroding pipelines by Leira et al. (2016).

2.9 � Other sampling‑based methods

Bao and Cassandras (1995) combined sample-path-based 
derivative estimation techniques with rational approximation 
techniques to solve rare event probability problems. They 
applied their proposed rational approximation approach to 
solve buffer overflow probability estimation.

Cadini and Gioletta (2016) developed a Bayesian Monte 
Carlo approach to estimate small failure probabilities. The 
Bayesian framework allowed an effective use of all the infor-
mation available, i.e., the computer code evaluations and the 
input uncertainty distributions, and the analytical formula-
tion of the Bayesian estimator guaranteed the construction 
of a computationally lean algorithm.

2.10 � Discussion on sampling‑based methods

The choice of the most suitable method for a given problem 
is dependent on the dimension of the problem, multi-modal-
ity of the limit-state function, the ease of implementation 
and the computational budget. Table 1 compares the sam-
pling-based methods based on these different features, and 
provides a guideline to the user to choose the most appropri-
ate technique for a given problem. In Table 1, each shaded 
circle is a score. As the score increases, the method performs 
better in that feature.

3 � Surrogate‑based approaches

Assessing small failure probabilities is time-consuming and 
challenging as very large numbers of simulated samples are 
required to identify failure regions. As noted earlier, if the 
order of magnitudes of the failure probability is 10−p, MCS 
generally requires 10p+2 to 10p+4 samples (Cadini et al. 
2017; Yun et al. 2021). To reduce the expensive calcula-
tion of MCS, variance-reduced simulation methods have 
been extensively developed, such as IS, SS, LS, and DS 
among other approaches. Although the number of function 
evaluations is reduced through these methods, thousands 
of function evaluations are still required when calculating 
small failure probability, hence the problem of calcula-
tion burden still remains. To solve this problem, surrogate 
model approaches that predict performance function values 
by replacing computationally expensive original functions 
with approximated models have been employed in reliability 
analysis or estimation of small failure probability.

A Kriging model is widely used as a surrogate model 
because it provides exact prediction for the simulation points 
and estimates prediction variance for other sample points. 
In order to build an accurate Kriging model with a small 
number of function evaluations, adaptive Kriging, which 
progressively updates the Kriging model with new samples 
obtained through the learning function, has been developed 
and many studies have proposed adaptive Kriging using var-
ious adaptive learning schemes to reduce the computational 
burden required for small failure probability estimation. 
In addition, other machine learning-based methods such 
as neural network (NN), support vector regression (SVR), 
support vector machine (SVM), and so on (Sun et al. 2017) 
are suitable for matching highly nonlinear performance 
functions, and they are commonly used to deal with small 
failure probabilities. The general framework and summary 
for surrogate-based techniques for small failure probability 
estimation are shown Figs. 4 and 5, respectively.

Surrogate-based approaches other than Kriging or 
machine learning are also often used to assess small failure 
probabilities. Wagner et al. (2022) applied stochastic spec-
tral embedding method (Marelli et al. 2021) to sequentially 
expand the residual in the subdomains of the input parameter 
space. The resulting partition of the input space decomposes 
the failure probability into a set of easy-to-compute condi-
tional failure probabilities. While applying stochastic spec-
tral embedding method for rare event probability estimation, 
they proposed a set of modifications that include specialized 
refinement domain selection, partitioning and enrichment 
strategies. Dhulipala et al. (2022) proposed a framework 
for active learning with multi-fidelity modeling for prob-
ability estimation of rare events. Their framework operates 
fusing the low-fidelity (LF) prediction with a Gaussian pro-
cess correction term, filtering the corrected LF prediction to 
decide whether to call the high-fidelity (HF) model and, for 
enhanced accuracy of subsequent corrections, adapting the 
Gaussian process correction term after an HF call. They also 
proposed dynamic active learning functions to improve the 
proposed algorithm’s robustness for estimation of smaller 
failure probabilities.

In this section, studies that estimate small failure prob-
abilities using surrogate-based approaches are reviewed: 
Sects. 3.1 and 3.2 discuss studies based on adaptive Kriging 
methods and machine learning-based methods, respectively.

3.1 � Adaptive Kriging methods for rare probability 
of failure

The basic idea of the Kriging framework assumes that the 
response of the performance function is the realization of 
a stochastic process (Matheron 1973). Kriging is an exact 
interpolation method in which predictions at DoE points 
are equal to observed values, and DoE can be updated to 
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improve the accuracy of the Kriging model by using Krig-
ing variance to quantify the uncertainty of the unexplored 
DoE region.

Although the Kriging model reduces the computational 
cost of reliability analysis, it is still difficult to quantitatively 
measure the accuracy of the Kriging model. Also, the fidel-
ity of the Kriging model is highly affected by the selection 

Table 1   Comparison of sampling-based methods in terms of different features
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of DoE and its sample size (Wang and Wang 2016; Guo 
et al. 2020; Song et al. 2021c). In order to build an accurate 
Kriging model with a small number of DoE points, vari-
ous adaptive Kriging methods that sequentially update DoE 
based on learning functions have been developed. Bichon 
et al. (2008) proposed an efficient global reliability analysis 
(EGRA) that adds samples near the limit state with large 
variance to DoE based on the expected feasibility function 
(EFF). Echard et al. (2011) proposed an active learning 
reliability method combining Kriging and MCS (AK-MCS) 
based on the learning function U that determines the next 
training sample considering the trade-off between Kriging 
mean and variance. Lv et al. (2015) proposed a learning 
function H that finds samples with large information entropy 
near the limit state. Dang et al. (2021) used upper bound 
posterior variance contribution, Dang et al. (2022) com-
bined expected misclassification probability contribution 
and k-means clustering as learning functions. El Haj and 
Soubra (2020) utilized the weighted k-mean clustering for 
multi-point enrichment by adding the new training samples 
to update the Kriging metamodel. In this algorithm, larger 
weights are assigned to the samples with high information 
values according to the learning function.

However, for small failure probability problems, the size 
of the sample population required to obtain the converging 
probability of failure is extremely large. Since the candidate 
training samples need to be evaluated by the current Kriging 
model in order to select the next training sample required 
for updating the Kriging model. Hence, the computational 
efficiency of adaptive Kriging methods can be limited to 
some extent (Yun et al. 2020).

3.1.1 � New learning functions and update strategies

To enable efficient estimation of small failure probability, 
various adaptive Kriging methods introduce new learning 
functions and update strategies. Studies that developed 
adaptive Kriging methods with new learning functions and 
update strategies are summarized in Table 2. These studies 
focus on selecting the next training sample using the infor-
mation of each sample point.

3.1.2 � Variance reduction techniques

Active learning reliability methods that combine adap-
tive Kriging and variance reduction techniques have been 
developed to reduce the candidate sample pool size. To 

Fig. 4   General framework for surrogate-based techniques for small failure probability estimation
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improve the computational efficiency of small failure prob-
ability problems, IS is widely used because a large number 
of simulated samples are located in the failure region (Liu 
et al. 2020). Although SS significantly reduces the num-
ber of required function evaluations as compared to MCS, 
it still suffers from a number of time-consuming function 
evaluations required for the estimation of small failure prob-
abilities, and there have been many attempts to couple adap-
tive Kriging with SS. In addition, various other variance 
reduction techniques are combined with adaptive Kriging to 
improve the efficiency and accuracy of small failure prob-
ability estimation. Studies that combine adaptive Kriging 
methods and variance reduction techniques are summarized 
in Table 3.

3.2 � Machine learning‑based methods

Machine learning, a form of applied statistics that statisti-
cally estimates complicated functions based on computa-
tional power, is prevalent in academic and industrial areas 
(Goodfellow et al. 2016; Xu and Saleh 2021). In line with 
this trend, there have been efforts to perform reliability 
analysis by employing various machine learning techniques. 

Among the categories of machine learning, supervised 
learning, which maps input vectors and outputs based on 
pairs of given datasets, is commonly used for reliability 
analysis. The prediction purpose of supervised learning is to 
play the role of a surrogate model in predicting the response 
of an input not included in the dataset. Generally, two major 
subcategories—regression and classification—constitute 
supervised learning (Miorelli et al. 2021). Since machine 
learning-based methods do not involve sample-wise predic-
tion error as in Kriging, it is difficult to employ the adaptive 
schemes actively used in Kriging; however, various methods 
specialized for machine learning-based methods have been 
developed to deal with small failure probabilities.

3.2.1 � Regression‑based methods

Regression problems aim to estimate quantitative responses, 
and machine learning models such as NN and SVR are used 
in reliability analysis. In NN based on the neural structure 
of the brain, neurons in each layer are connected to neu-
rons in subsequent layers, and the weight of each connec-
tion is determined through learning (Elhewy et al. 2006). A 
deep neural network (DNN) with multiple hidden layers is 

Fig. 5   Summary of surrogate-based approaches
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gaining popularity for regression of high dimensional and 
highly nonlinear problems (Zhang et al. 2018). The SVR 
is based on a principle that minimizes the error of the fit 
while maintaining the flatness of the regression surface to 
prevent overfitting, and has been revealed to show improved 
response prediction accuracy with a small number of DoE 
points (Vapnik 1995; Roy et al. 2019). In addition, a nota-
ble property of SVR is that it can reduce the burden arising 
from the increase in the dimension of the problems (Vapnik 
1995).

For problems of small failure probabilities, there have 
been studies employing machine learning-based regression 
models to act as surrogate models. After an adequate sur-
rogate model is defined with the regression model, MPP 
or variance reduction techniques are employed to estimate 
the failure probability. Adaptive strategies are also used to 
iteratively improve the accuracy of the regression model. 
Regression-based methods are summarized in Table 4.

Table 2   Summary of adaptive Kriging methods with new learning functions and update strategies

Reference Method Summary Number of updated samples

Wang and Wang (2016) Accelerated failure identification sampling 
(AFIS)

Sequentially identifies rare failure sample 
points while omitting the evaluation of 
the majority of sample points in the safe 
region

Single sample

Cadini et al. (2017) Latin hypercube-based search algorithm 
(LHSA)

Identifies at least one input sample point 
in a failure region required to help the 
efficient start of an adaptive procedure for 
refinement of Kriging model

Single sample

Sun et al. (2017) Least improvement function (LIF) Measures how much the accuracy of 
estimated failure probability will be 
improved by considering both statisti-
cal information of the Kriging model 
and the joint probability density of input 
variables

Single sample

Schöbi et al. (2017) Active learning algorithm coupled with 
PC-Kriging

Polynomial-Chaos Kriging (PC-Kriging) 
and AK-MCS are combined

Multiple samples

Lelièvre et al. (2018) AK-MCSi Sequentially performs MC simulation by 
dividing the large MC population into 
several smaller populations

Multiple samples

Song et al. (2019) AK-MCMC AK and Markov chain Monte Carlo simula-
tion (MCMC) are combined

Kriging model is updated through a learn-
ing function considering the distance 
from the existing DoE samples and the 
Kriging variance

Single sample

Meng et al. (2020) Active weight learning (AWL) Assigns different weight indices to samples 
on the limit state function considering the 
important degree of each sample point

Single sample

Kim and Song (2020) Probability-adaptive Kriging in n-ball 
(PAK-Bn)

Uses a new learning function to identify 
important points that are located near the 
limit-state surface and have a significant 
impact on the failure probability

Single sample

Su et al. (2020) AK-SDMCS AK and spherical decomposition-MCS 
(SDMCS) are combined

Single sample

Yu et al. (2020) RCA-PCK PC-Kriging model and radial centralized 
adaptive sampling strategy are combined

Multiple samples

Song et al. (2021b) Adaptive failure boundary approximation 
method (AFBAM)

Kriging and a new adaptive learning 
strategy based on uniform sampling are 
combined

Single sample

Zhou and Li (2022) Hierarchical partitioning (HP) strategy Constructs the adaptive Kriging model via 
two steps

The Kriging model is used to approxi-
mate the relationship existing between 
extreme values and random variables in 
the system

Single sample
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Table 3   Summary of adaptive Kriging methods with variance reduction techniques

Reference Method Summary Type of vari-
ance reduction 
technique

Echard et al. (2013) AK-IS Extends AK-MCS by replacing MCS with IS IS
Cadini et al. (2014) metaAK-IS2 Replaces the FORM stage of AK-IS with the meta-

model refinement step of the meta-IS algorithm 
proposed by Dubourg et al. (2013)

IS

Tong et al. (2015) AK-SSIS AK and subset simulation importance sampling 
(SSIS) are combined

IS, SS

Balesdent et al. (2016) Kriging-based adaptive IS approach Finds the optimal auxiliary distribution for IS 
using the preceding IS estimations

IS

Huang et al. (2016) AK-SS Kriging model and SS are combined SS
Yang et al. (2018a, b) ALK-CRA-IS Updates the Kriging model by treating IS sam-

ples populating most probable failure regions 
(MPFRs) as candidate points

A concentric ring approaching (CRA) method is 
proposed to identify the MPFRs

IS

Yun et al. (2018) AK-MIS AK and modified importance sampling (AK-MIS) 
are combined

Employs the importance weight function to desig-
nate samples in the important area as candidate 
samples used to select the next training sample

IS

Chen et al. (2019) AK-MCS-IS Replaces the initial large population with two or 
more populations and determines the next train-
ing sample by an iterative approach based on 
points not in the original populations

IS

Barkhori et al. (2019) Kriging-aided cross-entropy-based 
adaptive importance sampling (KCE-
AIS)

Kriging model and cross-entropy-based adaptive 
importance sampling are combined

IS

Ling et al. (2019a) Adaptive Kriging coupled with SS Employs SS to transform small failure probabilities 
into a series of larger conditional failure prob-
abilities of the intermediate failure events

SS

Xiao et al. (2019a) Kriging-based subset simulation (KSS) Updates Kriging model based on the samples in 
the first and last levels of SS by employing a 
strategy that finds samples located around the 
projection outlines on the limit-state surface

SS

Razaaly et al. (2020) QeAK-MCS Estimates extreme quantiles based on importance 
sampling method using an isotropic-centered 
Gaussian distribution to generate candidate train-
ing samples for the DoE

IS

Yang and Cheng (2020) AK-EMO-IS Introduces evolutionary multimodal optimization 
(EMO) to explore multiple MPPs

Updates the adaptive Kriging by performing 
importance sampling on multiple MPPs

IS

Liu et al. (2020) AK-ALIS AK and adaptive linked importance sampling 
(ALIS) are combined

IS

Guo et al. (2020) ALK-DIS AK and directional importance sampling (DIS) are 
combined

IS

Yun et al. (2020) AK-ARBIS AK and adaptive radial-based importance sampling 
(ARBIS) are combined

IS

Liu and Elishakoff (2020) ALK-MGHRA-IS Kriging-based importance sampling and more gen-
eral hybrid reliability analysis (MGHRA) method 
are combined

IS

Xu et al. (2020) AK-MSS Replaces the original sample population of AK-
MCS with the sample population generated by 
modified subset simulation (MSS)

SS

Song et al. (2020) GILS Active learning algorithm and global imprecise 
line sampling (GILS) are combined

LS
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3.2.2 � Classification‑based methods

Among the various subcategories of supervised learning, 
classification involves qualitative responses that can be 
obtained from categorical data (Xu and Saleh 2021). There-
fore, classification-based methods are suitable for reliability 
analysis since it requires the distinction between safe region 
and unsafe region. As one of the classification-based meth-
ods, the SVM is motivated by statistical learning theory and 
has been successfully applied to two-category classification 
problems including reliability analysis (Rocco and Moreno 
2002). SVM is generally formulated to find a hyperplane 
that maximizes the width of the gap in two categories, and 
is effective for high dimensional problems. The advantage 
of SVM is that it can directly estimate the sign of the perfor-
mance function, thereby reducing the computational effort 
required to estimate the performance function value (Xiong 
and Tan 2017).

To address small failure probabilities with SVM, 
researchers have developed methods that introduce variance 
reduction techniques or focus training samples on important 
regions where failure is prone to occur. Classification-based 
methods are summarized in Table 5.

3.3 � Discussion on surrogate‑based approaches

This section presents a guideline for estimating small failure 
probabilities using surrogate-based approaches. A flowchart 
for the guideline is shown in Fig. 6. As aforementioned, 
surrogate-based approaches can be divided into two types: 
adaptive Kriging methods and machine learning-based 
methods. For highly nonlinear problems, machine learn-
ing-based methods can be appropriate, and classification-
based methods are recommended when categorical data are 
available. In the case of adaptive kriging methods, small 

failure probabilities can be estimated based on new learn-
ing functions and update strategies, and in another way, 
adaptive kriging combined with various variance reduction 
techniques can be used for estimation. Among the variance 
reduction techniques, importance sampling can be adopted 
if MPP is available, and subset simulation can be adopted if 
conditional failure probabilities are available.

4 � Statistics of extremes based approaches

4.1 � Generalized extreme value theory and tail 
equivalence

Rare event prediction translates to low failure probabil-
ity estimation, also referred to as extreme value estima-
tion requires sufficient data in the tails of the distribution 
to model the extremes. This is often not possible and tail 
modeling techniques based on extreme value theory are an 
attractive alternative to predict the probability of extreme 
events. Maes and Breitung (1993) qualify two CDFs to be 
tail equivalent when the approximated error of small prob-
abilities goes to zero as the abscissa tends to infinity. The 
theory comprises a principle for model extrapolation based 
on the implementation of mathematical limits as finite-level 
approximations. For an iid random variable and its CDF, F, 
it can be shown that there exist sequences (an), (bn) and a 
random variable z with CDF H such that-

for a non-degenerate distribution function, H belongs to 
one of the following extreme value distribution families: (1) 
Gumbel distribution, (2) Frechet distribution, (3) Weibull 
distribution.

(6)lim
n→∞

Fn(anz + bn) ≈ H(z)

Table 3   (continued)

Reference Method Summary Type of vari-
ance reduction 
technique

Yang et al. (2021) ALK-MAIS-TCR​ Active learning Kriging and multimodal adaptive 
important sampling (MAIS) are combined

IS

Guo et al. (2021) ALK-SIS Active learning Kriging and system importance 
sampling (SIS) are combined

IS

Yun et al. (2021) Error-based stopping criterion (ESC) Uses the maximum relative error of failure 
probability estimation in the AK-IS method to 
improve the efficiency of updating

IS

Li et al. (2021) AK coupled with WS AK and WS are combined WS
Zhang et al. (2021) AK-DS Adaptive Kriging and DS are combined DS
Wang and Shafieezadeh (2021) Reliability analysis using subset simula-

tion and adaptive Kriging (RASA)
Decomposes reliability problems into a number of 

sub-reliability problems and adaptively adjusts 
each subset's intermediate failure probabilities 
and the number of candidate samples

SS
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It is to be noted that regardless of the underlying distri-
bution, the above three types are the only possible limits 
for the distribution of the normalized maxima as stated by 
the ‘three-type theorem’: Frechet–Fisher–Tippett theorem 
(Gnedenko 1948). In this respect, this theorem is to extreme 
value theory what the central limit theorem is to central sta-
tistics. All 3 distributions are expressed in terms of a, b, � 
which are the scale, location and shape parameters, respec-
tively. Frechet–Fisher–Tippett theorem implies that the nor-
malized maxima have a limiting distribution that must be 
one of the three types of extreme value distribution. These 
three types of extreme value distribution have been com-
bined into a single three-parameter family (Jenkinson 1955; 

Hosking et al. 1985) known as Generalized Extreme Value 
(GEV) distribution which is a function of location, scale and 
shape parameter.

4.2 � Generalized Pareto distribution (GPD)

In engineering applications, rather than maxima, the inter-
est is to address the excesses over the threshold. In order to 
address this, researchers introduced the notion of ‘threshold 
exceedances’ where all maximums should help for the evalu-
ation of the tail by extracting more information in the tail 
of the distribution than just that given by the largest order 
statistics (Pickands Theorem 1975).

Table 4   Summary of regression-based methods

Reference Method Summary Type of 
machine 
learning 
model

Cheng and Li (2008) Artificial neural network based genetic algo-
rithm (ANN-GA)

Estimates failure probability by finding the 
minimum reliability index based on the 
genetic algorithm

NN

Papadopoulos et al. (2012) NN coupled with SS Estimates failure probability based on NNs 
trained sequentially at each SS level

NN

Richard et al. (2012) SVR-based regression model Employs SVR trained with samples generated 
from an adaptive experimental design that 
can be rotated based on the gradient of the 
SVR model

SVR

Dai et al. (2012) SVR coupled with adaptive Markov chain 
simulation and IS

Generates samples located in the most likely 
failure region, and estimated the failure 
probability by constructing a local surrogate 
model based on SVR

SVR

Peng et al. (2015b) Hybrid uncertainty reliability analysis method 
based on ANN

Hybrid uncertainty reliability model and back 
propagation (HU-BP) neural network are 
combined

Estimates failure probability after finding the 
MPPs corresponding to the upper and lower 
bounds of the reliability index

NN

Bourinet (2016) Adaptive SVR Explores the safe region using surrogate mod-
els with moderate accuracy and improves the 
accuracy of surrogate models after they get 
close enough to the limit state

SVR

Xia et al. (2017) NN coupled with SS and explicit time-domain 
method (ETDM)

Reduces the required number of samples by 
combining SS and modified Metropolis–Hast-
ings (MMH) algorithm

NN

Xiang et al. (2020) NN coupled with WS Updates NN model by selecting the next train-
ing sample located near the limit state surface

NN

Roy and Chakraborty (2020) Two-stage adaptive algorithm based on SVR Builds SVR model through an initial DoE gen-
erated based on the space-filling design

Adds the next training sample so that it is sepa-
rated from the existing DoE points

SVR

Cheng and Lu (2021) Adaptive algorithm based on Bayesian SVR Bayesian SVR model and MCMC are com-
bined

Updates each intermediate failure surface based 
on the expected risk function

SVR

Lieu et al. (2022) DNN-based adaptive surrogate model Adds more important samples near the limit 
state

NN
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The concept of GPD is presented in Fig. 7. Let y be a 
model output which is random and u be a large threshold of 
y . The observations of the model output y that exceed the 
threshold u are called ‘exceedance’. The conditional distri-
bution function Fu(z|y > u) of the exceedance given that the 
data y is greater than the threshold u , can be modeled by the 
GPD. Here, z = y − u.

Let approximation of conditional distribution Fu(z|y > u) 
using GPD be F̂𝜉,𝜓 (z) , then for a large enough u , the 

distribution function of Fu(z|y > u) , is approximately writ-
ten as (Coles 2001):

(7)F̂𝜉,𝜓 (z) =

⎧⎪⎨⎪⎩

1 −
�
1 +

𝜉

𝜓
z
�−

1

𝜉

+
if 𝜉 ≠ 0

1 − exp
�
−

z

𝜓

�
if 𝜉 = 0

,

Table 5   Summary of classification-based methods

References Method Summary

Hurtado (2007) SVM coupled with IS Estimates the failure probability combining SVM with IS
Bourinet et al. (2011) SS-SVM SVM and SS are combined in an active learning scheme
Alibrandi et al. (2015) SVM-based response surface Evaluates the failure probability using SVM and a novel second-order 

response surface
Li et al. (2016) Multi-input multi-output SVM Combines LHS and uniform sampling to perform reliability analysis on 

multiple limit state functions
Xiong and Tan (2017) Adaptive SVM Selects the next training sample that improves the current SVM the most 

among the candidate samples in the important region
Chocat et al. (2019) Adaptive regression and classification 

based on subset simulation (ARC-
Subset)

Kriging regression, SVM, and SS are combined

Zhan et al. (2020) One-class SVM-based scheme Constructs a failure domain identification model based on one-class SVM to 
estimate the probability of failure under imbalanced samples

Fig. 6   Guideline for surrogate-based approaches
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where � and �  are the shape and scale parameters, 
respectively. ⟨A⟩+ = max(A, 0) and z > 0 . Shape parameter 
� plays a key role in assessing the weight of the tail. The 
above equation can be seen as a limiting distribution as u 
increases. Tails can be classified based on � as: (1)𝜉 > 0 , 
heavy tail (Pareto-type tail), (2) � = 0 , medium tail (expo-
nential type tail), and (3) 𝜉 < 0 , light tail (Beta-type tails).

Small failure probability corresponds to the tail of 
a distribution which can be approximated as GPD is 
discussed in Ramu et al. (2010). Parameter estimation 
methods such as maximum likelihood estimation and least 
square regression are used to obtain the estimates of the 
shape and scale parameters. The general framework and 
summary for statistics of extreme-based methods for esti-
mation of small failure probability are shown in Figs. 8 
and 9, respectively.

4.2.1 � Threshold selection

The final estimates such as the quantile, extreme values etc. 
depend on the shape and scale parameter estimation that 
again depends on the threshold selection (Caers and Maes 
1998; McNeil and Saladin 1997). Threshold selection is a 
trade-off between bias and variance of the estimates. Boos 
(1984) suggests that the ratio of the number of tail data over 
the total number data should be 0.02 for (50 < N < 500) and 
0.1 for (500 < N < 1000) . Hasofer (1996) suggests using 
1.5

√
N samples in the tail region. Caers and Maes (1998) 

propose to use a finite sample mean square error (MSE) as a 
criterion for estimating the threshold. They use the threshold 
value that minimizes the MSE. In a similar fashion Beirlant 
et al. (1996) find an optimal threshold by minimizing an 
approximate expression for asymptotic mean square error. 
The other methods include plotting the quantile, shape or 
scale factor or any quantity of interest with respect to differ-
ent thresholds and looking for stability in the curve (Bassi 
et al. 1998; Coles 2001, pp: 84–86). In order to avoid the 
issue of threshold selection in EVT, Albrecher et al. (2020) 
define the class of matrix Mittag–Leffler distributions and 
use it to model the extremes. De Carvalho et al. (2021) 
develops a Bayesian regression model for the conditional left 
and right tails of a heavy-tailed response. This model per-
mits the covariates to be significant for the lower values but 
not for the tail and vice versa while bypassing the selection 
of threshold values. Pipiras (2020) argue for physics ena-
bled extremes prediction rather than a data driven peak over 
thresholds method or mixed models approach for extremes 
prediction. Xu et al. (2022a, b) proposed an adaptive mixture 
of normal-inverse Gaussian distribution (A-MNIGD) for 
structural reliability to represent the unknown distribution 

Fig. 7   Concept of GPD for tail modeling

Fig. 8   General framework for statistics of extreme-based methods for estimation of small failure probability. X0 is initial sample, Xa is the adap-
tive or additional sample and Xt is total samples available for LSF evaluation or budget in terms of LSF
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of the limit state function (LSF), according to the limit 
condition. Cai et al. (2022) proposed a novel method for 
evaluating the distribution of performance functions (DPF) 
in terms of expectation that is computed by combining the 
Sobol sequence with the point estimate method. Li et al. 
(2022) introduced the concept of conditional reliability 
index (equivalently conditional probability of failure) by 
considering the uncertainties of distribution parameters in 
the evaluation of structural reliability and proposed a novel 
approach by integrating the Smolyak-type quadrature for-
mula with the cubic normal distribution to determine the 
percentile value of the conditional probability of failure.

4.2.2 � Parameter estimation

Among the several existing techniques for parameter esti-
mation, maximum likelihood estimation (MLE) and least 
square regression are the well-known and widely used 
techniques. Other parameter estimation techniques include 
method of moments (MoM), probability weighted moments 
(PWM), elemental percentile method, etc. Generally, MLE 
method is widely used and accepted by researchers but it 
suffers from some limitations. The asymptotic properties of 

the maximum likelihood estimators are preserved as long 
as the scale factor 𝜉 > −0.5 . Although MLE are obtain-
able but do not have the standard asymptotic properties for 
−1 < 𝜉 < −0.5 . MLE is not obtainable when 𝜉 < −1 (Coles 
2001, pp. 54–55). Beirlant and Goegebeur (2004), Castillo 
et al. (2005) discuss these methods in detail. Hosking and 
Wallis (1987) report a comparison between the MLE, MoM 
& PWM and conclude that MoM and the PWM are more 
reliable compared to the MLE method unless the sample 
size is greater than 500. Babu and Toreti (2016) propose 
a general bootstrap procedure combined with a modified 
Anderson–Darling Test as goodness-of-fit for heavy-tailed 
distribution such as GPD. Ghosh (2017) proposed a new 
general estimator of the tail index called the minimum den-
sity power divergence estimator (MDPDE) that provides the 
robust estimate of the Tail Index through a suitable expo-
nential regression model (ERM) by minimizing the density 
power divergence (DPD). Ma et al. (2019) propose the vary-
ing coefficient model where the coefficients of covariates are 
allowed to change with other variables via smooth functions. 
This work is a generalization of parametric tail index regres-
sion model, proposed by Wang and Tsai (2009) as estimator 
for the conditional tail index in random covariate context, 

Fig. 9   Summary of statistics of extreme-based approaches
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to the varying coefficient setting. Ma et al. (2020) propose a 
method for the estimation of the tail index in the presence of 
a random covariate, where the conditional distribution of the 
variable of interest is of Pareto-type. They used a logarith-
mic function to link the tail index to the nonlinear predictor 
induced by covariates, which forms the nonparametric tail 
index regression models. Zhao et al. (2020) combine GPD 
with partial L-moments to arrive at computationally efficient 
parameters for the GPD. Cabral et al. (2022) asymptotically 
compares several estimators of the extreme value index 
including the Hill estimator, asymptotically unbiased Hill 
estimator, and recent generalized means estimator, based on 
the moments of the upper order statistics, through a Monte 
Carlo simulation study. Zhu et al. (2022) proposed a new 
and efficient estimation method for extreme conditional 
quantiles of functional quantile regression with heavy-tailed 
distributions by first estimating the intermediate conditional 
quantiles using the regression in orthonormal plane obtained 
using eigenvalue decomposition of the sample covariance, 
and then extrapolating the intermediate conditional quantile 
estimate to extreme tails.

4.3 � Tail modeling techniques

Traditionally, tails of statistical distributions have been mod-
eled using the GPD principle (Castillo 2012) and MLE or 
least square regression are used as parameter estimation 
techniques. However, based on the limitations discussed 
above, alternate approaches to model the tails have been 
proposed. Ramu et al. (2010) subject the data to simple 
transformations such as inverse standard normal CDF and 
logarithm to model different parts of the tails as an ensemble 
and use its median as the compromise estimate. Acar et al. 
(2010) approximates CDF using the extended generalized 
lambda distribution (EGLD) whose statistical moments are 
obtained from the univariate dimension reduction (UDR) 
method. They note that this approach is very sensitive to tail 
probabilities. Acar (2011) combined EGLD with dimension 
reduction method, Acar (2013) along with Acar and Ramu 
(2014) combined EGLD and SVM to identify regions cor-
responding to the tails of the distribution and sample there 
additionally. Zhao and Lu (2007) propose explicit fourth-
moment standardization function utilizing the idea of the 
third order polynomial normal transformation (TPNT) using 
the first four central moments that is found to be accurate 
enough to include independent random variables with 
unknown CDFs/PDFs in reliability analysis. The proposed 
method provides more appropriate normal transformation 
and inverse transformation results compared to the third-
moment function, Fisher-Cornish expansion, or Winter-stein 
formula. Lu et al. (2017) proposed a third-moment transfor-
mation technique for transforming the correlated variables 
into independent standard normal variables while Wang 

et al. (2021b) uses Hermite polynomial with polynomial 
normal transformation. Tong et al. (2019) and Zhao et al. 
(2020) combine L-moments approach and polynomial trans-
formation approach for better prediction of small failures. 
Ramu and Kaushik (2020), inspired by Fleishman (1978), 
Hong and Lind (1996) and Hong (2011), modelled the tails 
as a cubic function of a normal random variable but in the 
logarithmic probit space to obtain better estimates of the low 
failure probability compared to the competing approaches. 
They call their approach the log-TPNT. Several approaches 
exist for modelling the multivariate case as well. Winter-
stein and MacKenzie (2013) compares the models based on 
moments versus L-moments. This paper also compares the 
moment-based models based on Hermite transformations 
versus maximum entropy and argues that the L-moments 
and four-moment maximum entropy models may be inap-
propriate to model broader-than-Gaussian cases. He and 
Gong (2016) employ a shifted generalized lognormal dis-
tribution to approximate the tails of the univariate extreme 
distributions, in which the model parameters are estimated 
by an extrapolation method. Then, the tails of the multi-
variate extreme distributions of the nonlinear response are 
determined by using the Nataf model. Mhalla et al. (2019) 
developed a framework based on marginal pre transforma-
tions and projections of d-dimensional random vector X 
along the directions of the unit simplex, that lead to con-
venient univariate representations of multivariate exceed-
ances based on the exponential distribution. Mafusalov 
et al. (2018) introduced the buffer probability of exceedance 
as an upper bound to the probability of exceedance. Falk 
et al. (2019) introduced generalized Pareto copulas (GPC) 
using the concept of D-norms. The family of GPC together 
with the set of univariate generalized Pareto distributions 
(GPD) enables multivariate GPD computations. Chiapino 
et al. (2020) introduces the mixture model for multivariate 
extreme values. This approach describes the distribution of 
extremal which permits assigning to any extreme point a 
posterior probability for each anomaly type. The extremal 
index (EI) is the parameter that describes and quantifies the 
clustering characteristics of the extreme values in many sta-
tionary sequences. Gomes and Neves (2020) introduced a 
new blocks estimator to estimate the extremal index (EI) 
using disjoint blocks and sliding blocks. Xu et al. (2022a) 
proposed an adaptive mixture of normal-inverse Gaussian 
distributions to represent the unknown distribution of the 
limit state function to obtain failure probability. Xu et al. 
(2022b) proposed an adaptive polynomial skewed-normal 
transformation (A-PSNT) model that uses a tail error cri-
terion to select the most appropriate order for the PSNT 
model, which makes the proposed method an adaptive 
one. Also, the A-PSNT method can effectively reconstruct 
the probability distribution to predict the failure probabil-
ity with rare events accurately. Zhao et al. (2022) develop 
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an updating strategy to construct Kriging model based on 
extreme value function response. The first four moments of 
the extreme value function are estimated using a weighted 
approach based on sparse grid numerical integration (WA-
SGNI). The bounds of time-variant failure probability are 
evaluated by combining the adaptive Kriging model and 
WA-SGNI.

4.4 � Problems in the extreme value analysis

Makkonen (2008) outlined the means to avoid the problems 
in the extreme value analysis arising due to the widely used 
wrong probability plotting positions and asymptotic behav-
ior of the theoretical extreme value distributions. Two dis-
tinct problems in the extreme value analysis are addressed 
in Makkonen (2008): (i) assessing the probability positions 
for the order ranked extremes is commonly done incorrectly, 
(ii) the belief in the applicability of the extreme value theory 
is so strong that the analysis is commonly done even when a 
good fit should not be expected due to the asymptotic nature 
of the theory.

Makkonen (2008) argued that the estimators of the plot-
ting position in EVA should be abandoned and replaced by 
the Weibull expression m/(N + 1). Cook (2012) challenged 
this development. Later, Makkonen et al. (2013) proved by 
the probability theory that the Weibull expression provides 
the rank probability exactly showing that no estimators of 
the plotting positions are necessary.

4.5 � Discussion on statistics of extremes‑based 
methods

The choice of the most suitable method for a given prob-
lem is dependent on the dimension of the problem, multi-
modality, non-linearity of the limit-state function and the 
computational budget. Table 6 compares the statistics of 
extremes-based methods based on these different features, 
and provides a guideline to the user to choose the most 
appropriate technique for a given problem. In Table 6, each 
shaded circle is a score. As the score increases, the method 
performs better in that feature. Figure 10 provides the guide-
line for selecting appropriate tail modeling technique for a 
given problem.

5 � Methods tailored for time‑dependent 
systems

The failure probabilities observed in time-dependent systems 
are much larger than those of the time-independent systems. 
In this section, the probability of failure is treated as a small 
probability when it is smaller than 10─3 (rather than 10─5 
for the case of a time-independent system). This section 

discusses the rare event probability estimation of time-
dependent or stochastic systems. The sampling-based meth-
ods tailored for time-dependent systems are first discussed, 
followed by the discussion of surrogate-based methods.

5.1 � Sampling‑based methods

The time-dependent reliability is often regarded as the prob-
ability that the structural random response process does not 
exceed the specified failure threshold within a specified time 
period. In this regard, Poisson outcrossing rate methods 
(Der Kiureghian 2000; Andrieu-Renaud et al. 2004; Sudret 
2008) using the first-order reliability method (FORM) are 
extensively used. For instance, being one of the most popu-
lar methods, PHI2 calculates the outcrossing rate using a 
parallel system composed of a pair of limit state functions 
at successive time instants (Andrieu-Renaud et al. 2004). 
The outcrossing rate is estimated as the bivariate Gauss-
ian integral using FORM. Since the Gaussian CDF is usu-
ally denoted by the Greek letter Phi and the index 2 is for 
the bivariate case, this method was named as PHI2. Sudret 
(2008) found that the performance of PHI2 is very sensi-
tive to time increments, and proposed a modified version, 
PHI2+. Even though PHI2+ uses the analytical gradient 
solution of the bivariate normal integral relative to time and 
provides robustness, it can still lead to large errors for small 
failure probabilities, and in the presence of dependency of 
outcrossing events. Hu and Du (2013a) proposed the JUR/
FORM method to take into account the joint outcrossing 
events. They showed that the accuracy of JUR/FORM is 
superior to PHI2+. Gong and Frangopol (2019) presented 
a new time-dependent reliability method, NEWREL, where 
the time-dependent reliability is formulated as a large-scale 
series system consisting of time-independent response func-
tions obtained by discretizing time-dependent continuous 
response functions within the forecast time period, instead of 
analyzing outcrossing rates. They found that their proposed 
method is as efficient as PHI2+, but outperforms PHI2+ in 
terms of accuracy.

There also exist other approaches than outcrossing 
rate-based methods for small probability estimation of 
time-dependent systems. Chen and Li (2007) proposed a 
new approach for dynamic reliability assessment based on 
probability density evolution method. A virtual stochastic 
process is firstly constructed such that the extreme value 
equals the value of the virtual stochastic process at a cer-
tain instant of time. Further, the first-passage reliability 
problem is investigated from the view of the extreme value 
distribution instead of the level-crossing process. There-
fore, the reliability could be evaluated requiring neither 
the joint PDF of the response and its velocity, nor the 
assumptions on properties of the level-crossing events. 
Hu and Du (2013b) proposed a sampling approach to 
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Table 6   Comparison 
of statistics of extreme-
based methods based on- 
dimensionality, multi-modality, 
non-linearity and computational 
efficiency
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estimate the distributions of the extreme value of the sto-
chastic process. The extreme value is then used to replace 
the corresponding stochastic process. Consequently, the 
time-dependent reliability analysis is converted into its 
time-invariant counterpart. Finally, FORM is applied to 
calculate the probability of failure over a given period of 
time. Yang et al. (2017) proposed a cross-entropy-based 
adaptive importance sampling method for the efficient 
computation of time-dependent reliability of deteriorating 
structures using the stochastic-process-based method. LHS 
with proper correlation control is used to extend cross-
entropy-based importance sampling, a method previously 
discussed in the earlier section for time-independent reli-
ability problems, for time-dependent reliability analysis 
as well. They showed that their proposed method led to 
more efficient solutions for the time-dependent reliabil-
ity problems related to structural systems with multiple 
important regions. Lin and Su (2021) proposed an effi-
cient MCS-based approach for dynamic reliability analysis 
of jacket platforms subjected to random wave loads. To 
overcome the difficulty involved in the MCS, the explicit 
time-domain method is used for the required time–history 

analyses of jacket platforms, in which truncated explicit 
expressions of critical responses with regards to the con-
tributing loading terms are first established and then used 
for numerous repeated sample analyses. They showed 
that the use of the explicit time-domain method greatly 
enhances the computational efficiency of MCS.

5.2 � Surrogate‑based methods

Since the time-dependent reliability analysis is more time-
consuming than the time-independent reliability analysis, 
many studies have employed surrogate models to approxi-
mate the time-dependent response with respect to random 
variables and time. To deal with small failure probabilities 
in time-dependent reliability problems, various adaptive 
schemes and variance reduction techniques have been 
combined with surrogate models as in time-independent 
reliability analysis. The summary of surrogate-based 
approaches for time-dependent systems is shown in Fig. 11 
and Table 7.

Fig. 10   Guideline for statistics 
of extreme-based approaches
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6 � Application problems

This section provides examples of engineering reliability 
prediction studies for the rare event probability estimation 
of stochastic systems. The SMC method has been used in 
various engineering reliability prediction studies, includ-
ing probability of failure estimation of aircraft structural 
components (Acar 2011), probability of failure prediction 
of an aircraft wingbox (Kaddour and Lord 2012), esti-
mation of probability of first-passage of linear dynamic 

systems (Norouzi and Nikolaidis 2017), probability of 
failure evaluation of corroded pipelines (Lee et al. 2013; 
Seghier et al. 2018), model misspecification in financial 
engineering (Agarwal et al. 2018). The IS method along 
with its adaptive sampling and surrogate-based hybrid 
variants have been utilized in various industrial applica-
tion type engineering reliability prediction studies, includ-
ing launch vehicle fallout zone probability estimation 
(Balesdent et al. 2013, 2016; Chabridon et al. 2018; Der-
ennes et al. 2019; Morio and Balesdent 2016), reliability 
assessment of radioactive waste repositories (Cadini et al. 

Fig. 11   Summary of surrogate-based approaches for time-dependent systems

Table 7   Summary of surrogate-based approaches for time-dependent systems

References Method Summary

Hu and Du (2015) Mixed efficient global optimization (m-EGO) method Builds a surrogate model by considering the interaction 
between random variables and time through simultaneous 
extraction of samples of random variables and time

Combines m-EGO method and AK-MCS
Hu and Mahadevan (2016) Single-loop Kriging (SILK) Updates single-loop surrogate model using a learning 

function based on the properties of the time-dependent 
reliability problem

Ling et al. (2019b) AK-co-IS, AK-co-SS Combines active learning Kriging coupled with IS
Combines active learning Kriging coupled with SS

Gao et al. (2021) Candidate sample pool (CSP) reduction strategy Removes the samples whose states are correctly recognized 
by the current Kriging model from the CSP

Wang et al. (2021a) SLK-co-SS Single-loop Kriging model is coupled with SS
Converts the small failure probability into a product of 

larger conditional probabilities using time-dependent 
intermediate failure events

Peng et al. (2019) BPNN coupled with k-means clustering and GA Updates the BPNN by identifying DoE points that improve 
expected improvement

Qian et al. (2021) Multiple response Gaussian process (MRGP)-SS Combines MRGP and SS
Approximates the extreme value using the best value in cur-

rent initial samples
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2015), fatigue crack initiation of a blade support (Echard 
et al. 2013), probability estimation of queueing networks 
(Garvels 2011; Kroese and Rubinstein 2004; Kuruganti 
and Strickland 1997; Mahdipour and Rahmani 2009a, 
b; Mahdipour et al. 2014; Sandmann 2004, 2007; Shul-
tes 2002), probability estimation of circuit yield (Hagi-
wara et al. 2014), failure probability estimation of static 
random-access memory cells (Kanj et al. 2006; Shahid 
2012), failure probability estimation of memory circuits 
(Shi et al. 2018, 2019, 2020), design of aircraft landing 
gear (Liu et al. 2020), probability of failure estimation of 
thermal–hydraulic passive system (Pedroni and Zio 2017), 
estimation of portfolio credit risk (Qiu and Wang 2015), 
probability estimation of biochemical systems (Roh 2019), 
reliability estimation for a passive residual heat removal 
system (Wang et al. 2015), reliability analysis of power 
plants (Wang et al. 2011; Wang 2018), reliability estima-
tion of a missile wing (Yang et al. 2021; Yun et al. 2021), 
reliability estimation of an aero-engine turbine disk (Yun 
et al. 2020). The SS method and its improved variants has 
been utilized in various industrial application type engi-
neering reliability prediction studies, including launch 
vehicle fallout zone probability estimation (Balesdent et al. 
2015), strip footing design (Ahmed and Soubra 2014), reli-
ability estimation of the critical temperature of spacecraft 
components (Au and Thunnissen 2007), estimation of seis-
mic risk (Au and Beck 2003; Xia et al. 2017), reliability 
estimation of a radioactive waste repository (Cadini et al. 
2012), probabilistic fatigue assessment (Du et al. 2021), 
buckling probability estimation of thin-walled cylindri-
cal launchers (Elegbede and Normand 2012), reliability-
based hydraulic transmission mechanism design (Meng 
et al. 2015), failure probability of a thermal–hydraulic 
passive system (Pedroni and Zio 2017), reliability estima-
tion of underground pipelines (Tee et al. 2013), reliability 
estimation of concrete filled steel tubular columns (Thai 
et al. 2021), structural reliability prediction of a piezo-
electric energy harvester (Xiao et al. 2019a), reliability 
estimation of vehicle–track coupled systems (Zhang et al. 
2019), and failure probability estimation of static random-
access memory cells (Peng et al. 2020). The LS method 
was applied to reliability estimation of buried steel pipes 
subjected to seismic effect (Ebenuwa and Tee 2019). 

7 � Concluding remarks

Design optimization of structural and multidisciplinary sys-
tems under uncertainties involves reliability analysis through 
the calculation of the probability of failure. Advanced 

complex technology systems with precise design warrant 
the estimation of small failure probabilities. Although 
many studies have proposed approaches that reduce the 
computational burden in estimating the small probability 
of failure, guidelines for deciding the appropriate approach 
to a given problem have not been established. This paper 
provides a comprehensive review of approaches developed 
for the estimation of small failure probabilities of structural 
or multidisciplinary systems. The existing approaches can 
be classified into three categories: (1) the sampling-based 
approaches, (2) the surrogate-based approaches, and (3) the 
statistics of extremes-based approaches. For each approach, 
the developed methodologies and the published literature 
are summarized.  Then, small failure probability estimation 
methods tailored for time-dependent systems are reviewed 
and examples of real-life engineering applications in struc-
tural and multidisciplinary design studies for small failure 
probabilities are explained. The following conclusions and 
future opportunities can be derived through this review.

	 1.	 For some problems, the limit state function may not 
be available, rather a fixed set of output values may be 
available. In such a case, neither the sampling-based 
approaches nor the surrogate-based approaches work. 
Statistics of extremes-based approaches can be used to 
estimate small probabilities. If this fixed set of output 
values are also accompanied with a fixed set of input 
variables, then the surrogate-based approaches can 
also be used. If the problem is high-dimensional, then 
statistics of extremes based approaches are preferable 
over surrogate-based approaches.

	 2.	 For high-dimensional problems ( d ≥ 20 ) with available 
limit-state function, the SS and LS methods are well-
suited. For medium-dimensional ( 10 ≤ d < 20 ) prob-
lems, along with the SS and LS methods, DS method 
is also suitable. For low-dimensional problems, the IS 
method is also suitable along with the other methods.

	 3.	 For multimodal problems, the LS method is not prefer-
able since it is used together with the FORM/SORM 
methods, which suffer from multi-modality. Other 
methods are suitable.

	 4.	 For highly nonlinear problems, the surrogate-based 
approaches as well as the LS and DS methods are not 
preferable. Other methods are suitable.

	 5.	 Sampling-based approaches are often used to estimate 
the probability of failure since no analytical calcula-
tion of multi-dimensional integration is required. In 
estimating small failure probabilities, variance-reduced 
simulation methods and other efficient simulation 
techniques have been developed to reduce the com-
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putational burden instead of CMC requiring excessive 
number of simulations.

	 6.	 Since variance-reduced simulation methods still 
require a large number of simulations to estimate small 
failure probabilities, surrogate-based approaches have 
been employed to replace computationally expensive 
simulations with approximated models. Adaptive Krig-
ing methods that update the Kriging model with vari-
ous learning functions and strategies accurately esti-
mate small failure probabilities with a small number 
of simulations.

	 7.	 Adaptive Kriging methods combined with various vari-
ance reduction techniques reduce the large candidate 
sample pool size required for estimation of small fail-
ure probabilities. Methods combined with IS update 
both importance sampling density and Kriging model, 
and methods combined with SS update the Kriging 
model iteratively based on samples in intermediate 
levels of SS.

	 8.	 Future studies need to focus on cases where samples 
with various fidelities are used to build or update Krig-
ing model. In actual applications, multi-fidelity data 
can often be provided, and methods that integrate mul-
tiple Kriging models with different fidelities need to 
be developed in order to increase the accuracy of the 
estimation of small failure probabilities. In addition, it 
is expected that the accuracy and efficiency of estima-
tion can be improved by considering the fidelity of the 
data in determining the location of the next sample 
point required to update the Kriging model.

	 9.	 As the computational power increases, surrogate-based 
approaches assisted with machine learning techniques 
have been developed to deal with small failure prob-
abilities. Among the categories of machine learning, 
supervised learning is commonly used to estimate the 
probability of failure, and two major subcategories—
regression and classification—constitute supervised 
learning. Regression-based methods employ NN and 
SVR, and classification-based methods use SVM.

	10.	 In machine learning-based methods, there is a need 
for strategies that sequentially update machine learn-
ing models to estimate small failure probabilities effi-
ciently and accurately. Various update strategies and 
learning functions in adaptive Kriging are expected 
to help in developing the methods which provide 
new sample points that can improve the accuracy of 
machine learning models.

	11.	 Small failure probability estimation can be referred to 
as extreme value estimation, and various tail modeling 
techniques for statistical distributions are used to esti-
mate small failure probability.

	12.	 For time-dependent or stochastic systems, sampling-
based and surrogate-based methods are used to esti-
mate small failure probabilities. Sampling-based 
methods employ outcrossing rate methods and efficient 
sampling approaches, whereas surrogate-based meth-
ods combine surrogate models with various adaptive 
schemes and variance reduction techniques.

Appendix A: Associated equations 
and references for sampling‑based 
approaches

Weighted sampling method

The weight indices can be computed from:

where fj(i) is the value of the PDF of the jth random variable 
for the ith sample. Also, an index function is used to distin-
guish the samples located in the failed region from those in 
the safe region:

where gi is the value of the limit-state function for the ith 
sample. Then, probability of failure is predicted as the sum 
of the weight indices for the samples located in the failed 
region divided by the sum of the weight indices for all 
samples:

Importance sampling method

The probability of failure, Pf, can be formulated as

Then, Pf can be estimated by using the samples drawn 
from the importance sampling function hV

(8)W(i) =

s∏
j=1

fj(i),

(9)I(i) =

{

1 if gi < 0
0 if gi ≥ 0

,

(10)Pf =

∑N

i=1
I(i).W(i)

∑N

i=1
W(i)

(11)Pf = � ...� I[G(x) ≤ 0]
fx(x)

hv(x)
hv(x)dx

(12)P̂IS
f
=

1

N

N∑
i=1

{
I
[
G
(
vi
) ≤ 0

] fx
(
vi
)

hv
(
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)
}
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Figure 12 shows that the auxiliary PDF hV(x) allows the 
sampling of DoE in the tail region of the original limit state 
function that reduces the sample pool size required for esti-
mation of low failure probability. However, the exact infor-
mation of auxiliary PDF hV(x) is needed for the accurate 
estimation of small failure probability.

Subset simulation method

In the SS method, the probability of failure event (F) is 
expressed as a product of conditional probabilities of some 
chosen intermediate failure events (F1, F2, …, Fm). Letting 

F1 ⊃ F2 ⊃ … ⊃ Fm = F such that Fk =
k⋂

i=1

Fi, k = 1, ...,m, the 

probability of a failure event can be estimated as

In computing PF using Eq.  (13), the probabilities 
P
(
F1

)
,
{
P
(
Fi+1|F1

)
∶ i = 1,… ,m − 1

}
 are required. The 

probability P
(
F1

)
 can be estimated from Eq. (14) through 

MCS as

where 
{
�k ∶ k = 1,… ,N

}
 are iid samples simulated accord-

ing to their probability distribution. The conditional prob-
abilities can be computed using MCS, where the conditional 
distribution of � that it lies in Fi is required. This can be 

(13)

PF = P(Fm) = P

( m
⋂
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)
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Fm|
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⋂
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)

(14)P
(
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)
≈ P̃1 =

1

N

N∑
k=1

IF1

(
𝜃k
)
,

achieved by a Markov chain Monte Carlo method based on 
the Metropolis algorithm (Au and Beck 2001).

Line sampling method

In the standard normal space U consisting of n independent 
standard normal random variables, the important unit vector 
indicating the most probable point (MPP) is denoted as α. 
By employing the rotation matrix R in which the first row 
is α, and �T

� = I , the transformed space V can be defined 
through the linear mapping V = RU. The first standard nor-
mal random variable V1 is parallel to α, and the remaining 
variables V2:n constitute an (n‒1) dimensional vector per-
pendicular to α. From V2:n, a set of samples �i

2∶n
 , i = 1,…,N 

are generated and the failure probability can be estimated as

where � is the standard normal cumulative distribution 
function and di is the distance between the rotated limit state 
function GR and �i

2∶n
.

Directional simulation method

A common way to generate the direction vectors is to gener-
ate N sample points according to the joint PDF of standard 
normal vector U and normalize all sample points to unit 
length to obtain, i = 1,…,N. The failure probability in polar 
coordinates is given as (Zhang et al. 2021)

where B is the unit direction vector uniformly distributed on 
the unit hypersphere; fR|�(r) denotes the conditional PDF 
of polar radius R with the direction B; r(b) is the distance 
between the origin and the point on the limit state surface at 
the direction B; and f

�
(�) is the uniform distribution on the 

n-dimensional unit hypersphere. Since R2 =
∑n

i=1
X2
i
 follows 

the chi-squared distribution in standard normal space, the 
failure probability can be estimated as

(15)P̂LS
f

=
1

N

N∑
i=1

�(−di),

(16)Pf = ∫
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)))
,

Fig. 12   Concept of importance sampling
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where �2 is the chi-squared cumulative distribution function.

Asymptotic sampling method

Based on the asymptotic behavior of the reliability index 
with respect to the standard deviation scale parameter, 
Bucher (2009) assumed the following functional relation-
ship between the reliability index and the standard deviation 
scale parameter f

Notice that as f → ∞ (that is, as σf → 0) the reliability index 
β → ∞ so that the asymptotic behavior is ensured. Coefficients 
A and B are determined from least squares regression analysis 
based on the estimates for different values of f smaller than 1. 

(18)� = Af +
B

f

That is, a set of “support points” [fi, β(fi)] shown in Fig. 13 is 
used in the regression. To assign equal weights to all support 
points for the regression analysis, Eq. (18) can be rewritten in 
terms of a scaled reliability index as follows:

Enhanced simulation method

In the ES method, instead of artificially inflating the stand-
ard deviations of the random variables, an artificial limit-state 
function is formulated by introducing a scaling parameter � 
(Naess et al. 2009, 2012)

where μg is the mean value of the limit-state function g. 
The behavior of the failure probability with respect to the 
scaling parameter is assumed to be in the following form:

where the function q(�) is slowly varying compared with the 
function exp{−a(� − b)c} . This method was applied to reli-
ability analysis of corroding pipelines by Leira et al. (2016).

Appendix B: Reference papers 
for the original and improved versions 
of the IS and SS studies

See Tables 8 and 9.

(19)
�

f
= A +

B

f 2

(20)g(�) = g − �g(1 − �),

(21)pf (�) ≈ q(�)exp{−a(� − b)c},

Fig. 13   The concept of asymptotic sampling (Bucher 2009)

Table 8   The original and improved IS studies

The IS version Reference studies

Regular IS or IS with optimal 
sampling distribution

Bhamidi et al. (2015), Blanchet et al. (2011), Cao et al. (2011), Hagiwara et al. (2014), Hassanaly and Raman 
(2019), Ho et al. (2016), Homem-de-Mello and Rubinstein (2002), Homem-de-Mello (2007), Juneja and 
Shahabuddin (2001), Kanj et al. (2006), Kroese and Rubinstein (2004), Kuhn et al. (2018), Kuruganti and 
Strickland (1997), Liu et al. (2015), Mahdipour et al. (2009a, 2009b, 2014), Morio (2010), Qiu and Wang 
(2015), Qiu et al. (2007, 2008), Radev and Lokshina (2007), Roh (2019), Rubinstein (2006), Sandmann 
(2004, 2007), Shahid (2012), Shultes (2002), Wei et al. (2012) and Xu et al. (2020)

Adaptive sampling IS Botev and Kroese et al. (2008); Botev et al. (2013, 2016), Chabridon et al. (2018), Chan et al. (2012), 
Derennes et al. (2019), El Masri et al. (2021), Garvels (2011), Jacquemart and Morio (2016), Morio and 
Balesdent (2016), Shi et al. (2018, 2020), Wang (2018) and Zhao et al. (2010, 2011)

Adaptive and surrogate-based IS Barkhori et al. (2019), Balesdent et al. (2013, 2016), Cadini et al. (2014), Cadini et al. (2015), Chen et al. 
(2019), Echard et al. (2013), Guo et al. (2020), Li et al. (2011), Ling and Lu (2021), Liu and Elishakoff 
(2020), Liu et al. (2019), Pedroni and Zio (2017), Razaaly and Condego (2018, 2020), Razaaly et al. (2020), 
Shi et al. (2019), Xiao et al. (2020), Yang and Cheng (2020), Yang et al. (2018a, 2018b), Yun et al. (2018, 
2020), Zhang et al. (2019) and Zhang et al. (2020b)

Hybrid IS Chen and Li (2017), Pedroni and Zio (2017), Song et al. (2021a), Tong et al. (2015), Wagner et al. (2020), 
Wang et al. (2011) and Wang et al. (2015)



Small failure probability: principles, progress and perspectives﻿	

1 3

Page 27 of 34  326

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Replication of results  In this review paper, we do not provide any 
results to replicate.

References

Acar E (2011) Guided tail modelling for efficient and accurate reli-
ability estimation of highly safe mechanical systems. Proc Inst 
Mech Eng C J Mech Eng Sci 225(5):1237–1251

Acar E (2013) Reliability prediction through guided tail modeling 
using support vector machines. Proc Inst Mech Eng C J Mech 
Eng Sci 227(12):2780–2794

Acar E (2016) A reliability index extrapolation method for separable 
limit states. Struct Multidisc Optim 53(5):1099–1111

Acar E, Rais-Rohani M, Eamon CD (2010) Reliability estimation 
using univariate dimension reduction and extended generalized 
lambda distribution. Int J Reliab Saf 4(2–3):166–187

Acar E, Ramu P (2014) Reliability estimation using guided tail mod-
eling with adaptive sampling. In: 16th AIAA non-deterministic 
approaches conference

Agarwal A, De Marco S, Gobet E, Liu G (2018) Study of new rare 
event simulation schemes and their application to extreme sce-
nario generation. Math Comput Simul 143:89–98

Ahmed A, Soubra AH (2014) Probabilistic analysis at the service-
ability limit state of two neighboring strip footings resting on 
a spatially random soil. Struct Saf 49:2–9

Albrecher H, Bladt M, Bladt M (2020) Matrix Mittag-Leffler distri-
butions and modeling heavy-tailed risks. Extremes 23:425–450

Alibrandi U, Alani AM, Ricciardi G (2015) A new sampling strat-
egy for SVM-based response surface for structural reliability 
analysis. Probab Eng Mech 41:1–12

Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: 
a way to compute time-variant reliability. Reliab Eng Syst Saf 
84(1):75–86

Au SK, Thunnissen DP (2007) Uncertainty propagation in complex 
engineering systems by advanced Monte Carlo methods. In: 
Iutam symposium on dynamics and control of nonlinear sys-
tems with uncertainty. Springer, Dordrecht, pp 45–54

Au SK, Beck JL (2001a) Estimation of small failure probabilities 
in high dimensions by subset simulation. Probab Eng Mech 
16(4):263–277

Au SK, Beck JL (2003) Subset simulation and its application 
to seismic risk based on dynamic analysis. J Eng Mech 
129(8):901–917

Ayyub BM, Chao-Yi C (1992) Generalized conditional expectation for 
structural reliability assessment. Struct Saf 11:131–146

Babu GJ, Toreti A (2016) A goodness-of-fit test for heavy tailed dis-
tributions with unknown parameters and its application to simu-
lated precipitation extremes in the Euro-Mediterranean region. 
J Stat Plan Inference 174:11–19

Balesdent M, Morio J, Marzat J (2013) Kriging-based adaptive impor-
tance sampling algorithms for rare event estimation. Struct Saf 
44:1–10

Balesdent M, Morio J, Marzat J (2015) Recommendations for the tun-
ing of rare event probability estimators. Reliab Eng Syst Saf 
133:68–78

Balesdent M, Morio J, Brevault L (2016) Rare event probability 
estimation in the presence of epistemic uncertainty on input 
probability distribution parameters. Methodol Comput Appl 
Probab 18(1):197–216

Bao G, Cassandras CG (1995) A rational approximation approach 
to rare event probability estimation for high-performance sys-
tems. In: Proceedings of 1995 34th IEEE conference on deci-
sion and control. IEEE, vol 1, pp 865–870

Barkhori M, Shayanfar MA, Barkhordari MA, Bakhshpoori T (2019) 
Kriging-aided cross-entropy-based adaptive importance sam-
pling using Gaussian mixture. Iran J Sci Technol Trans Civ 
Eng 43(1):81–88

Bassi F, Embrechts P, Kafetzaki M (1998) Risk management and 
quantile estimation. In: Adler RJ, Feldman RE, Taqqu MS 
(eds) A practical guide to heavy tails. Birkhaeuser, Boston, 
pp 111–130

Bayrak G, Acar E (2021) A critical evaluation of asymptotic sam-
pling method for highly safe structures. Struct Multidisc Optim 
64:3037–3061

Beirlant J, Goegebeur Y (2004) Local polynomial maximum likeli-
hood estimation for Pareto-type distributions. J Multivar Anal 
89(1):97–118

Beirlant J, Vynckier P, Teugels JL (1996) Excess functions and esti-
mation of extreme value index. Bernoulli 2:293–318

Bhamidi S, Hannig J, Lee CY, Nolen J (2015) The importance sam-
pling technique for understanding rare events in Erdős-Rényi 
random graphs. Electron J Probab 20:1–30

Table 9   Studies based on the regular and improved version of the SS method

The SS version Reference studies

Regular SS (including its 
parallel or system reliability 
version)

Au and Beck (2001), Au and Beck (2003), Au and Thunnissen (2007), Bréhier et al. (2015, 2016), Cadini et al. 
(2012), Cérou and Guyader (2007), Ching et al. (2005), Du et al. (2021), Elegbede and Normand (2012), 
Green (2017), Hsu and Ching (2010), Hua et al. (2015), Huang et al. (2017), Lagnoux and Lezaud (2017), 
Li et al. (2015), Meng et al. (2015), Santoso et al. (2011), Tee et al. (2013), Thai et al. (2021), Vaisman et al. 
(2017), van den Eijnden et al. (2017), Wadman et al. (2014), Zaharija et al. (2020), Zhang et al. (2019) and 
Zio and Pedroni (2008, 2009a, 2009b, 2010a, b)

Surrogate-based SS Bourinet et al. (2011), Chakraborty and Chowdhury (2017), Huang et al. (2016), Jiang et al. (2021), Ling et al. 
(2019a), Papadopoulos et al. (2012), Qian et al. (2021), Wang and Shafieezadeh (2021), Wei et al. (2019a, b), 
Xia et al. (2017), Xiao et al. (2019a) and Xu et al. (2020)

Hybrid SS Chen and Li (2017), Pedroni and Zio (2017), Rashki (2021), Song et al. (2021a), Tong et al. (2015), Wagner 
et al. (2020) and Wang et al. (2015)

Adaptive SS Cheng et al. (2022)



	 I. Lee et al.

1 3

326  Page 28 of 34

Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM 
(2008) Efficient global reliability analysis for nonlinear 
implicit performance functions. AIAA J 46:2459–2468

Blanchet J, Hult H, Leder K (2011) Importance sampling for sto-
chastic recurrence equations with heavy tailed increments. In: 
Proceedings of the 2011 winter simulation conference (WSC). 
IEEE, pp 3824–3831

Boos DD (1984) Using extreme value theory to estimate large per-
centiles. Technometrics 26(1):33–39

Botev ZI, Kroese DP (2008) An efficient algorithm for rare-event 
probability estimation, combinatorial optimization, and count-
ing. Methodol Comput Appl Probab 10(4):471–505

Botev ZI, L’Ecuyer P, Tuffin B (2013) Markov chain importance 
sampling with applications to rare event probability estimation. 
Stat Comput 23(2):271–285

Botev ZI, Ridder A, Rojas-Nandayapa L (2016) Semiparamet-
ric cross entropy for rare-event simulation. J Appl Probab 
53(3):633–649

Bourinet JM (2016) Rare-event probability estimation with adap-
tive support vector regression surrogates. Reliab Eng Syst Saf 
150:210–221

Bourinet JM, Deheeger F, Lemaire M (2011) Assessing small failure 
probabilities by combined subset simulation and support vector 
machines. Struct Saf 33(6):343–353

Bréhier CE, Lelièvre T, Rousset M (2015) Analysis of adaptive mul-
tilevel splitting algorithms in an idealized case. ESAIM: Probab 
Stat 19:361–394

Bréhier CE, Gazeau M, Goudenège L, Lelièvre T, Rousset M (2016) 
Unbiasedness of some generalized adaptive multilevel splitting 
algorithms. Ann Appl Probab 26(6):3559–3601

Breitung K (2019) The geometry of limit state function graphs and 
subset simulation: counterexamples. Reliab Eng Syst Saf 
182:98–106

Bucher C (2009) Asymptotic sampling for high-dimensional reliability 
analysis. Probab Eng Mech 24(4):504–510

Cabral I, Caeiro F, Gomes MI (2022) On the comparison of several 
classical estimators of the extreme value index. Commun Stat 
Theory Methods 51(1):179–196

Cadini F, Gioletta A (2016) A Bayesian Monte Carlo-based algo-
rithm for the estimation of small failure probabilities of systems 
affected by uncertainties. Reliab Eng Syst Saf 153:15–27

Cadini F, Avram D, Pedroni N, Zio E (2012) Subset simulation of a 
reliability model for radioactive waste repository performance 
assessment. Reliab Eng Syst Saf 100:75–83

Cadini F, Santos F, Zio E (2014) An improved adaptive kriging-based 
importance technique for sampling multiple failure regions of 
low probability. Reliab Eng Syst Saf 131:109–117

Cadini F, Gioletta A, Zio E (2015) Improved metamodel-based impor-
tance sampling for the performance assessment of radioactive 
waste repositories. Reliab Eng Syst Saf 134:188–197

Cadini F, Agliardi GL, Zio E (2017) Estimation of rare event prob-
abilities in power transmission networks subject to cascading 
failures. Reliab Eng Syst Saf 158:9–20

Caers J, Maes MA (1998) Identifying tails, bounds and end-points of 
random variables. Struct Saf 20(1):1–23

Cai C, Zhao Y, Lu Z, Leng Y (2022) An equivalent expectation evalu-
ation method for approximating the probability distribution of 
performance functions. Struct Saf 95:102180. https://​doi.​org/​10.​
1016/j.​strus​afe.​2021.​102180

Cao Z, Dai H, Wang W (2011) Low-discrepancy sampling for struc-
tural reliability sensitivity analysis. Struct Eng Mech: Int J 
38(1):125–140

Castillo E (2012) Extreme value theory in engineering. Elsevier, 
Amsterdam

Castillo E, Hadi AS, Balakrishnan N, Sarabia JM (2005) Extreme value 
and related models with applications in engineering and science. 
Wiley, Hoboken

Cérou F, Guyader A (2007) Adaptive multilevel splitting for rare event 
analysis. Stoch Anal Appl 25(2):417–443

Chabridon V, Balesdent M, Bourinet JM, Morio J, Gayton N (2018) 
Reliability-based sensitivity estimators of rare event probability 
in the presence of distribution parameter uncertainty. Reliab Eng 
Syst Saf 178:164–178

Chakraborty S, Chowdhury R (2017) Hybrid framework for the 
estimation of rare failure event probability. J Eng Mech 
143(5):04017010

Chan HP, Deng S, Lai TL (2012) Rare-event simulation of heavy-tailed 
random walks by sequential importance sampling and resam-
pling. Adv Appl Probab 44(4):1173–1196

Chaudhuri A, Haftka RT (2013) Separable Monte Carlo combined with 
importance sampling for variance reduction. Int J Reliability and 
Safety 7(3):201–215

Chen JB, Li J (2007) The extreme value distribution and dynamic reli-
ability analysis of nonlinear structures with uncertain parameters. 
Struct Saf 29(2):77–93

Chen X, Li J (2017) A subset multicanonical Monte Carlo method for 
simulating rare failure events. J Comput Phys 344:23–35

Chen W, Xu C, Shi Y, Ma J, Lu S (2019) A hybrid Kriging-based reli-
ability method for small failure probabilities. Reliab Eng Syst 
Saf 189:31–41

Cheng J, Li QS (2008) Reliability analysis of structures using artificial 
neural network based genetic algorithms. Comput Methods Appl 
Mech Eng 197(45–48):3742–3750

Cheng K, Lu Z (2021) Adaptive Bayesian support vector regression 
model for structural reliability analysis. Reliab Eng Syst Saf 
206:107286

Cheng K, Lu Z, Xiao S, Lei J (2022) Estimation of small failure prob-
ability using generalized subset simulation. Mech Syst Signal 
Process 163:108114

Chiapino M, Clémençon S, Feuillard V, Sabourin A (2020) A multi-
variate extreme value theory approach to anomaly clustering and 
visualization. Comput Stat 35(2):607–628

Ching J, Au SK, Beck JL (2005) Reliability estimation for dynami-
cal systems subject to stochastic excitation using subset 
simulation with splitting. Comput Methods Appl Mech Eng 
194(12–16):1557–1579

Chocat R, Beaucaire P, Debeugny L, Lefebvre J-P, Sainvitu C, Breit-
kopf P et al (2019) Damage tolerance reliability analysis com-
bining Kriging regression and support vector machine classifi-
cation. Eng Fract Mech 216:106514. https://​doi.​org/​10.​1016/j.​
engfr​acmech.​2019.​1065

Coles S (2001) Classical extreme value theory and models. In: An 
introduction to statistical modeling of extreme values. Springer, 
London, pp 45–73

Cook NJ (2012) Rebuttal of “Problems in the extreme value analysis.” 
Struct Saf 34(1):418–423

Dai H, Zhang H, Wang W (2012) Structural reliability assessment 
by local approximation of limit state functions using adaptive 
Markov chain simulation and support vector regression. Comput 
Aided Civ Infrastruct Eng 27(9):676–686

Dang C, Wei P, Song J, Beer M (2021) Estimation of failure probability 
function under imprecise probabilities by active learning–aug-
mented probabilistic integration. ASCE-ASME J Risk Uncertain 
Eng Syst Part a: Civ Eng 7(4):04021054–04021054

Dang C, Valdebenito MA, Faes MG, Wei P, Beer M (2022) Structural 
reliability analysis: a Bayesian perspective. Struct Saf 99:102259

de Angelis M, Patelli E, Beer M (2015) Advanced line sampling 
for efficient robust reliability analysis. Struct Saf 52:170–182. 
https://​doi.​org/​10.​1016/j.​strus​afe.​2014.​10.​002

https://doi.org/10.1016/j.strusafe.2021.102180
https://doi.org/10.1016/j.strusafe.2021.102180
https://doi.org/10.1016/j.engfracmech.2019.1065
https://doi.org/10.1016/j.engfracmech.2019.1065
https://doi.org/10.1016/j.strusafe.2014.10.002


Small failure probability: principles, progress and perspectives﻿	

1 3

Page 29 of 34  326

de Carvalho M, Pereira S, Pereira P, de Zea Bermudez P (2021) An 
extreme value Bayesian Lasso for the conditional left and right 
tails. J Agric Biol Environ Stat 27:222–239

Der Kiureghian A (2000) The geometry of random vibrations and solu-
tions by FORM and SORM. Probab Eng Mech 15(1):81–90

Derennes P, Chabridon V, Morio J, Balesdent M, Simatos F, Bouri-
net JM, Gayton N (2019) Nonparametric importance sampling 
techniques for sensitivity analysis and reliability assessment of 
a launcher stage fallout. In: Modeling and optimization in space 
engineering. Springer, Cham, pp 59–86

Dhulipala SL, Shields MD, Spencer BW, Bolisetti C, Slaughter AE, 
Labouré VM, Chakroborty P (2022) Active learning with mul-
tifidelity modeling for efficient rare event simulation. J Comput 
Phys 468:111506

Ditlevsen O, Melchers RE, Gluver H (1990) General multi-dimensional 
probability integration by directional simulation. Comput Struct 
36(2):355–368

Du W, Li S, Luo Y (2021) A novel method for structure’s fatigue 
life scatter simulation under material variability. Int J Fatigue 
149:106296

Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based impor-
tance sampling for structural reliability analysis. Probab Eng 
Mech 33:47–57

Ebenuwa AU, Tee KF (2019) Reliability estimation of buried steel 
pipes subjected to seismic effect. Transp Geotech 20:100242

Echard B, Gayton N, Lemaire M (2011) AK–MCS: an active learn-
ing reliability method combining Kriging and Monte Carlo 
simulation. Struct Saf 33(2):14

Echard B, Gayton N, Lemaire M, Relun N (2013) A combined 
importance sampling and kriging reliability method for small 
failure probabilities with time-demanding numerical models. 
Reliab Eng Syst Saf 111:232–240

Efraimidis PS, Spirakis PG (2006) Weighted random sampling with 
a reservoir. Inf Process Lett 97(5):181–185

El EasriMorio MJ, Simatos F (2021) Improvement of the cross-
entropy method in high dimension for failure probability esti-
mation through a one-dimensional projection without gradient 
estimation. Reliab Eng Syst Saf 216:107991

El Haj AK, Soubra AH (2020) Efficient estimation of the failure 
probability of a monopile foundation using a Kriging-based 
approach with multi-point enrichment. Comput Geotech 
121:103451

Elegbede C, Normand F (2012) Small failure probability assessment 
based on subset simulations: application to a launcher structure. 
Adv Saf Reliab Risk Manag, pp 1930–1936

Elhewy AH, Mesbahi E, Pu Y (2006) Reliability analysis of structures 
using neural network method. Probab Eng Mech 21(1):44–53

Falk M, Padoan SA, Wisheckel F (2019) Generalized Pareto copulas: a 
key to multivariate extremes. J Multivar Anal 174:104538

Fleishman AI (1978) A method for simulating non-normal distribu-
tions. Psychometrika 43(4):521–532

Gao L, Lu Z, Feng K, Hu Y, Jiang X (2021) Advanced surrogate-
based time-dependent reliability analysis method by an effective 
strategy of reducing the candidate sample pool. Struct Multidisc 
Optim 64(4):2199–2212

Garvels MJ (2011) A combined splitting—cross entropy method for 
rare-event probability estimation of queueing networks. Ann 
Oper Res 189(1):167–185

Ghosh A (2017) Divergence based robust estimation of the tail index 
through an exponential regression model. Stat Methods Appl 
26(2):181–213

Gnedenko BV (1948) On a local limit theorem of the theory of prob-
ability. Uspekhi Mat Nauk 3(25):187–194

Gomes DP, Neves MM (2020) Extremal index blocks estima-
tor: the threshold and the block size choice. J Appl Stat 
47(13–15):2846–2861

Gong C, Frangopol DM (2019) An efficient time-dependent reliability 
method. Struct Saf 81:101864

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, 
Cambridge

Green DK (2017) Efficient Markov chain Monte Carlo for combined 
subset simulation and nonlinear finite element analysis. Comput 
Methods Appl Mech Eng 313:337–361

Grooteman F (2011) An adaptive directional importance sam-
pling method for structural reliability. Probab Eng Mech 
26(2):134–141

Guo Q, Liu Y, Chen B, Zhao Y (2020) An active learning Kriging 
model combined with directional importance sampling method 
for efficient reliability analysis. Probab Eng Mech 60:103054

Guo Q, Liu Y, Chen B, Yao Q (2021) A variable and mode sensitiv-
ity analysis method for structural system using a novel active 
learning Kriging model. Reliab Eng Syst Saf 206:107285

Hagiwara S, Date T, Masu K, Sato T (2014) Hypersphere sampling 
for accelerating high-dimension and low-failure probability 
circuit-yield analysis. IEICE Trans Electron 97(4):280–288

Hasofer AM (1996) Parametric estimation of failure probabilities. In: 
Casicati F, Roberts B (eds) Mathematical models for structural 
reliability analysis. CRC Press, Boca Raton

Hassanaly M, Raman V (2019) A self-similarity principle for the 
computation of rare event probability. J Phys a: Math Theor 
52(49):495701

He J, Gong J (2016) Estimate of small first passage probabilities of 
nonlinear random vibration systems by using tail approxima-
tion of extreme distributions. Struct Saf 60:28–36

Ho ATP, Sawaya W, Bas P (2016) Rare event probability estimation 
using information projection. In: 2016 international sympo-
sium on information theory and its applications (ISITA). IEEE, 
pp 251–255

Homem-de-Mello T (2007) A study on the cross-entropy method 
for rare-event probability estimation. INFORMS J Comput 
19(3):381–394

Homem-de-Mello T, Rubinstein RY (2002) Estimation of rare event 
probabilities using cross-entropy. In: Proceedings of the winter 
simulation conference. IEEE, vol 1, pp 310–319

Hong HP, Lind NC (1996) Approximate reliability analysis 
using normal polynomial and simulation results. Struct Saf 
18:329–339

Hong HP (2011) Application of polynomial transformation to nor-
mality in structural reliability analysis. Can J Civ Eng

Hosking JRM, Wallis JR (1987) Parameter and quantile estima-
tion for the generalized Pareto distribution. Technometrics 
29(3):339–349

Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the general-
ized extreme-value distribution by the method of probability-
weighted moments. Technometrics 27(3):251–261

Hsu WC, Ching J (2010) Evaluating small failure probabilities of 
multiple limit states by parallel subset simulation. Probab Eng 
Mech 25(3):291–304

Hu Z, Mahadevan S (2016) A single-loop kriging surrogate modeling 
for time-dependent reliability analysis. J Mech Des 138(6), 
Article 061406

Hu Z, Du X (2013a) Time-dependent reliability analysis with joint 
upcrossing rates. Struct Multidisc Optim 48(5):893–907

Hu Z, Du X (2013b) A sampling approach to extreme value dis-
tribution for time-dependent reliability analysis. J Mech Des 
135(7):071003

Hu Z, Du X (2015) Mixed efficient global optimization for time-
dependent reliability analysis. J Mech Des 137(5):051401

Hua B, Bie Z, Au SK, Li W, Wang X (2015) Extracting rare failure 
events in composite system reliability evaluation via subset 
simulation. IEEE Trans Power Syst 30(2):753–762



	 I. Lee et al.

1 3

326  Page 30 of 34

Huang X, Chen J, Zhu H (2016) Assessing small failure probabilities 
by AK–SS: an active learning method combining Kriging and 
Subset Simulation. Struct Saf 59:86–95

Huang J, Fenton G, Griffiths DV, Li D, Zhou C (2017) On the effi-
cient estimation of small failure probability in slopes. Land-
slides 14(2):491–498

Hurtado JE (2007) Filtered importance sampling with support vector 
margin: a powerful method for structural reliability analysis. 
Struct Saf 29:2–15. https://​doi.​org/​10.​1016/j.​strus​afe.​2005.​12.​
002

Jacquemart D, Morio J (2016) Tuning of adaptive interacting parti-
cle system for rare event probability estimation. Simul Model 
Pract Theory 66:36–49

Jenkinson AF (1955) The frequency distribution of the annual maxi-
mum (or minimum) values of meteorological elements. Quart J 
R Meteorol Soc 81:158–171

Jiang ZM, Feng DC, Zhou H, Tao WF (2021) A recursive dimension-
reduction method for high-dimensional reliability analysis with 
rare failure event. Reliab Eng Syst Saf 213:107710

Juneja S, Shahabuddin P (2001) Fast simulation of Markov chains with 
small transition probabilities. Manag Sci 47(4):547–562

Kaddour S, Lord S (2012) Application of separable monte carlo 
simulation to a complete aircraft wingbox. DiPaRT Workshop: 
Uncertainty Quantification and Management in Aircraft Design, 
Bristol, UK, November 2012

Kanj R, Joshi R, Nassif S (2006) Mixture importance sampling and its 
application to the analysis of SRAM designs in the presence of 
rare failure events. In: 2006 43rd ACM/IEEE design automation 
conference. IEEE, pp 69–72

Kim J, Song J (2020) Probability-adaptive Kriging in n-Ball (PAK-Bn) 
for reliability analysis. Struct Saf 85:101924

Kroese DP, Rubinstein RY (2004) The transform likelihood ratio 
method for rare event simulation with heavy tails. Queueing 
Syst 46(3):317–351

Kuhn J, Mandjes M, Taimre T (2018) Exact asymptotics of sample-
mean-related rare-event probabilities. Probab Eng Inf Sci 
32(2):207–228

Kuruganti I, Strickland S (1997) Optimal importance sampling for 
Markovian systems with applications to tandem queues. Math 
Comput Simul 44(1):61–79

Lagnoux A (2006) Rare event simulation. Probab Eng Inf Sci 
20(1):43–66

Lagnoux A, Lezaud P (2017) Multilevel branching and splitting algo-
rithm for estimating rare event probabilities. Simul Model Pract 
Theory 72:150–167

Lee I, Shin J, Choi K (2013) Equivalent target probability of failure 
to convert high-reliability model to low-reliability model for 
efficiency of sampling-based RBDO. Struct Multidisc Optim 
48:235–248

Leira BJ, Naess A, Naess OEB (2016) Reliability analysis of corrod-
ing pipelines by enhanced Monte Carlo simulation. Int J Press 
Vessels Pip 144:11–17

Lelièvre N, Beaurepaire P, Mattrand C, Gayton N (2018) AK-MCSi: 
A Kriging-based method to deal with small failure probabilities 
and time-consuming models. Struct Saf 73:1–11

Li J, Li J, Xiu D (2011) An efficient surrogate-based method 
for computing rare failure probability. J Comput Phys 
230(24):8683–8697

Li HS, Ma YZ, Cao Z (2015) A generalized Subset Simulation 
approach for estimating small failure probabilities of multiple 
stochastic responses. Comput Struct 153:239–251

Li W, Yang R, Qi Q, Dong Q, Zhao G (2021) A novel structural reli-
ability method based on active Kriging and weighted sampling. 
J Mech Sci Technol 35(6):2459–2469

Li P, Lu Z, Zhao Y (2022) An effective and efficient method for 
structural reliability considering the distributional parametric 

uncertainty. Appl Math Model 106:507–523. https://​doi.​org/​10.​
1016/j.​apm.​2022.​02.​020

Li HS, Zhao AL, Tee KF (2016) Structural reliability analysis of mul-
tiple limit state functions using multi-input multi-output support 
vector machine. Adv Mech Eng 8: Article 1687814016671447

Lieu QX, Nguyen KT, Dang KD, Lee S, Kang J, Lee J (2022) An adap-
tive surrogate model to structural reliability analysis using deep 
neural network. Expert Syst Appl 189:116104. https://​doi.​org/​
10.​1016/j.​eswa.​2021.​116104

Lin W, Su C (2021) An efficient Monte-Carlo simulation for the 
dynamic reliability analysis of jacket platforms subjected to ran-
dom wave loads. J Mar Sci Eng 9(4):380

Ling C, Lu Z (2021) Support vector machine-based importance 
sampling for rare event estimation. Struct Multidisc Optim 
63(4):1609–1631

Ling C, Lu Z, Feng K, Zhang X (2019a) A coupled subset simulation 
and active learning kriging reliability analysis method for rare 
failure events. Struct Multidisc Optim 60(6):2325–2341

Ling C, Lu Z, Zhu X (2019b) Efficient methods by active learning 
Kriging coupled with variance reduction based sampling meth-
ods for time-dependent failure probability. Reliab Eng Syst Saf 
188:23–35

Liu XX, Elishakoff I (2020) A combined importance sampling and 
active learning Kriging reliability method for small failure prob-
ability with random and correlated interval variables. Struct Saf 
82:101875

Liu J, Lu J, Zhou X (2015) Efficient rare event simulation for 
failure problems in random media. SIAM J Sci Comput 
37(2):A609–A624

Liu WS, Cheung SH, Cao WJ (2019) An efficient surrogate-aided 
importance sampling framework for reliability analysis. Adv 
Eng Softw 135:102687

Liu FC, Wei PF, Zhou CC, Yue ZF (2020) Reliability and reliability 
sensitivity analysis of structure by combining adaptive linked 
importance sampling and Kriging reliability method. Chin J 
Aeronaut 33(4):1218–1227

Löbl D, Holzapfel F (2015) Subset simulation for estimating small 
failure probabilities of an aerial system subject to atmospheric 
turbulences. In: AIAA atmospheric flight mechanics conference, 
pp 1–11

Lu ZH, Cai CH, Zhao YG (2017) Structural reliability analysis includ-
ing correlated random variables based on third-moment transfor-
mation. J Struct Eng 143(8):04017067

Lv Z, Lu Z, Wang P (2015) A new learning function for Kriging and its 
applications to solve reliability problems in engineering. Comput 
Math Appl 70:1182–1197

Ma Y, Jiang Y, Huang W (2019) Tail index varying coefficient model. 
Commun Stat Theory Methods 48(2):235–256

Ma Y, Wei B, Huang W (2020) A nonparametric estimator for the 
conditional tail index of Pareto-type distributions. Metrika 
83(1):17–44

Maes MA, Breitung K (1993) Reliability-based tail estimation. In: 
Proceedings, IUTAM symposium on probabilistic structural 
mechanics (Advances in Structural Reliability Methods), San 
Antonio, Texas, pp 335–346

Mafusalov A, Shapiro A, Uryasev S (2018) Estimation and asymp-
totics for buffered probability of exceedance. Eur J Oper Res 
270(3):826–836

Mahdipour EB, Rahmani AM, Setayeshi S (2014) Performance evalu-
ation of an importance sampling technique in a Jackson network. 
Int J Syst Sci 45(3):373–383

Mahdipour E, Rahmani AM (2009a) Estimating the total population 
overflow as a rare event in a tandem network. In: 2009a inter-
national conference on computer and automation engineering. 
IEEE, pp 196–199

https://doi.org/10.1016/j.strusafe.2005.12.002
https://doi.org/10.1016/j.strusafe.2005.12.002
https://doi.org/10.1016/j.apm.2022.02.020
https://doi.org/10.1016/j.apm.2022.02.020
https://doi.org/10.1016/j.eswa.2021.116104
https://doi.org/10.1016/j.eswa.2021.116104


Small failure probability: principles, progress and perspectives﻿	

1 3

Page 31 of 34  326

Mahdipour E, Rahmani AM (2009b) Importance sampling for a two-
node Jackson network with customer impatience until the end of 
service. In: 2009b international conference on future networks. 
IEEE, pp 137–141

Makkonen L (2008) Problems in the extreme value analysis. Struct 
Saf 30(5):405–419

Makkonen L, Pajari M, Tikanmäki M (2013) Closure to “Problems 
in the extreme value analysis” (Struct Saf 2008: 30:405–419). 
Struct Saf 40:65–67

Marelli S, Wagner PR, Lataniotis C, Sudret B (2021) Stochastic spec-
tral embedding. Int J Uncertain Quantif 11(2):25–47

Matheron G (1973) The intrinsic random functions and their applica-
tions. Adv Appl Probab 5(3):439–468. https://​doi.​org/​10.​2307/​
14258​29

McNeil AJ, Saladin T (1997) The peaks over thresholds method for 
estimating high quantiles of loss distributions. In: Proceedings 
of 28th international ASTIN Colloquium

Melchers RE, Beck AT (2018) Structural reliability analysis and pre-
diction. Wiley, Hoboken

Meng D, Li YF, Huang HZ, Wang Z, Liu Y (2015) Reliability-based 
multidisciplinary design optimization using subset simulation 
analysis and its application in the hydraulic transmission mecha-
nism design. J Mech Des 137(5):051402

Meng Z, Zhang Z, Li G, Zhang D (2020) An active weight learn-
ing method for efficient reliability assessment with small failure 
probability. Struct Multidisc Optim 61(3):1157–1170

Mhalla L, Opitz T, Chavez-Demoulin V (2019) Exceedance-based non-
linear regression of tail dependence. Extremes 22(3):523–552

Miorelli R, Kulakovskyi A, Chapuis B, D’Almeida O, Mesnil O (2021) 
Supervised learning strategy for classification and regression 
tasks applied to aeronautical structural health monitoring prob-
lems. Ultrasonics 113:106372

Morio J (2010) Importance sampling: how to approach the optimal 
density? Eur J Phys 31(2):L41

Morio J, Balesdent M (2016) Estimation of a launch vehicle stage 
fallout zone with parametric and non-parametric importance 
sampling algorithms in presence of uncertain input distributions. 
Aerosp Sci Technol 52:95–101

Naess A, Leira BJ, Batsevychc O (2009) System reliability analysis 
by enhanced Monte Carlo simulation. Struct Saf 31(5):349–355

Naess A, Leira B, Batsevych O (2012) Reliability analysis of large 
structural systems. Probab Eng Mech 28:164–216

Nie J, Ellingwood BR (2000) Directional methods for structural reli-
ability analysis. Struct Saf 22:233–249. https://​doi.​org/​10.​1016/​
S0167-​4730(00)​00014-X

Nie J, Ellingwood BR (2004) A new directional simulation method for 
system reliability. Part I: application of deterministic point sets. 
Probab Eng Mech 19(4):425–436

Norouzi M, Nikolaidis E (2017) An efficient estimation of probabil-
ity of first-passage in a linear system. Struct Multidiscip Optim 
55(5):1733–1746

Okasha NM (2016) An improved weighted average simulation 
approach for solving reliability-based analysis and design opti-
mization problems. Struct Saf 60:47–55

Olsson A, Sandberg G, Dahlblom O (2003) On Latin hypercube sam-
pling for structural reliability analysis. Struct Saf 25:47–68

Papadopoulos V, Giovanis DG, Lagaros ND, Papadrakakis M (2012) 
Accelerated subset simulation with neural networks for reliability 
analysis. Comput Methods Appl Mech Eng 223:70–80

Papaioannou I, Straub D (2021) Combination line sampling for struc-
tural reliability analysis. Struct Saf 88:102025

Pedroni N, Zio E (2017) An adaptive metamodel-based subset impor-
tance sampling approach for the assessment of the functional 
failure probability of a thermal-hydraulic passive system. Appl 
Math Model 48:269–288

Peng W, Zhang J, You L (2015a) The hybrid uncertain neural network 
method for mechanical reliability analysis. Int J Aeronaut Space 
Sci 16(4):510–519

Peng W, Zhang J, Zhu D (2015b) ABCLS method for high-reliability 
aerospace mechanism with truncated random uncertainties. Chin 
J Aeronaut 28(4):1066–1075

Peng W, Huang X, Zhang X, Ni L, Zhu S (2019) A time-dependent 
reliability estimation method based on surrogate modeling and 
data clustering. Adv Mech Eng 11(4):1687814019839874

Peng F, Yu H, Tao J, Su Y, Zhou D, Zeng X, Li X (2020) Efficient sta-
tistical analysis for correlated rare failure events via asymptotic 
probability approximation. IEEE Trans Comput Aided Des Integr 
Circ Syst 39(12):4971–4984

Pickands J III (1975) Statistical inference using extreme order statistics. 
Ann Stat 3:119–131

Pipiras V (2020) Pitfalls of data-driven peaks-over-threshold analy-
sis: perspectives from extreme ship motions. Probab Eng Mech 
60:103053

Pradlwarter H, Schuller G, Koutsourelakis P, Charmpis D (2007) 
Application of line sampling simulation method to reliability 
benchmark problems. Struct Saf 29:208–221

Qian HM, Li YF, Huang HZ (2021) Time-variant system reliability 
analysis method for a small failure probability problem. Reliab 
Eng Syst Saf 205:107261

Qiu Y, Wang C (2015) An importance sampling method for expecta-
tion of Portfolio credit risk. In: Asian business and manage-
ment practices: trends and global considerations. IGI Global, 
pp 210–219

Qiu Y, Zhou H, Wu YQ (2007) An importance sampling method with 
applications to rare event probability. In: 2007 IEEE international 
conference on grey systems and intelligent services. IEEE, pp 
1381–1385

Qiu Y, Zhou H, Wu Y (2008) An importance sampling method based 
on martingale with applications to rare event probability. In: 
2008 7th world congress on intelligent control and automation. 
IEEE, pp 4041–4045

Radev D, Lokshina I (2007) Algorithms for rare event simulation with 
Markov Chains. In: Proceedings of the 5th international indus-
trial simulation conference (ISC'2007), pp 69–74

Ramu P, Kaushik H (2020) A log-third order polynomial normal trans-
formation approach for high-reliability estimation with scarce 
samples. Int J Reliab Saf 14(1):14–38

Ramu P, Kim NH, Haftka RT (2010) Multiple tail median approach for 
high reliability estimation. Struct Saf 32(2):124–137

Rashki M (2021) SESC: A new subset simulation method for rare-
events estimation. Mech Syst Signal Process 150:107139

Rashki M, Miri M, Azhdary-Moghaddam M (2012) A new efficient 
simulation method to approximate the probability of failure and 
most probable point. Struct Saf 39:22–29

Razaaly N, Congedo PM (2018) Novel algorithm using active meta-
model learning and importance sampling: application to multiple 
failure regions of low probability. J Comput Phys 368:92–114

Razaaly N, Congedo PM (2020) Extension of AK-MCS for the efficient 
computation of very small failure probabilities. Reliab Eng Syst 
Saf 203:107084

Razaaly N, Crommelin D, Congedo PM (2020) Efficient estimation of 
extreme quantiles using adaptive kriging and importance sam-
pling. Int J Numer Meth Eng 121(9):2086–2105

Richard B, Cremona C, Adelaide L (2012) A response surface method 
based on support vector machines trained with an adaptive exper-
imental design. Struct Saf 39:14–21

Rocco CM, Moreno JA (2002) Fast Monte Carlo reliability evaluation 
using support vector machine. Reliab Eng Syst Saf 76:237–243

Roh MK (2019) Data-driven method for efficient characterization of 
rare event probabilities in biochemical systems. Bull Math Biol 
81(8):3097–3120

https://doi.org/10.2307/1425829
https://doi.org/10.2307/1425829
https://doi.org/10.1016/S0167-4730(00)00014-X
https://doi.org/10.1016/S0167-4730(00)00014-X


	 I. Lee et al.

1 3

326  Page 32 of 34

Roy A, Chakraborty S (2020) Support vector regression based meta-
model by sequential adaptive sampling for reliability analysis of 
structures. Reliab Eng Syst Saf 200:106948

Roy A, Manna R, Chakraborty S (2019) Support vector regression 
based metamodeling for structural reliability analysis. Prob Eng 
Mech 55:78–89

Rubinstein RY (2006) How many needles are in a haystack, or how to 
solve# P-complete counting problems fast. Methodol Comput 
Appl Probab 8(1):5–51

Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo 
method, vol 10. Wiley, Hoboken

Sandmann W (2007) Efficiency of importance sampling estimators. J 
Simul 1(2):137–145

Sandmann W (2004) Fast simulation of excessive population size 
in tandem Jackson networks. In: The IEEE computer society's 
12th annual international symposium on modeling, analysis, and 
simulation of computer and telecommunications systems, 2004.
(MASCOTS 2004). Proceedings. IEEE, pp 347–354

Santoso AM, Phoon KK, Quek ST (2011) Modified Metropolis-Hast-
ings algorithm with reduced chain correlation for efficient subset 
simulation. Probab Eng Mech 26(2):331–341

Schöbi R, Sudret B, Marelli S (2017) Rare event estimation using 
polynomial-chaos kriging. ASCE-ASME J Risk Uncertain Eng 
Syst Part a: Civ Eng 3(2):D4016002

Seghier MEAB, Bettayeb M, Correia J, De Jesus A, Calçada R 
(2018) Structural reliability of corroded pipeline using the so-
called Separable Monte Carlo method. J Strain Anal Eng Des 
53(8):730–737

Shahid MA (2012) Cross entropy minimization for efficient estimation 
of sram failure rate. In: 2012 design, automation & test in Europe 
conference & exhibition (DATE). IEEE, pp 230–235

Shayanfar MA, Barkhordari MA, Barkhori M, Rakhshanimehr M 
(2017) An adaptive line sampling method for reliability analysis. 
Iran J Sci Technol Trans Civ Eng 41(3):275–282

Shayanfar MA, Barkhordari MA, Barkhori M, Barkhori M (2018) An 
adaptive directional importance sampling method for structural 
reliability analysis. Struct Saf 70:14–20

Shi Z, Gu C, Zheng X, Qin D (2016) Multiple failure modes analysis 
of the dam system by means of line sampling simulation. Optik 
127(11):4710–4715

Shi X, Yan H, Wang J, Zhang J, Shi L, He L (2020) An efficient adap-
tive importance sampling method for SRAM and analog yield 
analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 
39(12):4999–5010

Shi X, Liu F, Yang J, He L (2018) A fast and robust failure analysis of 
memory circuits using adaptive importance sampling method. 
In: 2018 55th ACM/ESDA/IEEE design automation conference 
(DAC). IEEE, pp 1–6

Shi X, Yan H, Zhang J, Huang Q, Shi L, He L (2019) Efficient yield 
analysis for SRAM and analog circuits using meta-model based 
importance sampling method. In: 2019 IEEE/ACM international 
conference on computer-aided design (ICCAD). IEEE, pp 1–8

Shultes BC (2002) A balanced likelihood ratio approach for analyzing 
rare events in a tandem Jackson network. In: Proceedings of the 
winter simulation conference. IEEE, vol 1, pp 424–432

Sichani MT, Nielsen SRK, Bucher C (2011a) Applications of asymp-
totic sampling on high dimensional structural dynamic problems. 
Struct Saf 33:305–316

Sichani MT, Nielsen SRK, Bucher C (2011b) Efficient estimation of 
first passage probability of high-dimensional nonlinear systems. 
Prob Eng Mech 26:539–549

Smarslok BP, Haftka RT, Carraro L, Ginsbourger D (2010) Improving 
accuracy of failure probability estimates with separable Monte 
Carlo. Int J Reliab Saf 4(4):393–414

Song K, Zhang Y, Yu X, Song B (2019) A new sequential surrogate 
method for reliability analysis and its applications in engineering. 
IEEE Access 7:60555–60571

Song J, Wei P, Valdebenito M, Beer M (2020) Adaptive reliability 
analysis for rare events evaluation with global imprecise line 
sampling. Comput Methods Appl Mech Eng 372:113344

Song J, Wei P, Valdebenito M, Beer M (2021a) Active learning line 
sampling for rare event analysis. Mech Syst Signal Process 
147:107113

Song K, Zhang Y, Zhuang X, Yu X, Song B (2021b) An adaptive fail-
ure boundary approximation method for reliability analysis and 
its applications. Eng Comput 37(3):2457–2472

Song S, Bai Z, Kucherenko S, Wang L, Yang C (2021c) Quantile sensi-
tivity measures based on subset simulation importance sampling. 
Reliab Eng Syst Saf 208:107405

Su M, Xue G, Wang D, Zhang Y, Zhu Y (2020) A novel active learn-
ing reliability method combining adaptive Kriging and spherical 
decomposition-MCS (AK-SDMCS) for small failure probabili-
ties. Struct Multidisc Optim 62(6):3165–3187

Sudret B (2008) Analytical derivation of the outcrossing rate in time-
variant reliability problems. Struct Infrastruct Eng 4(5):353–362

Sun Z, Wang J, Li R, Tong C (2017) LIF: A new Kriging based learn-
ing function and its application to structural reliability analysis. 
Reliab Eng Syst Saf 157:152–165

Sun S, Li X, Liu H, Luo K, Gu B (2015) Fast statistical analysis of 
rare failure events for memory circuits in high-dimensional 
variation space. In: The 20th Asia and South Pacific design 
automation conference. IEEE, pp 302–307

Tee KF, Khan LR, Li HS (2013) Reliability analysis of underground 
pipelines using subset simulation. Int J Civ Environ Struct 
Constr Architect Eng 7(11):843–849

Thai HT, Thai S, Ngo T, Uy B, Kang WH, Hicks SJ (2021) Reliabil-
ity considerations of modern design codes for CFST columns. 
J Constr Steel Res 177:106482

Tong C, Sun Z, Zhao Q, Wang Q, Wang S (2015) A hybrid algo-
rithm for reliability analysis combining Kriging and sub-
set simulation importance sampling. J Mech Sci Technol 
29(8):3183–3193

Tong MN, Lu ZH, Zhao YG (2019) Polynomial normal transform 
based on L-moments and its application to structural reliability

Vaisman R (2021) Sequential stratified splitting for efficient Monte 
Carlo integration. Seq Anal 40:314–335

Vaisman R, Roughan M, Kroese DP (2017) The multilevel splitting 
algorithm for graph colouring with application to the Potts 
model. Phil Mag 97(19):1646–1673

van den Eijnden B, Hicks MA, Vardon PJ (2017) Investigating the 
influence of conditional simulation on small-probability failure 
events using subset simulation. In: Geo-risk 2017: reliability-
based design and code development, pp 130–139.

Vapnik VN (1995) The nature of statistical learning theory. Springer, 
Berlin

Wadman W, Crommelin D, Frank J (2014) A separated splitting tech-
nique for disconnected rare event sets. In: Proceedings of the 
Winter simulation conference 2014. IEEE, pp 522–532

Wagner F, Latz J, Papaioannou I, Ullmann E (2020) Multilevel sequen-
tial importance sampling for rare event estimation. SIAM J Sci 
Comput 42(4):A2062–A2087

Wagner PR, Marelli S, Papaioannou I, Straub D, Sudret B (2022) Rare 
event estimation using stochastic spectral embedding. Struct Saf 
96:102179

Wang Y (2018) An adaptive importance sampling method for spin-
ning reserve risk evaluation of generating systems incorporating 
virtual power plants. IEEE Trans Power Syst 33(5):5082–5091

Wang Z, Shafieezadeh A (2021) Metamodel-based subset simula-
tion adaptable to target computational capacities: the case for 



Small failure probability: principles, progress and perspectives﻿	

1 3

Page 33 of 34  326

high-dimensional and rare event reliability analysis. Struct Multi-
disc Optim 64:649–675

Wang H, Tsai C (2009) Tail index regression. J Am Stat Assoc 
104:1232–1240

Wang Z, Wang P (2016) Accelerated failure identification sampling 
for probability analysis of rare events. Struct Multidisc Optim 
54(1):137–149

Wang B, Wang D, Jiang J, Zhang J, Sun P (2015) Efficient functional 
reliability estimation for a passive residual heat removal system 
with subset simulation based on importance sampling. Prog Nucl 
Energy 78:36–46

Wang D, Qiu H, Gao L, Jiang C (2021a) A single-loop Kriging coupled 
with subset simulation for time-dependent reliability analysis. 
Reliab Eng Syst Saf 216:107931

Wang SP, Chen A, Liu CW, Chen CH, Shortle J (2011) Rare-event 
splitting simulation for analysis of power system blackouts. In: 
2011 IEEE power and energy society general meeting. IEEE, 
pp 1–7

Wang J, Aldosary M, Cen S, Li C (2021b). Hermite polynomial normal 
transformation for structural reliability analysis. Eng Comput

Wei P, Lu Z, Hao W, Feng J, Wang B (2012) Efficient sampling meth-
ods for global reliability sensitivity analysis. Comput Phys Com-
mun 183(8):1728–1743

Wei P, Song J, Bi S, Broggi M, Beer M, Lu Z, Yue Z (2019a) Non-
intrusive stochastic analysis with parameterized imprecise prob-
ability models: II. Reliability and rare events analysis. Mech Syst 
Signal Process 126:227–247

Wei P, Tang C, Yang Y (2019b) Structural reliability and reliability 
sensitivity analysis of extremely rare failure events by combining 
sampling and surrogate model methods. Proc Inst Mech Eng Part 
O: J Risk Reliab 233(6):943–957

Winterstein SR, MacKenzie CA (2013) Extremes of nonlinear vibra-
tion: comparing models based on moments, L-moments, and 
maximum entropy. J Offshore Mech Arct Eng 135(2):021602

Xia Z, Quek ST, Li A, Li J, Duan M (2017) Hybrid approach to seis-
mic reliability assessment of engineering structures. Eng Struct 
153:665–673

Xiang Z, Chen J, Bao Y, Li H (2020) An active learning method com-
bining deep neural network and weighted sampling for structural 
reliability analysis. Mech Syst Signal Process 140:106684

Xiao M, Zhang J, Gao L, Lee S, Eshghi AT (2019a) An efficient Krig-
ing-based subset simulation method for hybrid reliability analysis 
under random and interval variables with small failure probabil-
ity. Struct Multidisc Optim 59(6):2077–2092

Xiao S, Reuschen S, Köse G, Oladyshkin S, Nowak W (2019b) Esti-
mation of small failure probabilities based on thermodynamic 
integration and parallel tempering. Mech Syst Signal Process 
133:106248

Xiao NC, Zhan H, Yuan K (2020) A new reliability method for small 
failure probability problems by combining the adaptive impor-
tance sampling and surrogate models. Comput Methods Appl 
Mech Eng 372:113336

Xiong B, Tan H (2017) New structural reliability method with focus on 
important region and based on adaptive support vector machines. 
Adv Mech Eng 9(6):1–12. https://​doi.​org/​10.​1177/​16878​14017​
710581

Xu Z, Saleh JH (2021) Machine learning for reliability engineering and 
safety applications: review of current status and future opportuni-
ties. Reliab Eng Syst Saf 211:107530. https://​doi.​org/​10.​1016/j.​
ress.​2021.​107530

Xu C, Chen W, Ma J, Shi Y, Lu S (2020) AK-MSS: An adaptation of 
the AK-MCS method for small failure probabilities. Struct Saf 
86:101971

Xu J, Li L, Lu ZH (2022a) An adaptive mixture of normal-inverse 
Gaussian distributions for structural reliability analysis. J Eng 
Mech 148(3):04022011

Xu J, Wu Z, Lu ZH (2022b) An adaptive polynomial skewed-normal 
transformation model for distribution reconstruction and reli-
ability evaluation with rare events. Mech Syst Signal Process 
169:108589

Yang X, Cheng X (2020) Active learning method combining Kriging 
model and multimodal-optimization-based importance sampling 
for the estimation of small failure probability. Int J Numer Meth-
ods Eng 121(21):4843–4864

Yang DY, Teng JG, Frangopol DM (2017) Cross-entropy-based adap-
tive importance sampling for time-dependent reliability analysis 
of deteriorating structures. Struct Saf 66:38–50

Yang X, Liu Y, Fang X, Mi C (2018a) Estimation of low failure 
probability based on active learning Kriging model with a 
concentric ring approaching strategy. Struct Multidisc Optim 
58(3):1175–1186

Yang X, Liu Y, Mi C, Wang X (2018b) Active learning Kriging model 
combining with kernel-density-estimation-based importance 
sampling method for the estimation of low failure probability. J 
Mech Des 140(5):051402

Yang X, Cheng X, Liu Z, Wang T (2021) A novel active learning 
method for profust reliability analysis based on the Kriging 
model. Eng Comput

Yu Z, Sun Z, Cao R, Wang J, Yan Y (2020) RCA-PCK: A new struc-
tural reliability analysis method based on PC-Kriging and radial 
centralized adaptive sampling strategy. Proc Inst Mech Eng Part 
C: J Mech Eng Sci 235:3424–3438

Yun W, Lu Z, Jiang X (2018) An efficient reliability analysis method 
combining adaptive Kriging and modified importance sam-
pling for small failure probability. Struct Multidisc Optim 
58(4):1383–1393

Yun W, Lu Z, Jiang X, Zhang L, He P (2020) AK-ARBIS: an improved 
AK-MCS based on the adaptive radial-based importance sam-
pling for small failure probability. Struct Saf 82:101891

Yun W, Lu Z, Wang L, Feng K, He P, Dai Y (2021) Error-based stop-
ping criterion for the combined adaptive Kriging and impor-
tance sampling method for reliability analysis. Probab Eng Mech 
65:103131

Zaharija L, Stipanić D, Holjević D, Travaš V (2020) Analysis of 
mechanical characteristics of pipe material in embedded smooth 
pipes for purposes of developing technical and economic analy-
ses. Hrvatske Vode 28(114):255–268

Zhan L, Liu J, Zhang M, Zhou C, Zhang L, Shi T (2020) One-Class 
Support Vector Machine Based Schemes for Structural Reliabil-
ity Assessment Under Imbalanced Sample Conditions. IEEE 
Access 8:184350–184359

Zhang D, Lin J, Peng Q, Wang D, Yang T, Sorooshian S, Liu X, 
Zhuang J (2018) Modeling and simulating of reservoir opera-
tion using the artificial neural network, support vector regression, 
deep learning algorithm. J Hydrol 565:720–736

Zhang J, Xiao M, Gao L, Chu S (2019) A combined projection-outline-
based active learning Kriging and adaptive importance sampling 
method for hybrid reliability analysis with small failure prob-
abilities. Comput Methods Appl Mech Eng 344:13–33

Zhang X, Lu Z, Yun W, Feng K, Wang Y (2020a) Line sampling-based 
local and global reliability sensitivity analysis. Struct Multidisc 
Optim 61(1):267–281

Zhang Y, Sun Z, Yan Y, Yu Z, Wang J (2020b) A novel reliability 
analysis method based on Gaussian process classification 
for structures with discontinuous response. Struct Eng Mech 
75(6):771–784

Zhang X, Lu Z, Cheng K (2021) AK-DS: An adaptive Kriging-based 
directional sampling method for reliability analysis. Mech Syst 
Signal Process 156:107610

Zhangchun T, Zhenzhou L, Wang P, Feng Z (2013) A mean extrapola-
tion technique for high reliability analysis. Appl Math Comput 
222:82–93

https://doi.org/10.1177/1687814017710581
https://doi.org/10.1177/1687814017710581
https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/10.1016/j.ress.2021.107530


	 I. Lee et al.

1 3

326  Page 34 of 34

Zhangchun T, Zhenzhou L, Wang P (2014) Discussion on: applications 
of asymptotic sampling on high dimensional structural dynamic 
problems: MT Sichani, SRK Nielsen and C. Bucher, Structural 
Safety, 33 (2011) 305–316. Struct Saf 46:8–10

Zhao YG, Lu ZH (2007) Fourth-moment standardization for structural 
reliability assessment. J Struct Eng 133(7):916–924

Zhao X, Guo Y, Chen X, Feng Z, Hu S (2011) Hierarchical cross-
entropy optimization for fast on-chip decap budgeting. IEEE 
Trans Comput Aided Des Integr Circ Syst 30(11):1610–1620

Zhao YG, Tong MN, Lu ZH, Xu J (2020) Monotonic expression 
of polynomial normal transformation based on the first four 
L-moments. J Eng Mech 146(7):06020003

Zhao Z, Lu Z, Zhao Y (2022) An efficient extreme value moment 
method combining adaptive Kriging model for time-vari-
ant imprecise reliability analysis. Mech Syst Signal Process 
171:108905. https://​doi.​org/​10.​1016/j.​ymssp.​2022.​108905

Zhao X, Guo Y, Feng Z, Hu S (2010) Parallel hierarchical cross entropy 
optimization for on-chip decap budgeting. In: Proceedings of the 
47th design automation conference, pp 843–848

Zhou J, Li J (2022) An enhanced method for improving the accuracy 
of small failure probability of structures. Reliab Eng Syst Saf, 
108784

Zhu Y, Zhou H, Feng X, Zhang C, Zhang M, Yang F (2017) Directional 
simulation of failure probability of rock slope wedge. Rock Soil 
Mech 38:151–157

Zhu H, Li Y, Liu B, Yao W, Zhang R (2022) Extreme quantile estima-
tion for partial functional linear regression models with heavy-
tailed distributions. Can J Stat 50(1):267–286

Zio E, Pedroni N (2008) Reliability analysis of discrete multi-state 
systems by means of subset simulation. In: Proceedings of the 
ESREL 2008 conference, pp 22–25

Zio E, Pedroni N (2009b) Subset simulation and line sampling for 
advanced Monte Carlo reliability analysis. In: Proceedings of 
the European safety and RELiability (ESREL) 2009b confer-
ence, pp 687–694

Zio E, Pedroni N (2010a) Reliability estimation by advanced Monte 
Carlo simulation. In: Simulation methods for reliability and 
availability of complex systems. Springer, London, pp 3–39

Zio E, Pedroni N (2009a) Estimation of the functional failure probabil-
ity of a thermal–hydraulic passive system by subset simulation. 
Nucl Eng Des 239(3):580–599

Zio E, Pedroni N (2010b) An optimized line sampling method for the 
estimation of the failure probability of nuclear passive systems. 
Reliab Eng Syst Saf 95(12):1300–1313

Zuniga MM, Garnier J, Remy E, de Rocquigny E (2011) Adaptive 
directional stratification for controlled estimation of the prob-
ability of a rare event. Reliab Eng Syst Saf 96(12):1691–1712

Zuniga MM, Garnier J, Remy E, de Rocquigny E (2012) Analysis of 
adaptive directional stratification for the controlled estimation of 
rare event probabilities. Stat Comput 22(3):809–821

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this articleunder a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of theaccepted 
manuscript version of this article is solely governed by the terms of 
such publishingagreement and applicable law.

https://doi.org/10.1016/j.ymssp.2022.108905

	Small failure probability: principles, progress and perspectives
	Abstract
	1 Introduction
	1.1 Motivation of small probability or rare event
	1.2 Definition of small probability or rare event
	1.3 Brief categorization of the approaches and the organization of the paper

	2 Sampling-based approaches
	2.1 Separable Monte Carlo (SMC)
	2.2 Stratified sampling and Latin hypercube sampling
	2.3 Weighted sampling (WS)
	2.4 Importance sampling (IS)
	2.5 Subset simulations (SS)
	2.6 Line sampling
	2.7 Directional simulation (DS)
	2.8 Extrapolation methods
	2.8.1 Asymptotic sampling (AS)
	2.8.2 Enhanced simulation (ES)

	2.9 Other sampling-based methods
	2.10 Discussion on sampling-based methods

	3 Surrogate-based approaches
	3.1 Adaptive Kriging methods for rare probability of failure
	3.1.1 New learning functions and update strategies
	3.1.2 Variance reduction techniques

	3.2 Machine learning-based methods
	3.2.1 Regression-based methods
	3.2.2 Classification-based methods

	3.3 Discussion on surrogate-based approaches

	4 Statistics of extremes based approaches
	4.1 Generalized extreme value theory and tail equivalence
	4.2 Generalized Pareto distribution (GPD)
	4.2.1 Threshold selection
	4.2.2 Parameter estimation

	4.3 Tail modeling techniques
	4.4 Problems in the extreme value analysis
	4.5 Discussion on statistics of extremes-based methods

	5 Methods tailored for time-dependent systems
	5.1 Sampling-based methods
	5.2 Surrogate-based methods

	6 Application problems
	7 Concluding remarks
	References




