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Abstract
Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and 
multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on 
ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with 
conventional optimization and how Machine learning can address them. Then, we review the literature in the context of 
how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, 
material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list 
of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some 
concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, 
and paradigms are presented in the Appendix.

Keywords  Classification · Clustering · Deep learning · Design diversity · Dimension reduction · Generative design · 
Machine learning · Neural network · Optimization · Reinforcement learning · Regression · Supervised/unsupervised 
learning · Uncertainty · Variational autoencoder

1  Introduction

1.1 � Rise of machine learning (ML)

There has been explosive growth in the application of ML to 
numerous areas of engineering disciplines including struc-
tural design, material design, robotics, fluid mechanics, and 
heat transfer. The ASME Journal of Mechanical Design 
published a special issue on “Machine Learning for Engi-
neering Design” in 2019 [Panchal et al. (2019)] consisting 

of 24 papers. There exists a wide but disjointed literature on 
the application of ML in engineering, especially structural 
and multidisciplinary optimization applications. In the past 
decades, various studies using ML have been published in 
the journal of Structural and Multidisciplinary Optimiza-
tion (SAMO), but no articles have reviewed them. For an 
interested reader, it can be difficult to pinpoint useful articles 
in this large number of studies. Hence, we attempt to trace 
the growth of ML techniques in the context of optimization, 
while our focus is mainly on the research published in the 
last decade. As depicted in Fig. 1, one can a phenomenal 
increase in the number of ML articles published in SAMO 
since 2010. Publish or Perish software [Harzing (2007)] and 
the Google Scholar database was used to generate the data. 
The keywords used were ‘design optimization’, ‘ML’, ‘AI’, 
and ‘surrogates’.

1.2 � Challenges in structural and multidisciplinary 
optimization

Structural and multidisciplinary optimization is a method-
ology used to design structural systems which have strong 
interaction with other disciplines such as fluids, thermal, and 
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manufacturing, among others. The designers need to opti-
mize several design variables simultaneously from several 
disciplines. The main challenges pertaining to structural and 
multidisciplinary optimization can be broadly classified as 
computational and organizational. The computational chal-
lenges are obvious since multiple disciplines involve a lot 
of design variables and thus increase the dimensionality of 
the design and analysis. Each discipline itself might involve 
linear and nonlinear analysis and at the system level might 
require solving a more expensive multi-objective optimiza-
tion formulation. The organizational challenges involve the 
integration and interoperability of data and models between 
multiple solvers such as structural, fluid flow, reliability, and 
cost analysis among others. Table 1 shows the keyword fre-
quency of SAMO articles published during the 2017–2021 
time period. In Table 1, generic keywords such as ‘based’, 
‘method’, and ‘analysis’ are removed. Following are the 
detailed challenges related to the keywords:

•	 Conventional surrogate modeling such as Kriging, and 
neural network (NN), model reduction techniques such 
as active subspace, and Grassmann manifold demand 

large data obtained from expensive computer simula-
tions for training to predict accurately because of the 
nonlinear characteristic of the model is not known.

•	 Although a large number of data is available, conven-
tional surrogate modeling including multi-fidelity sur-
rogate (MFS) modeling may cause an overfitting prob-
lem unless appropriate basis functions and parameters 
are selected.

•	 Due to the curse of dimensionality, conventional sur-
rogate modeling and uncertainty analysis may have dif-
ficulty maintaining high accuracy for high dimensional 
problems.

•	 Conventional design optimization typically does not 
reuse existing prior information obtained from previous 
iterations or optimization results to solve similar design 
configurations.

•	 Conventional design optimization requires a significant 
amount of iterations to obtain the final design. Thus, 
its convergence – especially, in topology optimization 
(TO), is very slow.

•	 The conventional finite element method (FEM) strives 
to better the generalization capabilities and choice 
of parameters to obtain accurate solutions when the 
boundary conditions are discontinuous and computa-
tional cost involved to solve large complex problems 
even with minor modifications and estimation of sen-
sitivities.

ML-based approaches can help address the existing chal-
lenges mentioned above by their inherent capability to learn 
from existing prior information and to classify patterns. 
Hence, this article aims to review the structural and multi-
disciplinary optimization applications of ML studies under 
this general approach. Furthermore, practical engineering 
applications and software tools are listed in this paper so that 

Fig. 1   Growth of ML publica-
tions in the journal of Structural 
and Multidisciplinary Optimiza-
tion (SAMO) from 2010 until 
2021

Table 1   Keyword frequency in the SAMO papers published during 
2017 ~ 2021a

a A total of 1,432 papers & 6,855 keywords

Keywords Frequency Covered Section

Optimization/Shape/Manu-
facturing

1,279/107/83 Sections 3 & 4

Topology 539 Section 3
Design/Structure/Material 439/359/145 Section 5.1
Reliability/Uncertainty 222/140 Section 2.5
Kriging/Surrogate/Model 117/116/317 Sections 2.1, 2.3 & 2.4
Finite element 57 Section 2.2
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an interested reader can easily understand where to apply an 
ML algorithm or what software to use.

1.3 � Organization of the paper

The remainder of the paper is organized as follows. As 
described in Fig. 2; Sections 2 and 3 present a review of 
studies in which ML has been used to facilitate design opti-
mization in terms of efficiency and accuracy. For this pur-
pose, ML is mainly utilized to generate a surrogate model 
including MFS or to accelerate uncertainty analysis and 
TO. Section 4 provides a review of ML for design synthe-
sis where design diversity, improvement of design quality 
and performance, and human preference studies, which 
are categorized according to the purpose of design syn-
thesis, are reviewed. In this section, ML is utilized not to 
facilitate design optimization but to directly generate final 
designs. Section 5 reviews engineering applications in vari-
ous engineering fields, including structures and materials, 
and introduces software tools for ML. Section 6 provides a 
summary with concluding remarks on ML in structural and 
multidisciplinary design optimization. Finally, categories of 
ML problems and covers the basic concept of various ML 
methods widely used in design optimization can be found 
in the Appendix.

2 � Machine learning to facilitate design 
and optimization

Design optimization has been an active field of research 
for the last four decades. The top-level goals addressed by 
current research include: (i) reducing computational bur-
den or speeding the optimization process, (ii) making dif-
ferent modules (such as the design of experiments (DoE)) 
of optimization more efficient and developing approaches 
to solve nonlinear, stochastic or ill-posed problems faster 
and (iii) generalization. In the following, we discuss the 
instances where ML techniques address the above goals 
and later discuss related developments in detail. In terms of 
(i), as early as 1992, [Cerbone (1992)] introduced a novel 
three-step ML framework to speed up numerical optimiza-
tion using symbolic learning, inductive learning algorithms, 
and inductive discovery techniques to reduce the number of 
independent variables. This methodology was implemented 
in 2D structural design yielding 95% speedup over the clas-
sical optimization methods. [Freiesleben et al. (2020)], in 
the context of quality management methodologies in produc-
tion, investigated the role of DoE amidst the surge in ML 
approaches, addressing (ii). The authors accessed five core 
parts of DoE for the applicability of ML. They observed that 
DoE can be made more effective and efficient by the applica-
tion of ML. Data availability, data quality, insufficient data, 

Fig. 2   Comparison between general optimization and optimization assisted by ML: a general optimization, b ML to facilitate structural & topol-
ogy optimization (Sects. 2 and 3), and c ML for generative design (Sect. 4)
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computational resources, and overfitting and biasing in ML 
are some of the aspects that need attention.

Surrogates are widely used to reduce computational bur-
den addressing (i). [Adeli and Park (1995)] introduced the 
first known work that uses NN and the concept of learning in 
structural optimization. They used the Karush–Kuhn–Tucker 
(KKT) necessary condition as the learning rule while formu-
lating a neural dynamics model for structural optimization 
problems. They demonstrated global convergence and the 
ability to parallel processes. While conventional surrogate 
approaches are usually treated as a data-driven approach, 
recently, in addition to the available data, physics-embed-
ded ML [Karniadakis et al. (2021)] techniques have been 
used to solve the partial differential equation (PDE) and are 
suitable for ill-posed and inverse problems, addressing (ii). 
For similar optimization problems, techniques such as rein-
forcement learning (RL) are highly generalizable to unseen 
system configurations, addressing (iii). That is, in the con-
text of design, sometimes the requirements are often simi-
lar but slightly different requiring one to solve an entirely 
new optimization problem owing to unseen configurations. 
[Yonekura and Hattori (2019)] developed a framework for 
design optimization using deep RL where they train an agent 

in advance to find the optimal solution for slightly different 
requirements. Similar work includes [Odonkor and Lewis 
(2019)]’s RL-based data-driven model to design temporal 
arbitrage policies for the operation of shared energy storage 
and photovoltaic systems.

Figure 3 shows the tree structure of ML to facilitate 
design optimization aimed at reducing computational cost 
can be classified as in Sects. 2.1– 2.4 according to the prob-
lem to be solved, and studies dealing with uncertainty are 
in Sect. 2.5.

2.1 � Surrogate modeling

Surrogates or metamodels [Forrester et al. (2008)] are func-
tion approximation techniques that fit functions to data. 
The fitted functions replace expensive computer simula-
tions or physical experiments, to obtain responses at new 
data points. Traditionally, researchers have used techniques 
such as the polynomial response surface approach, Kriging, 
and radial basis function and their ensemble as surrogates 
[Goel et al. (2007); Acar and Rais-Rohani (2009)]. In the 
recent past, ML techniques have also been used as metamod-
els. The precursor to ML in surrogates or approximations 

Fig. 3   Tree structure of ML to facilitate design optimization
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is predominantly a NN model, which was attractive as an 
unsupervised learning technique for point estimates. Over 
the years, the learning aspect of NNs received attention, and 
NNs were combined with both gradient- and heuristic-based 
approaches to perform optimization. ML approaches, of 
which NN is a subset, became a logical extension because of 
the variety of problems they could address. ML approaches, 
for instance, have taken advantage of the learning aspect 
and permitted bypassing the expensive simulations, in the 
context of design and analysis. A surge in the computational 
ecosystem allowed the development of deep neural network 
(DNN) approaches as surrogates. Recent developments 
involve including the physics of the problem as prior infor-
mation into a NN model to solve more complex problems in 
less time and with limited data.

[Lee et al. (2008)] discussed the implementation of back 
propagation neural networks (BPN)-based metamodels that 
ensure the constraint feasibility. It was shown that genetic 
algorithm-based learning approaches are more efficient 
than derivative-based approaches. It was also noted that the 
proposed approach can be extended for other metamodel 
techniques such as Kriging and support vector machine 
(SVM) as well. [García-Segura et  al. (2017)]integrated 
multi-objective harmony search with artificial neural net-
works (ANNs) to reduce the computational time required 
for finite element analysis (FEA). The proposed method-
ology was verified using the post-tensioned concrete box-
girder road bridge multi-objective problem. [Nagarajan et al. 
(2019)] developed a knowledge-based ANN that combines 
the dimensional analysis conceptual modeling and typical 
ANN. The hybrid approach had topological zones derived 
from the process knowledge augmented by ANNs where 
knowledge was missing. The proposed approach had better 
generalization capabilities compared to classical ANN. [Sun 
and Wang (2019)] reviewed ANN-based surrogate modeling 
for different objectives of aerodynamic design applications. 
This work discussed the selection of the type of NN that may 
have an influence on the optimization effect. [Wang et al. 
(2019)] introduced a new approach where, at each iteration, 
the NN surrogate was used to propose new trial solutions in 
multi-objective optimization. It was observed that the Pareto 
front converges more quickly than the genetic and particle 
swarm algorithms. [Mozaffar et al. (2019)] developed a 
sequence learning scheme to find the constitutive law that 
links inputs and outputs. In the process, they bypass find-
ing equations for materials with complex microstructures 
and trace the yield surface evolution iteratively. [Gomes 
(2020)] applied shallow NNs and DNNs as the metamodels 
in structural reliability analysis, using adaptive experimental 
designs. Two linear activation functions were used for both 
types of ANNs: tansig for shallow NNs, and rectifier linear 
unit (ReLU) for DNNs. Though the DNN was outperformed, 
nevertheless the performances of shallow ANNs were 

comparably acceptable with those of other metamodels. 
[Zhang and Zhao (2021)] introduced an ML-based surro-
gate method for the distributed fluid system. Dimensionality 
reduction was used to reduce the flow field dimension, and 
NN was used as a regression model. In the work, the whole 
fluid domain is subdivided into subdomains and then a sur-
rogate model for each subdomain is generated by treating 
both boundary information and distributed flow parameters 
as the input parameters. [Kaplan et al. (2021)] used ANNs 
to predict the structural response of a store externally carried 
by a jet fighter. [Trehan et al. (2017)] introduced a general 
method for error modeling of surrogate models of dynamical 
systems via ML. The authors proposed four error modeling 
techniques, namely quantity of interest error, the relative 
quantity of interest error, state error, and relative state error. 
The proposed method was applied to the subsurface flow 
problem and performed the best using the proposed error-
modeling approach.

Gaussian process (GP) [Williams and Rasmussen (2006)] 
models have been used in interpolation mode or regression 
mode as surrogate models as precursors to generative mod-
els. Researchers have used GP-based surrogate models in 
various studies including damage prediction of aluminum 
parts [Solanki et al. (2009)], vehicle crashworthiness [Acar 
and Solanki (2009)], nuclear engineering applications 
[Baraldi et al. (2015)], structural reliability analysis [Su et al. 
(2017)] as well as fuel performance and thermo-hydraulics 
[Wu et al. (2018)]. [Bostanabad et al. (2019)] proposed a 
novel globally approximate GP to enable the GP modeling 
of big datasets. They introduced an intuitive method of 
building a collection of independent GPs that use the con-
verged hyperparameters as their hyperparameters. The glob-
ally approximate GP method was implemented in a data-
driven metamaterials unit cell design process to estimate 
the desired elastic property. The complex material design 
problem was transferred into a parametric one using spectral 
descriptors. [Jin (2020)] proposed a methodology to choose 
a proper kernel covariance function of GPR. The proposed 
method worked better than the methods in both interpola-
tion and regression problems. Flexible kernel modeling of 
the proposed method was able to capture the functional 
relationships by adaptively constructing the suitable ker-
nels, and thus it can be implemented in surrogate modeling 
and predictive modeling using GPR. [Kim and Boukouvala 
(2020)] compared five different subset selections for regres-
sion techniques for surrogate modeling. They investigated 
the subset selection for regression compared to the complex 
kernel-based interpolating metamodels for better data-driven 
optimization. Standard benchmark problems up to 30D were 
used to compare the performance of the proposed method 
with the Kriging surrogate model. The regression surrogate 
function performed well in low-dimension problems while 
Kriging was outperformed in high-dimension cases. [Singla 
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et al. (2020)] presented a survey of robust optimization in 
the context of [ML specific to SVM or support vector regres-
sion (SVR). They discussed the robustness of algorithms 
when the data has uncertainties. Li and Wang (2021)] devel-
oped a long short term memory (LSTM) -based ensemble 
learning framework for time-dependent reliability analysis 
involving stochastic processes. Monte Carlo simulation 
(MCS) is adopted for estimating the time-dependent reliabil-
ity based on the coupling of the LSTM network with the GP 
modeling technique. The LSTM network was employed to 
learn the relationship between the stochastic processes and 
time-dependent system responses, and conditional limit-state 
functions were introduced by fixing the time-independent 
random variables.

Often surrogate models are used to understand regions 
of interest (RoI) and permit adaptive sampling in the RoI. 
[Song et al. (2013)] introduced an efficient classification 
methodology using a virtual SVM which was used to gen-
erate adaptive samples to improve the accuracy of the deci-
sion function for highly non-linear problems. The samples 
near the limit-state function that are chosen by the sequential 
sampling strategy were integrated with virtual SVM. [Yan 
and Zhou (2019)] presented a DNN-based adaptive MFS 
modeling framework for large-scale Bayesian inverse prob-
lems. The key idea is to construct an offline DNN-based 
surrogate model according to the prior distribution, and 
refine the DNN-surrogate model adaptively and locally using 
fewer high-fidelity simulations. An adaptive procedure was 
framed to correct the surrogate within the Markov chain 
Monte Carlo framework. [Thole and Ramu (2020)] proposed 
modified self-organizing maps whose maps are inherently 
interpretable permitting visualization of design space. The 
self-organizing map is a type of NN and allows the iden-
tifying region of interest for targeted sampling leading to 
accurate surrogates. [Lye et al. (2021)] presented a novel 
active learning procedure where DNNs are used as efficient 
surrogates for PDEs, particularly for approximating observa-
bles of PDEs. In this regard, they proposed a DNNopt algo-
rithm that combines quasi-Newton with a DNN surrogate 
but converged slowly for high-dimensional problems. Hence, 
an iterative surrogate model optimization (ISMO) algorithm 
was proposed where the key idea is to iteratively augment 
the training set for a sequence of DNNs. In terms of comput-
ing power and robustness, the ISMO algorithm performed 
better than the DNNopt. Though surrogates are cheaper to 
evaluate compared to the original model evaluation, building 
surrogates which is called ‘training’, requires a large sam-
ple, especially for non-linear problems. Hence, researchers 
started focusing on using additional available information to 
reduce computational expense.

2.2 � Physics‑informed ML

[Raissi and Karniadakis (2018)] proposed a new framework 
for learning PDEs from small data. They introduced a hid-
den physics model that takes advantage of the underlying 
physical laws and/or governing equations to extract the 
information from small data generated from highly complex 
systems. The proposed framework can be useful in cases 
where the learning of experimental data is noisy but the gov-
erning equation is known. The performance of the proposed 
approach was showcased through a variety of problems such 
as Navier–Stokes, Schrödinger, Kuramoto–Sivashinsky, and 
time-dependent linear fractional equations without requiring 
large experimental data. [Raissi et al. (2019)] introduced 
physics-informed NN (PINN) that is trained to solve super-
vised learning tasks with underlying laws of physics. They 
presented two main classes of subproblems namely data-
driven solutions and data-driven discovery of PDEs. The 
proposed method was demonstrated with several problems in 
fluids, quantum mechanics, and reaction–diffusion systems. 
However, the authors noted that the proposed method should 
not be viewed as a replacement for classical numerical 
methods (finite elements, spectra methods, etc.) for solving 
PDEs. [Li and Mei (2021)] introduced an improved method 
for PDE by NNs. The physics of the PDE are introduced as 
regularization into the NNs. This idea enables the use of lim-
ited data to learn solutions of PDE by the NN. The discre-
tization of PDE is avoided by randomly selected samples in 
the space–time domain to train the PINN. The performance 
of the proposed methodology is demonstrated by the wave 
equations, the KdV-Burgers equation, and the KdV equation 
showing that the PINN is more effective in solving PDEs. 
[Tan et al. (2020)] proposed a deep learning (DL) model 
that combines both deep convolutional generative adver-
sarial network (DCGAN) and convolutional neural network 
(CNN) for microstructural materials design. The geometrical 
constraints were satisfied by the DCGAN and were used to 
generate the design, while the CNN was used as the surro-
gate model that connects the microstructure to its properties. 
The performance of the developed framework was exhibited 
on microstructural materials design with intended compli-
ance tensor, subject to geometrical constraints. The error in 
the predicted compliance tensor was less than 5% and thus 
results were more accurate than the traditional FEA. [Abuei-
dda et al. (2021)] developed a deep collocation approach 
which is a combination of DL and collocation method to 
solve PDE by describing structures’ deformation.

[Kumar and Yadav (2011)] surveyed and classified dif-
ferent multi-layer-perceptron and radial basis function NNs 
to solve differential equations. The radial basis function NN 
technique provided a more accurate solution than the multi-
layer-perceptron. Compared to FEM, the NN provided very 
good generalization properties. [McFall (2013)] introduced 
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an automated design parameter selection process to choose 
a single ANN from an ensemble comprising numerous com-
binations of design parameters, random starting weights, and 
biases to solve differential equations with discontinuous 
boundary conditions. Three different thermal-fluid science 
examples along with Navier–Stokes equations were used to 
verify the efficacy of the proposed methodology, and the 
resulting approximations provided low solution error. [Bar-
ber and Wang (2014)] propose a generative model that links 
state derivative information to system observations using a 
GP for estimating parameters in coupled ordinary differen-
tial equation (ODE). They used a simple belief network that 
consists of the states, their derivatives, observations, and 
related parameters. The proposed GP-ODE was amenable 
to alternative approximation techniques such as variational 
approximations. Benchmark problems were solved using the 
proposed method and performed significantly better than 
other GPs. [Capuano and Rimoli (2019)] formulated a meth-
odology that uses the capability of ML to avoid the need of 
finding internal displacement fields thus eradicating the need 
for numerical iterations. The data for training the machine 
model was extracted from the existing FEA thus producing 
the approximate model called a smart element. The proposed 
method was demonstrated with 3D truss and 2D multiscale 
structure problems, and the computational cost was reduced 
without compromising the accuracy of a variety of complex 
finite element formulations. [Jung et al. (2020)] introduced 
a methodology to generate the stiffness matrix of finite ele-
ments using DL and developed 8- and 4-noded quadrilateral 
elements. This study involved and introduced new concepts 
such as normalized element geometry, the reference data 
model for the training data, pre-processing for the input, 
and post-processing for the output. The performance of DL4 
elements and DL8 elements was evaluated through various 
numerical examples and DL8 elements performed well in 
terms of accuracy and computational cost. By reducing the 
number of weights and optimizing the structure of the net-
work, the computational efficiency can be easily improved. 
[Pereira et al. (2020)] introduced a new framework called 
finite element machine (FEMa) for the design of pattern 
classifiers based on FEA. FEMa can learn a probabilistic 
manifold constructed over the training data, and FEMa 
can be parameterless, which is the heart of a finite element 
basis. The proposed methodology can obtain very competi-
tive results when compared to some other supervised pat-
tern recognition techniques such as k-nearest neighbors, 
SVM, and ANN. [Yao et al. (2020)] proposed a hybrid deep 
CNN called FEA-Net that takes advantage of different prior 
knowledge about the physics of the problem to build data-
driven models. The proposed network was used to predict 
the mechanical response of the system under external load-
ing with limited training data samples. The proposed method 
is demonstrated in multi-physics and multiphase problems. 

[Xu et al. (2021)] proposed an ANN-based optimization 
process to estimate the objective function and analyti-
cal sensitivities of FEA. This process includes a sampling 
strategy to improve efficiency and regression accuracy and 
is compared with a conventional FEA-based discrete mate-
rial optimization method for validation. Specifically, an 84% 
computational time savings in the small-scale optimization 
of the carbon fiber reinforced plastic engine hood problem 
was achieved.

2.3 � Reduced‑order models (ROM)

Though ROMs are computationally inexpensive representa-
tions of real-time simulation models, constructing ROMs is 
not cheap. In addition, ROMs are not robust to parameter 
changes. [Amsallem and Farhat (2008)] address both these 
issues by using an interpolation method in tangent space 
to a Grassmann manifold. The proposed method is illus-
trated with computational-fluid-dynamics-based aeroelastic 
reduced-order models of two realistic aircraft configurations. 
[Kou and Zhang (2019)] developed a hybrid reduced-order 
model to simulate linear and nonlinear aerodynamics. The 
physics of the unsteady flow is introduced by constructing 
a hybrid parallel system consisting of a linear autoregres-
sive with an exogenous input model and a nonlinear NN 
model. The framework can incorporate both linear and non-
linear system identification. [Chan and Elsheikh (2018)] 
combined the feed-forward NN with the multiscale finite 
volume method (MsFV) to form a data-driven approach to 
solving problems using coarse-scale basis functions. NN is 
used as a surrogate and thus learned to generate subsequent 
basis functions at a cheaper computational cost. The pro-
posed method showed promising results compared to tra-
ditional finite volume methods (FVM) and MsFV. [Pawar 
et al. (2019)] introduced a modular DNN framework for 
data-driven reduced-order modeling of dynamical systems 
relevant to fluid flows. They proposed various DNN archi-
tectures which numerically predict the evolution of dynami-
cal systems by learning from either using discrete state or 
slope information of the system. [Janda et al. (2020)] gen-
erated a ROM for an unconstrained glass plate exposed to 
low-velocity impact. Combined with the Hertzian theory of 
non-adhesive contact, the ROM is used to determine the 
time evolution of contact forces for arbitrary mass, stiff-
ness, and initial velocity of the impactor. [Hasegawa et al. 
(2020)] investigated the capability of an ML-based ROM 
for two-dimensional unsteady flows around a circular cyl-
inder at different Reynolds numbers. First, CNN-AE was 
utilized to map high-dimensional flow fields obtained by 
direct numerical simulation into a low-dimensional latent 
space while keeping their spatially coherent information. 
Then, an LSTM was trained to learn the temporal evolution 
of the mapped latent vectors together with the information 
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on the Reynolds number. Using the trained LSTM model, 
the high-dimensional dynamics of flow fields can be repro-
duced with the aid of the decoder part of CNN-AE, which 
can map the predicted low-dimensional latent vector to the 
high-dimensional space. [Kochkov et al. (2021)] presented 
a data-driven numerical approach to accelerate the direct 
numerical simulation and large-eddy simulation using ML 
methods without compromising the accuracy. Within the 
traditional FDM/FVM discretization framework, the pro-
posed method uses ML to interpolate at a coarse scale. The 
proposed approach results in 40- to 80-fold computational 
speedup for coarse grid simulation.

2.4 � Multi‑fidelity surrogate (MFS)

High-fidelity (HF) simulations of structural and multidisci-
plinary systems are often computationally expensive, and 
practices such as sensitivity analysis, optimization, and 
uncertainty modeling require the generation of multiple 
realizations. Even though the use of surrogate models pro-
vides an opportunity to reduce the computational burden, the 
number of simulations required to construct surrogate mod-
els may be intractable when the HF models are computation-
ally expensive. Usually, less accurate but computationally 
inexpensive low-fidelity (LF) models are also available, and 
there is growing interest in using MF models that combine 
HF and LF models in order to achieve an acceptable level of 
accuracy at a reasonable cost. A comprehensive survey of 
MF modeling approaches can be found in the review papers 
of [Fernández-Godino et al. (2016)] and [Peherstorfer et al. 
(2018)]. The popularity of and advancements in the field 
of ML have resulted in growing interest in applying ML 
techniques to MF modeling approaches. In this paper, we 
focus on the recent applications of ML techniques in the MF 
modeling approaches.

ANNs have been widely utilized in MF modeling 
approaches. [Minisci and Vasile (2013)] conducted a pre-
liminary robust design of a small/medium–scale reentry 
unmanned space vehicle, where ANNs were used to approxi-
mate the aerodynamic forces required. In that study, ANNs 
were trained and updated by means of an MF, evolution-con-
trol approach. [Parsonage and Maddock (2020)] proposed 
a hybrid parametric/non-parametric information correction 
method incorporating the sequential application of several 
distinct stages within an ANN-based surrogate framework, 
where a global MFS model was generated via a double loop 
ANN hyperparameter selection and training procedure.

DNNs have also been widely used in MF modeling 
approaches. [Tao and Sun (2019)] presented an MFS-based 
optimization framework where a deep belief network (DBN) 
was employed as the LF model, and a linear regression 
MFS model was established by using the DBN model and 
HF data. The constructed MFS model was applied to the 

robust optimizations for airfoil and wing under uncertainty 
of Mach number. [Yang and Perdikaris (2019)] presented a 
probabilistic DL methodology to generate MFSs for stochas-
tic systems. The constructed MFS model was found to be 
successful in uncertainty propagation in high-dimensional 
dynamical systems. [Li et al. (2020)] proposed a DNN MF 
Bayesian optimization model. They stacked a set of NNs 
where each NN models one fidelity. In each fidelity, they 
fed both the original input (to the objective) and output from 
the previous fidelity into the NN to propagate information 
throughout the model. For efficient inference and tractable 
computation of the acquisition function, they considered 
the NN weights in the output layer as random variables and 
all the other weights as hyperparameters. He et al. (2020a) 
applied the DNN algorithm in fusing aerodynamic data with 
different fidelity levels. The MF architecture involved three 
fully-connected NNs that were employed to approximate LF 
data, and the linear part and nonlinear part of correlation 
for the LF and HF data, respectively. [Zhang et al. (2021a)] 
used MFDNN to construct a high-accuracy MFS model 
correlating the configuration parameters of an aircraft and 
its aerodynamic performance by blending different fidelity 
information and adaptively learning their linear or nonlinear 
correlation without any prior assumption. In the optimiza-
tion framework, the HF model using a computational fluid 
dynamics (CFD) evaluation with a fine grid, and the LF 
model using the same CFD model with a coarse grid were 
applied.

Another approach in MF modeling was to utilize PINNs. 
[Liu and Wang (2019)] proposed an MF physics-constrained 
NN, where a low-cost LF physics-constrained NN was used 
as the baseline model, whereas a limited amount of data 
from an HF physics-constrained NN was used to train a sec-
ond NN to predict the difference between the two models. 
The proposed framework was demonstrated with 2D heat 
transfer, phase transition, and dendritic growth problems. 
[Meng and Karniadakis (2020)] developed MF DNNs and 
MF PINNs. These models had the following properties: they 
could learn both the linear and nonlinear correlations adap-
tively, they were suitable for high-dimensional problems, 
they could handle inverse problems with strong nonlineari-
ties, and they were easy to implement. [Chakraborty (2021)] 
presented an MF physics-informed DNN that achieved the 
most desirable outcome when the physics of the problem 
was known in an approximate sense (LF physics), and only 
a few HF data were available. The method blends physics-
informed and data-driven DL techniques by using the con-
cept of transfer learning. The approximate governing equa-
tion was first used to train an LF physics-informed DNN. 
This was followed by transfer learning where the LF model 
was updated by using the available HF data.

RL has also been used in MF modeling. [Chhabra and 
Warn (2019)] presented an RL to aid the selection of efficient 
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MF models when the design was viewed as a sequential 
decision process, and the computational cost and discrimi-
natory power of models were unknown at the onset of the 
design process. [Lee et al. (2019)] formulated an RL-based 
design framework, which simultaneously found solutions 
that were more efficient compared with supervised learning 
approaches while using data more efficiently compared with 
genetic algorithm-based optimization approaches.

Even though NN has been the most commonly used ML 
technique used in MF modeling, other ML methods have 
also been used. [Shi et al. (2020a)] developed an MFS model 
based on SVR, where the HF and LF samples were mapped 
into a high-dimensional feature space through a kernel 
function, and then a linear model was utilized to evaluate 
the relationship between inputs and outputs. [Garriga et al. 
(2019)] integrated multi-domain models and handled librar-
ies of systems representations at different levels of fideli-
ties for the efficient exploration, analysis, and optimization 
of novel aircraft system architectures. They applied ML 
techniques to reduce the models to a manageable level of 
complexity and also to reduce the number of architectural 
options after the first evaluation was performed by imple-
menting a classification algorithm.

[Mondal (2020)] discussed the MFS modeling and opti-
mization strategies with respect to parameter optimization 
in additive manufacturing, model calibration, and compres-
sor rotor design. The work also discusses hidden Markov 
models in the detection of thermoacoustic instabilities and 
lean blow-out in combustion systems using acoustic and 
chemiluminescence sensor data. The proposed framework 
achieves computational efficiency and robust predictions of 
regime changes with parsimonious data requirements, which 
deems it suitable for online applications.

Reduced-order models have also been used in MFS mod-
eling. [Khatouri et al. (2020)] address the problem of con-
strained derivative-free optimization in an MF framework 
using Bayesian optimization techniques. They proposed to 
use GP models with trend functions built from the projec-
tion of LF solutions on a reduced-order basis synthesized 
from scarce HF snapshots. [Perron et al. (2021)] introduced 
a novel non-intrusive and MF ROM method based on mani-
fold alignment. Unlike previous MFS approaches, the devel-
oped method was capable of combining fidelity levels with 
disparate field representations. [Popov et al. (2021)] devel-
oped a new MF ensemble Kalman filter algorithm based on 
a linear control variate framework. They investigated the use 
of reduced-order models as coarse fidelity control variates 
in the MF ensemble Kalman filter algorithm and provided 
analyses to quantify the improvements over the traditional 
ensemble Kalman filters.

2.5 � Uncertainty modeling, analysis, and design

Due to their efficiency and accuracy in handling high-dimen-
sional data, ML techniques have been used in uncertainty 
modeling, analysis, and design optimization under uncer-
tainty. We observe that NNs, in particular probabilistic NNs 
(PNNs) and DNNs, have been widely used for the aforemen-
tioned purposes.

In uncertainty modeling, [Hou et al. (2019)] used deep 
generative networks to capture the posterior distribution 
in Bayesian inverse problems by learning a transport map. 
[Motamed (2020)] proposed an MF NN surrogate sampling 
method for uncertainty quantification. A two-level NN was 
constructed by utilizing a large set of LF data in order to 
accelerate the construction of an HF surrogate model with a 
small set of HF data. The constructed MF model was embed-
ded in the framework of an MCS. [An et al. (2020)] focused 
on autonomous vehicle driving control and utilized ML clas-
sification algorithms to model and recognize the uncertainty 
in driver behavior. They evaluated the probability of the spe-
cific driving style based on a trained classification model. 
An uncertainty model based on a parameterized stochastic 
hybrid state chart was constructed and mapped to networks 
of probabilistic timed automata.

In uncertainty analysis, [Chan and Elsheikh (2018)] uti-
lized ANNs to perform uncertainty quantification where a 
multiscale finite volume method was employed in the uncer-
tainty propagation task. [Trinchero et al. (2018)] applied the 
SVM and the least-squares SVM regressions to the uncer-
tainty quantification of complex systems with a high-dimen-
sional parameter space. They found that SVM and the least-
squares SVM regressions could be considered an effective 
solution for uncertainty quantification in high-dimensional 
nonlinear problems with an accuracy comparable to or even 
better than that of sparse polynomial chaos expansion. [Tri-
pathy and Bilionis (2018)] parameterized the structure of a 
DNN such that the DNN was a composition of an encoder 
and one-layer perceptron. That parameterization lends the 
DNN surrogate the interpretation of recovering a nonlinear 
active subspace. They used a combination of grid searches 
and Bayesian global optimization to select the best set of 
network hyperparameters and determine the appropriate 
structure. [Jabarullah Khan and Elsheikh (2019)] used ML 
techniques (gradient boosted tree regressor) to combine the 
features of the MF MCS and the multi-level MCS into a sin-
gle framework to reduce the computational cost of MCS for 
uncertainty propagation. [Caldeira and Nord (2020)] com-
pared three different ML methods, namely Bayesian NNs, 
concrete dropout, and deep ensembles, in the quantification 
of epistemic and aleatoric uncertainties. Simulated experi-
mental measurements of a single pendulum were utilized, 
and it was found that aleatoric uncertainties are modeled 
well by using all three methods, the deep ensemble being 
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the best method. However, it was also found that epistemic 
uncertainties were not quantified well, and in particular con-
crete, dropout predicted very low epistemic uncertainties.

In design optimization under uncertainty, [Patel and 
Choi (2012)] explored the use of PNN to facilitate the accu-
rate estimation of probabilistic constraints in optimization 
problems under uncertainty. The efficiency of the proposed 
framework was achieved with the combination of a conven-
tional TO method and PNN. [Ning and You (2018)] pro-
posed a novel data-driven stochastic robust optimization 
framework for optimization under uncertainty leveraging 
labeled multi-class uncertainty data. ML methods including 
the Dirichlet process mixture model and maximum likeli-
hood estimation were employed for uncertainty modeling. 
The robust optimization framework was further proposed 
based on the data-driven uncertainty model through a bi-
level optimization structure. [Bataleblu (2019)] used ANNs 
and Kriging surrogate models in solving uncertainty-based 
design optimization of truss and frame structures. The author 
employed a novel evolution control strategy and efficient 
global optimization method in the framework of uncertainty-
based design optimization. [Du et al. (2021)] developed a 
decision tree algorithm for uncertain data that can learn from 
uncertain data, which are characterized by interval attribute 
values rather than exact values. Based on the joint prob-
ability distribution of design variables, the algorithm can 
be constructed by evaluating each artificial splitting point. 
The developed method was implemented in the design of a 
thin-walled energy-absorbing structure subjected to crash 
loading to demonstrate its performance.

3 � Improvement of efficiency and accuracy 
in topology optimization (TO)

ML has been used as a tool to improve the efficiency and 
accuracy of engineering design including structural optimi-
zation. In general, efficiency is compared to conventional 
methods in terms of computational cost, and accuracy is 
compared to improved design resolution, compliance, and 
predictive performance. In particular, various studies have 
been developed to improve the performance of TO, which is 
a popular and powerful computational approach for design-
ing new structures, materials, and devices. However, since 
TO involves many design variables, expensive simulation 
models cannot be utilized for optimization. The tree struc-
ture in which ML is used as a tool for TO is shown in Fig. 4. 
ML techniques such as CNN and GAN have been applied 
to improve its efficiency and accuracy compared to existing 
methods.

3.1 � Efficiency improvement using DNN

To increase the efficiency of TO, various studies using DNN 
as a surrogate model have been proposed. [Bi et al. (2020)] 
suggested a general scalable DL-based TO framework that 
integrates DL and parallel computing to accelerate the TO 
process for additive manufacturing materials. The proposed 
method deeply understands the iterative history data and 
utilizes DNN to learn an accurate and fast surrogate gradient 
instead of the true gradient. Since the method utilizes paral-
lel schemes in high-performance computing, the efficiency 
of TO can be further improved. In additively manufactured 
material design for a heat conduction example, the pro-
posed framework showed similar performance to the base-
line method while reducing the computational cost by 8.6 
times. [Deng et al. (2020)]introduced a method to integrate 
DL into stochastic optimization algorithms. In each itera-
tion, generative simulated annealing uses DNN to evaluate 
the objective function, based on which new training data 
are generated, resulting in better accuracy than the original 
generative simulated annealing. The proposed algorithm was 
implemented in a compliance minimization problem where 
DNN was used to replace FEM. This algorithm reduced the 
computational cost to 1/300 times of the original generative 
simulated annealing. An interesting property that the number 
of function evaluations does not increase exponentially has 
been observed and thus the developed algorithm brought a 
new perspective to high-dimensional optimization. [Deng 
and To (2020)] proposed a new TO method where the den-
sity field of the design domain is represented by DNN. The 
design variables can be reduced phenomenally compared to 
traditional density-based optimization methods. Several 2D 
and 3D numerical examples with three different kernels such 
as Gaussian, tansig, and tribas were used to demonstrate the 
proposed method. In the proposed method, no filtering tech-
nique was needed and the optimal designs were free from 
checkerboard patterns. [Chandrasekhar and Suresh (2021)] 
formulated a framework for TO using NNs that directly use 
the NN’s activation function to represent the solid isotropic 
material with penalization (SIMP) [Bendsøe (1989)] den-
sity field. The density field was optimized by NN’s back 
propagation and the finite element mesh. The proposed 
framework was validated using several 2D and 3D bench-
mark problems. However, the lack of detailed features in the 
computed topologies and handling of distributed loads are 
some of the shortcomings of the method. [Chi et al. (2021)] 
introduced a general ML-based TO to accelerate the process 
for large-scale problems which allows the ML model to be 
trained during the TO process. The methodology signifi-
cantly accelerated the TO problems with various load and 
boundary conditions and design requirements and can be 
implemented for robust TO under uncertainty.
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3.2 � Efficiency improvement using CNN

In addition, several studies related to efficiency improve-
ment by applying CNN have also been performed. [Lin 
et al. (2018)] combined the DL approach with the tradi-
tional SIMP to accelerate the TO of the conductive heat 
transfer problem. The architecture of the proposed method 
is similar to the U-Net system and consists of an encoder 
and a decoder based on a deep full CNN. Comparing the 
volume-point heat conduction problem with the pure SIMP 
method, up to 80% reduction in computation time was 
achieved. [Banga et al. (2018)] proposed a data-driven DL 
model based on 3D encoder-decoder CNN architecture for 
accelerating 3D TO. The main concept of this architecture 
is that the final outputs of TO can be predicted from inter-
mediate structural inputs. The models were trained from the 
results obtained from an FEA-based software TopOpt. The 
best network utilizes the density and gradient data as input 

to CNN. It was verified that the network with the best per-
formance in the test set achieved 40% computational time 
reduction while maintaining 96% structural accuracy. [Sos-
novik and Oseledets (2019)] suggested a DL-based approach 
to accelerate the TO. The convolutional encoder-decoder 
architecture and the efficient pixel-wise image labeling tech-
nique are introduced to solve the image segmentation task 
with high performance. The out model learned mapping 
from the intermediate results of the iterative method to the 
final structure of the design domain. Due to the early termi-
nation of SIMP, it was possible to significantly reduce the 
total time consumption through the experiments performed. 
[Lin et al. (2019)] developed a supervised DL predictor to 
directly infer the conductive heat transfer topologies. The 
physical parameters describing the cooling problem were 
input of the predictor. And, the architecture of the proposed 
method also consisted of an encoder and decoder. The accu-
racy of the three parallel predictors that can directly infer 

Fig. 4   Tree structure of ML to facilitate TO
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the optimized topology is 96%. [Doi et al. (2019)] proposed 
a CNN-based multi-objective TO. Cross-sectional images 
and performance of electric motors obtained during multi-
objective TO based on FEM and genetic algorithms were 
used for training the CNN. In the two procedures accord-
ing to the training method of the proposed approach, the 
amount of FE computations was reduced to 30% and 50%, 
respectively. [Sasaki and Igarashi (2019a, b)] also suggested 
a CNN-based motor performance prediction to aid the TO 
acceleration. In each study, cross-sectional image RGB 
values and rotor shape data of an interior permanent mag-
net motor are trained, and the computation time is reduced 
by up to 1/10 without quality loss. [Nakamura and Suzuki 
(2020)] proposed a CNN-based encoder and decoder model 
to optimize the structure for given design conditions without 
iteration. The proposed method used batch normalization 
in the encoder to increase the stability, and spatial adaptive 
denormalization in the decoder to reinforce the design area 
information. Using the proposed model, the computational 
time required to obtain an optimal material density distribu-
tion was reduced by 83% compared to the SIMP. [Kollmann 
et al. (2020)] developed a CNN-based DL model to predict 
the optimized metamaterial design for either maximizing 
bulk modulus, maximizing shear modulus, or minimizing 
Poisson’s ratio. The data for the CNN model is generated by 
a TO framework, which involves an energy-based homog-
enization method and periodic boundary conditions. The 
proposed model was able to give faster but high-quality TO 
results even in low-end laptops. CNN-based DL models can 
provide faster TO algorithms for multiscale metamaterial 
systems. [Lee et al. (2020)] proposed a CNN-based recogni-
tion method for TO that eliminates the FEA step and accel-
erates the TO. CNN was used to train the topology of the 
images where regression problems were combined to cal-
culate compliances and volume fractions for TO processes. 
The proposed method was used to solve TO problems, and 
implemented in CPU and GPU. GPU took comparably less 
time for training in CNN. [Abueidda et al. (2020)] devel-
oped a CNN model based on ResUnet for efficient 2D TO of 
materials with linear elastic and hyperelastic responses. The 
developed CNN model showed satisfactory robustness while 
achieving good agreement with negligible computation time 
in the results of an expensive computational nonlinear TO 
framework. [Wang et al. (2021b)] proposed a deep CNN-
based TO with generalization ability. The architecture of the 
NN consists of encoding and decoding parts, and U-Net was 
used to improve performance. The performance of the pro-
posed method was evaluated compared to SIMP for a typi-
cal optimization problem, showing that the computational 
cost can be significantly reduced without sacrificing much 
performance of the design solution. [Bielecki et al. (2021)] 
introduced a DL-based fine resolution structure generative 
TO. The proposed approach utilized the feedforward DNN 

and CNN. The novelty of this method was that the density 
and the nodal deflections are used for a wide range of design 
spaces. The 3D verification TO example showed one order 
of magnitude time saving compared with the traditional 
TO. [Qian and Ye (2021)] proposed dual-model ANN to 
accelerate gradient-based TO. The dual-model ANNs can 
greatly accelerate the design process because it serves as a 
surrogate model to replace the sensitivity calculation. The 
demonstrated 64 × 64 benchmark example was 137 times and 
74 times more efficient in forward and sensitivity calcula-
tions, respectively, and held around 95% accuracy with only 
about 2,000 training points.

3.3 � Efficiency improvement using other ML 
techniques

[Lei et al. (2019)] developed an ML-driven real-time TO 
paradigm under the moving morphable component-based 
solution framework. In that work, SVR-ML models were 
employed to establish an engineering intuition on optimized 
structures corresponding to various external loads. Since 
the design variables and the layout of the optimized struc-
ture were mapped in the ML model, parameters could be 
reduced, and real-time structure analysis was possible. The 
effectiveness of the proposed method was demonstrated by 
numerical examples. The use of KKT conditions may fur-
ther increase the efficiency of the proposed methodology. 
Lynch et al. (2019)] introduced a GP-based framework that 
avoids the trial and error involved in the manual tuning of 
parameters for TO. This [framework consisted of two steps: 
a meta-learning step where a recommendation was drawn 
from similar problems and a metamodeling step where 
Bayesian optimization was used to efficiently optimize the 
parameters for the specific TO problem, in which the tuning 
parameters were read from a prior repository. The proposed 
method showed better efficiency than the line search in the 
simple demonstrated TO problems with one to three tun-
ing parameters. [Kallioras et al. (2020)] proposed a two-
phase methodology that relies on DL to accelerate the TO 
procedure. DBNs were integrated into SIMP to solve TO 
problems. DBN was sequentially connected to restricted 
Boltzmann machines and used to discover higher-order 
connections between the density values of each finite ele-
ment of the domain along with the first iteration of the SIMP 
approach. The input and output data were the density fluctu-
ation patterns of finite element discretization and the result-
ing distribution of density values provided in the initial step 
of SIMP, respectively. In various 2D and 3D benchmark TO 
problems, it was observed that the proposed method accel-
erated successfully regardless of parameters and datasets. 
[Strömberg (2020)] also used SVM as a geometric model 
for performing an efficient and detailed TO. These SVM-
based hypersurfaces were used to set the design of nonlinear 
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FEA using Boolean and blending operations. A 3D design 
example with a plastic limit load constraint showed that 
the proposed metamodel-based design optimization can 
be implemented within a few minutes. [Jiang et al. (2020)] 
proposed a framework based on ML for moving morpha-
ble component-based TO parameter tuning by combining 
extra-trees-based image classifier integrated with a parti-
cle swarm optimization algorithm. This method avoids 
the need for manual parameters adjustment of methods of 
moving asymptote, the popular optimizer for TO, and two 
benchmark problems were used to evaluate its performance. 
Thus, said method saves a lot of manpower and obtains a 
comparably feasible structure in the design domain. [Zhang 
et al. (2021b)] proposed a simple NN-based TO via a neu-
ral reparameterization framework that can solve various TO 
problems. In the proposed method, reparameterization is 
performed to update the pseudo density, which is the design 
variable of the conventional TO, into an NN parameter. The 
sensitivity analysis is implemented with an automatic differ-
entiation technique, and transfer learning is used to acceler-
ate the proposed method. Numerical examples of various 
fields showed that the proposed method could stably obtain 
an optimized structure. [Gladstone et al. (2021)] presented a 
variational autoencoder (VAE)-based robust TO for structure 
design with the best average performance while reducing 
the response sensitivity to input uncertainties. In the pro-
posed method, a fast solution search was possible because 
the NN surrogate model is used as the finite element solver, 
and the design is searched in the low-dimensional space of 
the VAE. The L-bracket and heat sink examples showed the 
effectiveness of the proposed approach. [Wang et al. (2022)] 
proposed a data-driven multiscale TO approach that enables 
multi-scale cellular designs through the selection of multiple 
microstructural classes. In this approach, latent variable GP 
enhanced with the sum of separable kernels is presented. In 
several fundamental frequency maximization problems for 
verification, multiclass designs using the proposed method 
always have better performances than single-class designs.

3.4 � Efficiency improvement for multi‑resolution 
approaches

For multi-resolution TO, multi-level data is used to effi-
ciently calculate the near-optimal design. [Yu et al. (2019)] 
proposed a novel DL-based near-optimal topological design 
determination process. In the proposed method, low- and 
high-resolution images created under the same boundary 
conditions and optimization settings were used for training, 
and cGAN was connected to a CNN-based encoder to effi-
ciently determine a near-optimal design of high-resolution. 
Numerical examples showed that the proposed method can 
determine the pixel values and compliance of the near-
optimal structure with negligible computational cost. In 

addition, [Napier et al. (2020)] presented a new approach 
to achieving high-resolution TO designs by training ANNs 
on a set of optimizations divided into small patches. Test 
examples showed significant time savings because the 
optimal structure of the coarse mesh can be mapped to the 
refined mesh. [Keshavarzzadeh et al. (2021)] introduced a 
simulation parameter and image segment mapping approach 
based on a deep disjunctive normal shape model. Because 
high-resolution designs were generated using inexpensive 
low-resolution designs, the performances of various design 
candidates could be quickly explored. A 3D TO example 
showed that this framework provides designs close to the 
optimal design, and can be effectively used as initial guesses. 
[Wang et al. (2021a)] also proposed a training method to 
establish a mapping relationship between low-resolution 
and high-resolution structures. In that paper, the enhanced 
deep super-resolution NN and CNN were used to predict 
the optimized high-resolution structure, and the structure 
containing multiple geometric boundary conditions was pre-
dicted within a negligible time. [Behzadi and Ilies (2021)] 
introduced transfer learning based on a CNN that can handle 
a variety of high-resolution 3D design domains and enables 
real-time explorations according to changing design condi-
tions. This method trains the source network using a low-
resolution dataset and fine-tunes the target network using 
a much smaller high-resolution dataset. The real-time pre-
dictions achieved an average binary accuracy of 95% from 
multiple experiments. [Elingaard et al. (2022)] used CNN to 
parameterize the mapping from a set of coarse mesh param-
eters to a one-scale design of a fine mesh, thereby saving 
computational cost without solving the least square problem 
associated with the traditional de-homogenization approach. 
To train the NN, a loss function has been developed that 
guarantees a periodic output field along the local lamination 
orientations, and its robustness is enhanced by not using 
the underlying structural optimization problem. Numerical 
examples show that the proposed method is 5 to 10 times 
faster than the state-of-the-art de-homogenization method.

3.5 � Accuracy improvement using ML techniques

Most studies have been conducted to increase the efficiency 
of TO using ML, but there are various studies in which ML 
is used to improve the accuracy of TO. [Cang et al. (2019)] 
presented a theory-driven mechanism to perform genera-
tive TO using the NNs. Deviations of the training data from 
the optimality conditions were quantified and used to learn 
new data points. This process is called theory-based ML 
and shows improved results in generating near-optimal solu-
tions to TO over standard supervised learning models at the 
same computational cost. [Ates and Gorguluarslan (2021)] 
proposed a two-stage network model using convolutional 
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encoder-decoder networks. In the first stage, a DNN model 
was used in two parallel networks. Given a priori informa-
tion in the first stage, the second stage was trained using 
binary cross-entropy to provide the final predictions. The 
proposed method used a new loss function binary cross-
entropy to solve the errors caused by a structural discon-
nection in the existing studies. The 2D and 3D TO data sets 
for the verification of its generalization ability show that the 
two-stage network model improves the predictive ability and 
significantly reduces the compliance and volume fraction 
errors compared to the single network.

4 � Machine learning for design synthesis

In new product design, the design space depends on 
expert opinion, the designer’s creative skills, and the 
bounds of design variables, among other factors. In addi-
tion, the designer's expertise is required to perform design 

optimization, and a large amount of time and cost are 
required for product testing. Therefore, the design of a new 
product from similar design prototypes may lack diversity 
or have limitations in improving product performance. How-
ever, with the recent surge in computing power, various ML-
based generative methods have been developed. If these 
cutting-edge computing technologies and ML frameworks 
are used well, design synthesis with diversity or improved 
performance can be performed without designer expertise 
using existing data.

The design synthesis tree structure is presented in Fig. 5. 
Depending on the purpose of design synthesis, Sect. 4 can be 
classified into 1) design diversity, 2) improvement of design 
quality and performance, and 3) human preference.

Fig. 5   Design synthesis tree structure
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4.1 � Design diversity

4.1.1 � Design diversity using GAN and VAE

To increase the diversity of design synthesis, GAN and VAE 
are used among various ML techniques. While ML meth-
ods including NN can only function as a surrogate model, 
by using generative characteristics of GAN and VAE in the 
latent space, it is possible to obtain designs with diversity 
while satisfying the design conditions. [Chen and Ahmed 
(2020, 2021a, 2021b)] developed a new deterministic point 
process called performance augmented diverse GAN, which 
can generate designs with improved performances while 
covering the design space by measuring the performance of 
the generated model with diversity and quality scores. The 
real-world airfoil design used in the demonstration showed 
that the obtained result was a high-quality novel design. 
[Dai et al. (2019)] introduced a new design approach that 
can meet more individualized needs for efficient and custom 
manufacturing. In this approach, an architecture formulation 
using GAN was developed, and wristwatch wireframe design 
data are used for validation. [Nobari et al. (2021)] proposed 
an automated method, CreativeGAN, for generating novel 
designs. In that method, GAN was modified to identify 
the elements that uniquely induce a design and to create a 
design with those elements. The proposed method using a 
bicycle data set for validation showed that creative designs 
can be synthesized without human intervention and permit 
rethinking of design exploration. [Burnap et al. (2016a)] 
presented a new approach to estimating a new generative 
design within the design space using VAE. In that paper, 
2D automobile body forms were used for demonstration, 
and designers can obtain new insights as new designs can 
be made according to body types and brands from 180,000 
design data. [Zhang and Ye (2019)] proposed a DL-based 
inverse method to train constraints using VAE to automati-
cally generate design candidates that satisfy the constraints. 
Inverse design of surface diffusion-induced morphol-
ogy change and mask design for optical microlithography 
examples were used to demonstrate the performance of the 
method. [Lee et al. (2022)] proposed a deep generative tread 
pattern design framework to automatically generate various 
patterns that satisfy target tire performance. The proposed 
framework includes suitable image preprocessing, GAN, 2D 
image-based tire performance evaluation functions, design 
generation, design exploration and image post-processing 
methods. The numerical results generate various tire pat-
terns that satisfy the requirements of target tire performance 
which varies with the seasons.

4.1.2 � Design diversity combined with TO

To expand design exploration capabilities using ML in TO, 
a design automation process combining GANs and TO was 
proposed by [Oh et al. (2018, 2019)], and a generative design 
process based on RL was proposed by Jang and Kang (2020) 
along with a reward function that considers design diver-
sity. Its efficiency was demonstrated by a case study of 2D 
automobile wheel designs. [Kallioras and Lagaros (2020)] 
presented DzAIN using DBN to diversify the design genera-
tion of SIMP. Through a 2D topology problem, it was veri-
fied that DzAIN successfully generates a prototype design. 
[Sun and Ma (2020)] developed a method of approaching 
density-based TO as a generative design formulation using 
RL-based algorithms. In particular, the ε-greedy policy and 
upper confidence bound method were used in this approach, 
and acceptable generation options were generated through 
an atmospheric diving suit problem, and 2D and 3D beam 
problems.

4.2 � Improvement of design quality 
and performance

4.2.1 � Design synthesis for quality and performance 
improvement

In this section, research on the quality and performance 
improvement of design synthesis is introduced. Most of the 
studies explained in Sect. 3 have improved the efficiency of 
TO algorithms by utilizing ML techniques or by proposing 
a surrogate model to replace TO iteration. Hence, the studies 
still require TO iterations even if the number of iterations is 
much reduced owing to ML. On the other hand, new design 
synthesis results are obtained without iterations by GAN 
trained with pre-training data, and the performance of these 
results is compared with the performance and accuracy of 
existing methods or designs. In addition, optimization in the 
latent space of GAN and AE makes it possible to accelerate 
design synthesis. To improve design quality, [Dering et al. 
(2018)] presented a physics-based simulation environment 
to alleviate the manual process problem of labeling training 
data used in DL training. In this environment, since the user 
can discover the correlation between the physical constraints 
related to the form of the generated design, it is possible 
to increase the possibility of creating a feasible design. [Li 
et al. (2019)] suggested a design methodology for multi-res-
olution TO where the proposed two-stage hierarchical refine-
ment pipeline consisted of GAN for near-optimal prediction 
and super-resolution GAN for prediction at high-resolution. 
In the experiment for the heat transfer structure, it was dem-
onstrated that the conductive heat transfer topology can be 
accurately estimated using negligible computational time. 
To enhance the design performance, [Chen and Gu (2020)] 
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proposed an inverse materials design method using genera-
tive inverse design networks which consist of two DNNs, 
namely predictor and designer, and the analytical gradient of 
the objective function is calculated using back propagation. 
The composite design problem was used for verification and 
showed that the toughness performance was higher than that 
of the gradient-based TO and genetic algorithm. [Shu et al. 
(2020)] also used GAN to generate 3D models. In this pro-
cess, a newly generated design can be added to an exist-
ing training data set to generate high-performance models. 
Through the 3D aircraft model used in the demonstration, 
the process was repeated three times, resulting in improved 
geometric validity and performance. [Jiang and Fan (2019, 
2020)] proposed conditional GLOnets, a global optimizer 
based on conditional NNs for electromagnetic device meta-
surface global optimization. In particular, this network can 
move design space to the high-performance region during 
the optimization process, and subsequent efficiency gradi-
ents were used for back propagation. The electromagnetic 
device design produced by the method agrees well with 
the best device produced by adjoint-based TO. [Yuan and 
Moghaddam (2020)] developed a design attribute GAN 
model to automatically generate fashion product images 
with desired visual attributes. In the performance evaluation 
results, the method is compared with the previous attribute 
GAN, and it is verified that attribute-aware image editing is 
performed with high accuracy. [Nie et al. (2021)] proposed a 
new methodology called TopologyGAN, in which the physi-
cal field calculated in the non-optimized domain is used as 
an input to the constructor of cGAN. TopologyGAN can 
reduce errors compared to cGAN, and a new U-SE-ResNet 
that combines the functions of U-Net and SE-ResNet was 
proposed to improve the overall accuracy. [Yamasaki et al. 
(2021)] proposed a data-driven topology design methodol-
ogy. Since the elite material distribution was continuously 
updated and selected for training the dataset, various elite 
material distributions were generated through a deep gen-
erative model constructed with VAE. As this process was 
repeated, the performance of newly generated material dis-
tribution was further improved. The usefulness of the pro-
posed method was verified through various 2D examples.

4.2.2 � Design synthesis acceleration

[Chen et al. (2019)] utilized the Bézier-GAN to capture the 
low-dimensional latent space encoding the major shape vari-
ability of aerodynamic design. Through the airfoil design 
optimization problem, it was shown that optimization can 
be accelerated compared to other algorithms because the 
optimization was performed in the latent space. In addition, 
for electromagnetic metasurface optimization, [Shi et al. 
(2020b)] proposed a metasurface inverse design method con-
sisting of CNN, AE, and optimized SVM. By entering the 

design target into the method, the metasurface structure can 
be obtained directly, and this reflects an improvement in the 
efficiency and acceleration of the design process. [Yonekura 
and Suzuki (2021)] proposed a conditional VAE-based shape 
generation method where the aerodynamic shapes are used 
as the input, and the performance goes into the continu-
ous label. Then, specific shapes can be generated for spe-
cific performance latent vectors. For verification, 2D airfoil 
and 3D turbine blade design examples were introduced. In 
particular, in the turbine blade problem, more than 50,000 
actual datasets were used, showing that different design tri-
als are possible using the trained model.

4.3 � Human preference

[Raina et al. (2019)] proposed a two-step framework that 
extracts information from historical human design strategies 
and allows design generation through observing design state 
sequences without additional information. [Puentes et al. 
(2020)] used the heuristic-guidance method to augment the 
decision-making of a data-driven visual design agent. The 
truss design problem showed that the agent can train and 
generate design strategies efficiently and superiorly in each 
method. [Khan et al. (2019a)] developed an interactive yacht 
hull form generative design process, GenYacht. The user can 
choose a design according to the hull design appearance and 
mechanical performance, and the process is repeated over 
and over until a satisfactory design is reached.

[Khan et  al. (2019b)] presented a generative design 
approach that involves the psychology in the design explo-
ration stage. The user's judgment was extracted as a psy-
cho-physical distance metric, and sampling teaching–learn-
ing-based optimization was used to generate initial design 
alternatives. [Burnap et al. (2021)] utilized VAE and GAN 
for the aesthetic design of new products considering human 
judgement. Using consumer-evaluated data, the trained 
model predicts the aesthetics of the design well, and the 
newly generated design was aesthetically improved over the 
design used for training.

5 � Applications and software tools

5.1 � Applications

Recently, ML methods have been widely applied to facili-
tate design optimization or generate designs in various engi-
neering applications. This section lists various ML methods 
and engineering applications. The engineering applications 
are divided into 1) structural and material design, 2) fluid, 
aerodynamics, or heat transfer, and 3) multidisciplinary and 
other applications as shown in Table 2, which also lists ML 
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methods grouped into five and explains why and how the 
ML methods are used in the applications.

5.2 � Software tools

Several commercial software tools and open-source codes 
that have ML capabilities for use in design applications are 
available. ML/DL packages or libraries that are specifically 
for the structural and multidisciplinary optimization prob-
lems are provided in Table 3. A list of codes from works 
that are cited in this work is presented in Table 4. Table 5 
provides a list of software that are essentially platforms on 
which data from different domains can be preprocessed and 
various ML models can be used to train the data for predic-
tions and analysis. They are fundamentally ML as a service 
(MLaaS) platforms. All software is available on the cloud 
and some offer computations on the edge enabling technolo-
gies related to digital twins and advanced manufacturing. In 
addition, we also provide a list of packages within specific 
languages that contain different ML algorithms which per-
mit training and predictions in Table 6.

6 � Summary

In the past decade, ML technology has developed rapidly 
as computational performance has improved, and inter-
est in topics using ML has also increased in structural and 
multidisciplinary optimization fields. However, the current 
literature lacks a thorough survey on structural and multi-
disciplinary optimization utilizing ML technology including 
optimization using ML to deal with uncertainty, TO, and 
design synthesis. This paper provides a comprehensive sur-
vey of ML algorithms mainly used in the field of structural 
and multidisciplinary optimization. From the survey, the fol-
lowing conclusions can be drawn and recommendations for 
future research are suggested.

–	 Although the NN model concept was first introduced in 
the 1940s, improvement in computing speed has made it 
possible to apply up-to-date ML techniques to structural 
and multidisciplinary optimization. As a result, better 
performances or new designs can be efficiently obtained.

–	 In general, if an ML/DL model is properly trained, it can 
infer results almost instantly over the domain of trained 
inputs, providing greatly accelerated design and analysis 
even when used with a laptop.

–	 Surrogate models are widely used to accelerate design 
optimization and are the most active research area among 
ML-based studies. By properly combining the data in the 
MF model condition, efficiency in surrogate modeling 
can be further improved. Significant time saving is pos-
sible when using multi-resolution data in TO.

–	 Combining IoT and FE simulations in the edge using 
PINN or other ML techniques for digital twin modeling 
permits the identification of failures long before they take 
place.

–	 In the design synthesis for new concept design, VAE and 
GAN are mainly used. The latent space can be utilized 
to increase design diversity or to obtain an efficiently 
optimized design. Many studies have been conducted on 
generating a new model architecture for design synthesis, 
and various attempts continue to be made.

–	 For repetitive computer simulations with minor changes 
in geometry, material properties, and loading conditions, 
employ ML techniques to model existing data as prior 
and be able to bypass the simulation itself for newer 
designs, thereby reducing the design time exponentially.

–	 As with several studies, providing source codes for 
benchmark examples can contribute to the development 
of ML methods in structural and multidisciplinary opti-
mization. A more improved method than the existing 
methods can be proposed through comparison with the 
latest ML method.

–	 In ML-based surrogate modeling, there is insufficient 
information on guidelines regarding how to use the MF 
condition well or how many samples to use. In order to 
perform research on this, it is necessary to verify various 

Table 3   ML/DL packages for structural and multidisciplinary optimization problems

Package/Library Language License Link

pyOpt—Perez et al. (2012) Python LGPL http://​www.​pyopt.​org/
OpenMDAO—Gray et al. (2019) Python Apache license https://​openm​dao.​org/
OpenLSTO—Kambampati et al. (2018) C+ +  Apache license https://​github.​com/​M2DOL​ab/​OpenL​STO
Dymos—Falck et al. (2021) Python Apache license https://​github.​com/​OpenM​DAO/​dymos
Ārtap—Pánek et al. (2020) Python MIT http://​www.​agros​2d.​org/​artap/
DAFoam—He et al. (2020b) C+ +  GPL-v3 https://​dafoam.​github.​io/
WhatsOpt: a web application for multidisciplinary 

design analysis and optimization—Lafage et al. (2019)
Ruby, Javascript, 

HTML & Python
AGPL-3.0 https://​github.​com/​Onera​Hub/​Whats​Opt

http://www.pyopt.org/
https://openmdao.org/
https://github.com/M2DOLab/OpenLSTO
https://github.com/OpenMDAO/dymos
http://www.agros2d.org/artap/
https://dafoam.github.io/
https://github.com/OneraHub/WhatsOpt
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Table 4   Codes available from the papers reviewed in this work

Topic Language Link

Iterative surrogate model optimization (ISMO)—Lye et al. 
(2021)

Python https://​github.​com/​kjetil-​lye/​itera​tive_​surro​gate_​optim​izati​on

GP using CPKL tree-GEP—Jin (2020) MATLAB https://​github.​com/​seung​sab/​CPKL_​using_​Tree-​GEP
GP Bayesian estimation in ordinary differential equations—

Barber and Wang (2014)
MATLAB https://​github.​com/​odegp/​code

Finite element machine classifier (FEMa)—Pereira et al. 
(2020)

C https://​github.​com/​danil​lorp/​libFe​mClas​sifier

PINN—Raissi et al. (2019) Python https://​github.​com/​mazia​rrais​si/​PINNs
Hidden physics models (PINN)—Raissi and Karniadakis 

(2018)
MATLAB https://​github.​com/​mazia​rrais​si/​HPM

Interactive self-organizing maps (iSOM)—Thole and Ramu 
(2020)

MATLAB https://​ed.​iitm.​ac.​in/​~palra​mu/​SOM/

JAX-CFD: CFD in JAX—Kochkov et al. (2021) Python https://​github.​com/​google/​jax-​cfd
Conditional deep surrogate models—Yang and Perdikaris 

(2019)
Python https://​github.​com/​Predi​ctive​Intel​ligen​ceLab/​CADGMs

MF Bayesian optimization via deep NN—Li et al. (2020) MATLAB https://​github.​com/​kirth​evasa​nk/mf-gp-ucb) https://​github.​
com/​Yehon​gZ/​Mixed​TypeBO https://​github.​com/​zi-w/​Max-​
value-​Entro​py-​Search/

MF physics-constrained NN and its application in materials 
modeling—Liu and Wang (2019)

Python https://​github.​com/​tenso​rflow/​tenso​rflow

A composite NN that learns from MF data—Meng and 
Karniadakis (2020)

Python MATLAB https://​github.​com/​lulul​xvi/​deepx​de https://​github.​com/​prati​
kkakk​ar/​deep-​diff

Transfer learning-based MF physics-informed DNN—
Chakraborty (2021)

MATLAB https://​colab.​resea​rch.​google.​com/​noteb​ooks/​tenso​rflow_​versi​
on.​ipynb

Uncertainty modeling and runtime verification for autono-
mous vehicles driving control—An et al. (2020)

MATLAB https://​github.​com/​Dongd​ongAn/​Drivi​ngSty​leCla​ssifi​cation

Learning DNN surrogate models for high-dimensional 
uncertainty quantification—Tripathy and Bilionis (2018)

Python https://​github.​com/​rohit​kt10/​deep-​uq-​paper

Deeply uncertain: Comparing methods of uncertainty quan-
tification in DL algorithms—Caldeira and Nord (2020)

Python https://​github.​com/​deeps​kies/​Deepl​yUnce​rtain-​Public

Self-direct online ML for TO—Deng et al. (2020) MATLAB https://​github.​com/​deng-​cy/​deep_​learn​ing_​topol​ogy_​opt
TOuNN: TO using NNs—Chandrasekhar and Suresh (2021) Python https://​www.​ersl.​wisc.​edu/​softw​are/​TOuNN.​zip
NNs for TO—Sosnovik and Oseledets (2019) Python https://​github.​com/​ISosn​ovik/​top
Multi-stage DNN accelerated TO—Bielecki et al. (2021) MATLAB https://​github.​com/​dustin-​biele​cki/​Corner-​Based-​Topol​ogy-​

Optim​izati​on-​Datas​et
Gradient-based TO design with dual-model ANNs—Qian 

and Ye (2021)
Python https://​github.​com/​hkust-​ye/​cqian_​dual-​model_​neural_​netwo​

rk/​tree/​master
MMC-based TO—Jiang et al. (2020) MATLAB https://​github.​com/​yoton​12138
MO-PaDGAN: Reparameterizing engineering designs for 

augmented multi-objective optimization of a real-world 
airfoil design example—Chen and Ahmed (2021a)

Python https://​github.​com/​wchen​459/​MO-​PaDGAN-​Optim​izati​on

PaDGAN: A GAN for performance augmented diverse 
designs—Chen and Ahmed (2021b)

Python https://​github.​com/​wchen​459/​PaDGAN

DL-based inverse method for layout design—Zhang and Ye 
(2019)

Python https://​github.​com/​yzhan​gbx120/​Inver​se-​Design

Generative design by using exploration approaches of RL—
Sun and Ma (2020)

MATLAB https://​github.​com/​Nick0​095/​STO_​explo​ration
https://​www.​youtu​be.​com/​watch?v=​EbB2id-​1n2U

Generative NNs for the inverse design of metasurfaces—
Jiang and Fan (2020)

Python https://​github.​com/​jonfa​nlab/​GLOnet

TopologyGAN: TO using GANs-based on physical fields 
over the initial domain—Nie et al. (2021)

Python https://​github.​com/​zheng​uonie/​2020_​Topol​ogyGAN

Aerodynamic design optimization and shape exploration 
using GANs—Chen et al. (2019)

Python https://​github.​com/​IDEAL​Lab/​airfo​il-​opt-​gan

https://github.com/kjetil-lye/iterative_surrogate_optimization
https://github.com/seungsab/CPKL_using_Tree-GEP
https://github.com/odegp/code
https://github.com/danillorp/libFemClassifier
https://github.com/maziarraissi/PINNs
https://github.com/maziarraissi/HPM
https://ed.iitm.ac.in/~palramu/SOM/
https://github.com/google/jax-cfd
https://github.com/PredictiveIntelligenceLab/CADGMs
https://github.com/kirthevasank/
https://github.com/YehongZ/MixedTypeBO
https://github.com/YehongZ/MixedTypeBO
https://github.com/zi-w/Max-value-Entropy-Search/
https://github.com/zi-w/Max-value-Entropy-Search/
https://github.com/tensorflow/tensorflow
https://github.com/lululxvi/deepxde
https://github.com/pratikkakkar/deep-diff
https://github.com/pratikkakkar/deep-diff
https://colab.research.google.com/notebooks/tensorflow_version.ipynb
https://colab.research.google.com/notebooks/tensorflow_version.ipynb
https://github.com/DongdongAn/DrivingStyleClassification
https://github.com/rohitkt10/deep-uq-paper
https://github.com/deepskies/DeeplyUncertain-Public
https://github.com/deng-cy/deep_learning_topology_opt
https://www.ersl.wisc.edu/software/TOuNN.zip
https://github.com/ISosnovik/top
https://github.com/dustin-bielecki/Corner-Based-Topology-Optimization-Dataset
https://github.com/dustin-bielecki/Corner-Based-Topology-Optimization-Dataset
https://github.com/hkust-ye/cqian_dual-model_neural_network/tree/master
https://github.com/hkust-ye/cqian_dual-model_neural_network/tree/master
https://github.com/yoton12138
https://github.com/wchen459/MO-PaDGAN-Optimization
https://github.com/wchen459/PaDGAN
https://github.com/yzhangbx120/Inverse-Design
https://github.com/Nick0095/STO_exploration
https://www.youtube.com/watch?v=EbB2id-1n2U
https://github.com/jonfanlab/GLOnet
https://github.com/zhenguonie/2020_TopologyGAN
https://github.com/IDEALLab/airfoil-opt-gan
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characteristics of examples and engineering problems, 
and additional research will need to be performed.

–	 When there is insufficient data when constructing a DNN, 
there is a limitation for optimization. Insufficient data 
for a model requiring a large number of hyperparam-
eters leads to overfitting and poor prediction accuracy. 
Obviously, there will be areas in which it is difficult to 
generate a large number of data in structural and multi-
disciplinary optimization. Transfer learning to solve this 
problem and meta-learning methods to determine the 
initial model need to be studied further.

Appendix. ML methods widely 
used in the context of structural 
and multidisciplinary optimization

ML algorithms can be categorized into four groups: 1) 
classification, 2) regression, 3) clustering, and 4) dimen-
sion reduction as shown in Fig.  6. Classification and 
regression are both supervised learning algorithms, where 
the main idea is to generate a prediction model. If the pre-
dicted response is discrete, it is a classification problem, 
whereas if the response is continuous, then it is a regres-
sion problem. Therefore, in general, the ML algorithms 
used for classification and regression are very similar. The 

Table 5   ML as a service 
(MLaaS) platforms

Software Link

AWS AI https://​aws.​amazon.​com/​tr/​machi​ne-​learn​ing/
Azure Machine Learning https://​azure.​micro​soft.​com/​servi​ces/​machi​ne-​learn​ing/
Cnvrg.io https://​cnvrg.​io/
CoCalc https://​cocalc.​com/
Google Colab https://​colab.​resea​rch.​google.​com/
H2O AI https://​www.​h2o.​ai/
IBM Cloud https://​www.​ibm.​com/​cloud/​learn/​machi​ne-​learn​ing
KNIME https://​www.​knime.​com/
MyDataModels https://​www.​mydat​amode​ls.​com/
Neural Designer https://​www.​neura​ldesi​gner.​com/
Spell https://​spell.​ml/
Vertex AI https://​cloud.​google.​com/​vertex-​ai
Weka https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/

Table 6   Software packages with 
ML algorithms

Package Language License Link

Accord.Net C# LGPLv3 https://​github.​com/​accord-​net/​frame​
work/​wiki/​Getti​ng-​start​ed

Caffe C+ +  BSD https://​caffe.​berke​leyvi​sion.​org/
Dlib Python / C+ +  Boost http://​dlib.​net/
Keras Python MIT https://​keras.​io/
Mahout Java Apache https://​mahout.​apache.​org/
NumPy Python / C License https://​numpy.​org/
OpenNN C +  +  BSD https://​www.​opennn.​net/
Orange3 Python / C+ + / LGPL https://​orang​edata​mining.​com/
PyTorch C GPLv3 https://​pytor​ch.​org/
Scikit-learn Python / C+ +  BSD https://​scikit-​learn.​org/​stable/
Scipy Python / C+ +  BSD https://​scipy.​org/
Shogun Python BSD https://​www.​shogun-​toolb​ox.​org/
Singa C+ +  BSD3 http://​singa.​apache.​org/
Spark MLlib C+ + / Python / Java Apache License https://​spark.​apache.​org/​mllib/
TensorFlow Java / Scala / Python / R Apache License https://​www.​tenso​rflow.​org/
TensorFlow.js Python / Go / Java / C / R Apache License https://​www.​tenso​rflow.​org/​js?​hl=​en

Java Apache License

https://aws.amazon.com/tr/machine-learning/
https://azure.microsoft.com/services/machine-learning/
https://cnvrg.io/
https://cocalc.com/
https://colab.research.google.com/
https://www.h2o.ai/
https://www.ibm.com/cloud/learn/machine-learning
https://www.knime.com/
https://www.mydatamodels.com/
https://www.neuraldesigner.com/
https://spell.ml/
https://cloud.google.com/vertex-ai
https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/accord-net/framework/wiki/Getting-started
https://github.com/accord-net/framework/wiki/Getting-started
https://caffe.berkeleyvision.org/
http://dlib.net/
https://keras.io/
https://mahout.apache.org/
https://numpy.org/
https://www.opennn.net/
https://orangedatamining.com/
https://pytorch.org/
https://scikit-learn.org/stable/
https://scipy.org/
https://www.shogun-toolbox.org/
http://singa.apache.org/
https://spark.apache.org/mllib/
https://www.tensorflow.org/
https://www.tensorflow.org/js?hl=en
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most commonly used classical ML algorithms for classifi-
cation problems include logistic regression [Cox (1958)], 
k-nearest neighbors [Fix and Hodges (1989)], support vec-
tor machines (SVM) [Cortes and Vapnik (1995)], kernel 
SVM, naive Bayes, decision tree classification, and ran-
dom forest classification. The most commonly used classi-
cal ML algorithms for regression problems include simple 
linear regression, multiple linear regression, polynomial 
regression, Kriging, support vector regression (SVR), 
decision tree regression, and random forest regression.

Clustering is similar to classification in that they are both 
used for grouping the data. The main difference is that clas-
sification is used to categorize labeled data, whereas cluster-
ing detects patterns within an unlabeled data set. Therefore, 
the classification is a supervised learning algorithm, whereas 
the clustering is an unsupervised learning algorithm. The 
most commonly used classical ML algorithms for clustering 
problems include k-means, mean shift clustering, Gaussian 
mixture models, density-based spatial clustering, and hier-
archical agglomerative clustering.

Dimension reduction aims to reduce the number of input 
variables in a dataset, thereby protecting against the curse of 
dimensionality, which makes the algorithm difficult to run 
as the dimensions of the data increase. Data from a large 
dimensional space is transformed into a smaller dimensional 
space ensuring that it provides similar information. Dimen-
sion reduction methods can be further categorized into linear 
methods and non-linear methods. The most commonly used 
linear learning algorithms for dimension reduction include 
principal component analysis [Wiener (1938)], factor analy-
sis [Harman (1976)], linear discriminant analysis [Fisher 
(1936)], and singular value decomposition [Golub and 
Reinsch (1971)]. The nonlinear algorithms include kernel 
principal component analysis, isometric mapping, and t-dis-
tributed stochastic neighbor embedding (t-SNE). Among the 

ML methods listed in Fig. 6, we briefly explain ML methods 
that are widely used in the context of structural and multidis-
ciplinary optimization in the following subsections.

A.1 Linear regression

Linear regression [Montgomery et al. (2021)] models the 
relationship between the response variable (dependent) y and 
one or more independent variables x. If there exists only 
one independent variable, then it is called simple linear 
regression. The fundamental idea in linear regression is to 
find the coefficients of the basis functions that best model 
the data. Ordinary least squares (OLS) are the most com-
mon method used to train the model with the given data to 
estimate the unknown coefficients. Function nonlinearity is 
modeled using complex basis functions while keeping the 
regression linear.

where β0 and βn are the unknown coefficients and ε is the 
error term.

A.2 Gaussian process (GP)

GP [Rasmussen (2003)], also known as Kriging when the 
mean of GP is zero, is a stochastic approach that finds wide 
use in regression, classification, and unsupervised learn-
ing. It is usually utilized in the linear regression framework 
while using the Gaussian kernel as the basis function. It is 
the preferred approach for inference on functions as well. 
GP is a generalization of Gaussian probability distribution 
in which every finite collection of random variables has a 
multivariate Gaussian distribution. GP is a distribution over 
functions with a continuous domain such as time or space. 

(A1)y = �0 + �1x1 + �2x2 +⋯ + �nxn + � = xfT� + �

Fig. 6   Categories of ML 
problems



	 P. Ramu et al.

1 3

266  Page 22 of 31

Since GP provides model prediction as well as prediction 
error estimates, even when the simulation is deterministic, it 
is sought after to be used as surrogates in design and analysis 
of expensive computer experiments. Since GP metamod-
els can fit complicated surfaces well, it is suited for fitting 
accurate global metamodels. A GP is completely specified 
by mean function m(x) and covariance function k

(

x, x′
)

 as

GP can be extended to multiple outputs by using multiple 
means and covariances. It permits easy interpolation of data 
and has an inbuilt mechanism to account for noise. Further-
more, GP can quantify the uncertainty about the prediction 
and have conditional distributions that allow adaptive sam-
pling or Bayesian studies. Owing to the fact that GP models 
are regularly evaluated on a grid leading to multivariate nor-
mal distributions and the computational time for calculating 
the inversion and determinant of n × n covariance matrix is 
of O3, using GP is a challenge while using large scale data-
sets. Recently, approaches such as matrix–vector multiplica-
tion [Gardner et al. (2018a), (2018b)], [Dong et al. (2017)] 
and sparse GP [Cutajar et al. (2016)] have been developed 
to reduce the amount of computation when the data set is 
more than 100 k.

A.3 Artificial neural network (ANN)

In the 1940s, [McCulloch and Pitts (1943)] formulated the 
first NN model. Since its inception, NN has found interest 
among both researchers and applications in various domains. 
As a result, better algorithms and more powerful networks 
have been developed. ANN refers to a biologically inspired 
sub-domain of artificial intelligence (AI) modeled based on 
the network of the brain. Akin to the human brain, ANNs 
have neurons (called nodes) which are connected to each 
other in different layers of the networks as shown in Fig. 7. 
The basic idea of ANN is that an input vector x is weighted 
by w and along with bias b, subjected to an activation 

(A2)f (x) ∼ GP
(

m(x), k
(

x, x
�
))

function f that is linear or nonlinear to produce the output 
y as given as

The weights in Eq. (A3) are optimized during training until a 
specified level of accuracy is reached by the network. Based 
on the application, there are many activation functions used 
in ANN, namely sigmoid, hyperbolic tangent, rectifier lin-
ear unit (ReLU), Heaviside, signum, and softmax functions 
[Karlik and Olgac (2011)]. Researchers have also developed 
application specific activation functions (Wuraola and Patel 
2018, [Gomes and Ludermir (2013). Since ANN deals with 
multidimensional data, approaches such as StandardScaler, 
RobustScaler, MinMaxScaler, and Normalizer for data scal-
ing, can be used for data processing and can prevent con-
vergence to zero or diverge to infinity during the learning 
process.

ANN is broadly classified into two categories such as 
feed-forward NN and feed backward NN. In the feed-forward 
NN, the information will pass only in the forward direc-
tion i.e., from the input layer to the hidden layer (if any) 
and then to the output. Single-layer perceptron, multi-layer 
perceptron, and radial basis function networks are examples 
of feed-forward NN. In the feed backward NN, the inputs 
are fed in the forward direction and errors are computed to 
be propagated in the reverse (hence the terminology back) 
direction to the previous layers, so as to reduce the error 
in the cost function by readjusting the weights. Examples 
include Bayesian regularised NN and Kohonen’s self-organ-
izing map. The loss function is computed as the difference 
between the prediction and the target after each feedforward 
pass. In the backpropagation process, the optimizer trains 
parameters such as weights and biases iteratively through 
optimization to minimize the loss function.

ANNs can be used for both regression and classification 
problems which are techniques in predictive modeling. In 
the context of classification, since ANN works by splitting 
the problem into layered networks of simpler elements, 
ANNs are reliable when the tasks involve many features. 
The most attractive feature of ANNs is that they provide 
predictive capability by mapping any number of inputs and 
outputs. Upon training, the predictions are fast and cheap.

NNs are typically black box approaches. That is, one 
might not be able to capture the influence of independent 
variables on dependent variables. Overfitting is a funda-
mental challenge of ANN as it depends predominantly on 
training data. With traditional CPUs, ANNs were expen-
sive in terms of computational time to train the network, but 
the invention of cloud computing and increased computing 
power have relieved the computational burden. However, 
researchers began to focus on more complex problems and 

(A3)y = f
(

w
T
x + b

)

Fig. 7   Simple architecture of ANN
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used more layers to train on large sets of data, resulting in 
longer computational times with multiple training iterations.

A.4 Deep neural network (DNN)

DNN is created when NNs are stacked one after the other. 
The primary difference between the conventional NN and 
DNN is that the former has one or two hidden layers and 
the latter has several hidden layers as shown in Fig. 8. Each 
circle in the figure calculates a weighted sum of the input 
vectors and bias following which a nonlinear function is 
applied to obtain the output. DNNs can handle functions 
with limited regularity and are powerful for high-dimension 
problems. The basic idea of DNN is to approximate a func-
tion with a non-linear activation function [Emmert-Streib 
et al. (2020)], with n hidden layers as represented in

and

(A4)DNN(y) = w
(n)
x
(n) + b

(n)

(A5)x
(k+1) = �

(

w
(k)
x
(k) + b

(k)
)

, k = 0, 1,⋯ , n − 1

where w and b are the weights and biases of the network 
and � is the activation function. DNN is more complex in 
connecting layers than a network with 1 or 2 hidden layers 
and has the automatic feature extraction capability. There-
fore, when larger training data is used, the DNN can provide 
accurate predictions compared to classical ML algorithms 
where the accuracy is kept fairly constant.

There are three major classes of DNNs, namely super-
vised, semi-supervised, and unsupervised DNNs. Exam-
ples of supervised learning algorithms include deep 
feed-forward networks (DFNNs) and CNNs. Restricted 
Boltzmann machines, autoencoders (AEs), GANs, and 
long short-term memory networks (LSTMs) are examples 
of unsupervised learning algorithms. Recurrent neural net-
works (RNN) are an example of semi-supervised learning 
techniques.

While solving complex problems such as image classifi-
cation, natural language processing, and speech recognition, 
DNN is more useful than shallow networks. DNNs typically 
outperform other approaches when the data is large. DNN 
architectures are very flexible to adapt to new problems and 
can work with any data type. Getting trapped in the local 

Fig. 8   Architecture of DNN

Fig. 9   Architecture of CNN
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minima, vanishing gradient, and overfitting are some of the 
challenges associated with DNN training that require large 
data.

A.5 Convolutional neural network (CNN)

One of the most widely used DNNs are the CNNs [Fuku-
shima (1988)]. While ANN is inspired by the human brain, 
CNNs are inspired by the human optical system and are 
predominantly applied to imaging analysis. CNNs consist 
of two operations, namely convolution and pooling. Unlike 
ANNs, in CNNs the neurons in one layer are connected to 
nearby neurons in the next layer. This leads to a significant 
reduction in the number of parameters in the network. A 
typical CNN consists of an input, an output, and multiple 
hidden layers which consist of a series of convolutional 
layers (filters or convolution kernels) as shown in Fig. 9. 
ReLU is the typical activation function used, followed by 
operations such as pooling layers, fully connected layers, 
and normalization layers. Backpropagation is used for error 
minimization and weight adjustment. [Wu (2017)] provides 
a tutorial on CNN. Compared to CPU-based architectures, 
CNNs with GPU-based architectures take less time for train-
ing, because GPU vastly is superior in the computation of 

dense algebraic kernels, such as matrix–vector multiplica-
tion, in which DL algorithms are mainly composed.

CNNs can easily process high-dimensional inputs such 
as images. CNNs are good at extracting local information 
from the text and exploring meaningful semantic and syntac-
tic meanings between phrases and words. Also, the natural 
composition of text data can be easily handled by a CNN’s 
architecture. CNNs need large data for training and hence 
are computationally intensive. Encoding the position and 
orientation of objects is still a challenge in CNN.

A.6 Reinforcement learning (RL)

RL [Sutton and Barto (2018)] is one of the paradigms of ML 
algorithms where the agents learn by interacting with the 
environment. RL works on trial and error-based learning and 
maximizes the reward rather than finding the hidden struc-
ture unlike other ML algorithms. As can be seen in Fig. 10, 
an RL agent performs an action ‘a’ while transiting from a 
state st to st +1 and is rewarded rt +1 for the action at and this 
process is repeated iteratively to maximize the reward. The 
probability of transition to the new state is expressed by 
P(st +1 | st, at). The best sequence of actions that an RL agent 
can make is called a policy and the entire set of actions from 
start to finishthat an agent performs is called an episode. 
Usually, the dynamics of the RL problem can be captured 
by using a Markov decision process.

RL usually performs better in solving complex problems 
compared to other standard learning techniques. If no train-
ing data set is available, it is bound to learn from experi-
ence. RL focuses on achieving long-term results that are 
difficult to accomplish by other techniques. Similar to other 
ML techniques, RL requires large data and is computation-
ally expensive. RL can be heavily affected due to the curse 
of dimensionality. When the conventional RL is combined 
with DL, deep RL can be set up. The deep RL uses DNNs 
to calculate rewards, and policies that are usually accom-
plished by a state of action pairs in RL. The deep RL can be 

Fig. 10   Basic setting of RL

Fig. 11   RNN with hidden 
memory state
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employed where there exists a complex state and very high 
computations are required (Fig. 10).

A.7 Recurrent neural network (RNN)

RNN [Rumelhart et al 1986] is one of the common semi-
supervised learning algorithms that use sequential data (or 
ordered data) for training. Examples of ordered data are 
DNA sequence, financial data, and time-series data. RNN 
uses the current input as well as the past history of inputs 
that it has learned through the hidden state while making 
decisions. Typically RNNs consists of an input layer, a 
hidden layer, and an output layer as shown in Fig. 11. The 
number of neurons in the hidden layer of RNNs should be 
between the number of inputs and the number of outputs. 
The key feature of RNN is that it makes a copy of the output 
and sends it back into the network. Thus, the past informa-
tion gets stored. The change in the knowledge of the network 
is updated in the hidden state at every time step and the 
update can be expressed as

where ht is the new hidden state, ht-1 is the past hidden state, 
xt is the current input, and fw is the fixed function with train-
able weights.

These algorithms commonly find application in ordinal 
or temporal problems such as image captioning, speech 
recognition, and natural language processing. Similar to 
spatial data being efficiently processed by CNNs, RNNs 
are designed to process the sequential data in an efficient 
manner. As the number of time steps increases, the number 
of model parameters in the RNN model does not increase. 
While training an RNN, error gradients are used to update 
the network weights. Sometimes the error gradients can 
accumulate resulting in large updates of weights (exploding 
gradients) and an unstable network. On the other hand, if the 
weight updates are small, one faces the problem of vanishing 
gradients. These are the two major issues associated with 
the RNNs. In order to solve the gradient problem, weight 
initialization methods such as Xavier initialization and He 
initialization, gradient clipping, and batch normalization are 

(A6)ht = fw
(

xt, ht−1
)

used, or an LSTM or GRU is devised. When timely depend-
encies in sequences need to be captured, RNN are one of 
the best choices. However, recent developments such as 
Transformers [Vaswani et al, (2017)] can outperform RNN 
in such applications.

A.8 Variational autoencoder (VAE)

An autoencoder (AE) is a type of unsupervised learning that 
learns unlabeled data and has traditionally been used for 
dimensionality reduction and feature learning, but recently it 
has gained a lot of popularity as a generative model that can 
generate data similar to training data. Since VAE (Kingma 
and Welling 2013) is based on an AE, it consists of two 
parts: encoder and decoder. However, unlike AE, which rep-
resents a latent vector as a value, the latent vector of VAE 
uses a density function. Since VAE is based on a proba-
bilistic model, it has computational flexibility. This latent 
vector is used to predict an input image, and VAE train-
ing is performed with the goal of reducing the difference 
between the generated image and the input image as shown 
in Fig. 12. Finally, evidence lower bound and re-parameter-
ization tricks are used to perform optimization. The main 
advantage of VAE is that it is useful to perform other tasks 
such as design optimization in the latent space using the 
latent vector information. However, since the density is not 
obtained directly, the quality of the generated model may be 
somewhat inferior to the direct density methods such as pix-
elRNN or pixelCNN, and the generated image is relatively 
blurry compared to GAN.

A.9 Generative adversarial network (GAN)

GAN [Goodfellow et al. (2014)] as shown in Fig. 13 trains a 
model that samples a latent vector from a simple distribution 
and generates it as an image based on the game-theoretic 
approach. The objective function of GAN consists of a dis-
criminator output for real data, and a discriminator output 
for generated fake data. Because the generator and discrimi-
nator train with the goal of minimizing and maximizing the 
objective function, respectively, GAN is called a minmax 

Fig. 12   Architecture of VAE 
(Asperti et al. 2021)
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game. The story of a counterfeiter (generator) and a police 
officer (discriminator) is an easy-to-understand example of 
the concept of GAN. When a counterfeiter creates a counter-
feit currency, the police can determine whether it is genuine 
or not, and in the process, the generator and discriminator 
evolve competitively to generate a more authentic counterfeit 
currency.

GAN is difficult to apply to various fields due to unsta-
ble learning ability; consequently, a DCGAN [Radford 
et al. (2015)] with CNN in the generator part was devel-
oped. In addition to the GAN model, various models such 
as conditional GAN (cGAN), boundary equilibrium GAN, 
and super-resolution GAN have been developed to improve 
performance and for application to new fields. The main 
advantage of GANs is that it is possible to create new and 
novel images.

A.10 Ensemble methods

Ensemble methods are one paradigm of ML techniques that 
have become popular during the past three decades [Bishop 
(1995)], where several learning algorithms are used to train 
and solve a problem. Boosting, bagging [Bühlmann (2012)], 
and stacking (Džeroski and Ženko 2004) are the most widely 
used approaches in ensemble methods. AdaBoost [Rätsch et al. 
(2001)], gradient boosting (Friedman 2001), extreme gradi-
ent boosting [Chen and Guestrin (2016)], and light gradient 
boosting [Ke et al. (2017)] are a few algorithms that are more 
frequently used in boosting. Bagging meta-estimator and ran-
dom forest are the popular ensemble algorithms in bagging.

Ensemble methods are used to improve the accuracy of the 
model by reducing the variance. Bagging is a variance reduc-
tion technique whereas boosting and stacking’s objective is 
to reduce the bias and not the variance. Ensembles have been 
shown to serve as insurance against bad predictions and issue 
a red flag when one of the models is performing inconsistently 
on a consistent basis, especially at regions of interest. Eventu-
ally, all the ensemble algorithms attempt to improve the model 
accuracy. The generalization ability of a single learner is not as 

good as ensemble methods, since it uses multiple learners, and 
this is one of the major advantages of using ensemble methods.
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