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Development of a method for maximum
structural response prediction of a store
externally carried by a jet fighter
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Abstract
Experimental structural response of equipment mounted in store carried externally by jet type aircraft is investigated,
predicted and compared with responses suggested by military standards in this study. A representative store which is
similar to Mark-83 warhead with guidance units in terms of mass and geometry is used in this study. The main scope of this
study is to evaluate the structural response proposed by military standards with real test conditions and also suggest a new
method with an artificial neural network to predict the maximum response. Seventy-five different flight conditions are used
to train the network for low and high frequency components. Also, eight flight conditions apart from the training set of
flight conditions are used to test the approach. Acceleration levels are collected in real flight conditions by the data storage
system. In signal processing, vibration response is expressed as power spectral density functions in the frequency domain.
Procedures to predict the maximum response from measurements are determined with statistical limits in the literature.
Besides the well-known limits in literature, third-order polynomial normal and logarithmic transform is used, and the
performance of the different limits is compared. It is found that the military standard vibration spectrum is conservative.
Distribution-free and normal tolerance limits predicted low frequency acceleration spectral density magnitudes more
accurately. Their prediction performances were better than those of the other tolerance limits and that of the military
standard. Third-order polynomial transform predictions are found to be reasonable with respect to normal prediction limit
and envelope approach. Finally, it can be concluded that the response prediction method proposed in this article works well
for Mark-83 warheads with guidance unit carried externally by jet fighter.
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Introduction

Jet-type aircraft carry electronic warfare pods, missiles,
bombs and external fuel tanks. These payloads are ex-
posed to high vibration environment under captive car-
riage flight conditions.1 As a result of high vibration
conditions, mechanical parts in the object can lose their
structural integrity; additionally, electronic cards and
circuits can fail. Circuits or components used in aero-
nautical and space applications also have intermittent
defects under severe vibration environments.2 Vibration
tests are performed to verify that the mounted stores can
withstand the dynamic loading and continue to function
under the expected dynamic conditions.3 For the selection
of subsystems and equipment of the store, such as
guidance unit, measurement units, pumps and electronic
control units, it is crucial to know the expected vibration
levels during the flight in the preliminary design phase of
military projects. In some military standards,4 vibration
levels for subsystems are generally estimated on the high

side. In these standards,5 it is advised to avoid using these
levels if there is any measurement data. Kin et al6 ex-
amined the military standard levels, compared the vi-
bration levels with the performed measurements and
showed that levels given by the military standard were
exaggerated. Following these standards may lead to
overdesigning of the parts due to their large conservatism
of the actual response levels.7 The disadvantages of using
MIL-STD-810 vibration levels are listed below.8
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1. Harsh vibration conditions may cause overdesigning
of the payloads and its subsystems.

2. Unrealistic failure can occur during tests.
3. It can be difficult to find a test facility that satisfies high

vibration exposure.
4. The design period of store can be extended due to

unrealistic failure during the tests.
5. Evaluations of aerodynamic dirty (AD) and aero-

dynamic clean (AC) situations in MIL-STD-810 are
difficult to separate.

6. Some explanations of constants in MIL-STD-810 do
not cover all store types.

Runyan9 studied the main vibratory loading sources of
a subsystem carried by a jet-type aircraft. Flutter occurs at
low frequency regime between 2 and 30 Hz. The fre-
quency bandwidth of the buffet phenomena is higher than
flutter. The fluid flow effects can be significant between
100 and 2000 Hz.

Store aircraft interface used in this study is Mau-12
bomb ejector rack. This rack has been designed to provide
structural support for external carriage of payloads on
aircraft. Two hooks of the store are fixed to two lugs of the
aircraft. In addition, sway braces of the aircraft have
positive contact with the store in the roll direction.10

General purpose bombs (Mark-81, Mark-82, Mark-83
and Mark-84) are used against a wide array of threats.
A guidance unit with mass representative Mark-83 war-
head is used in this study.

Steininger et al11 found that the most severe vibration
occurs about 0.9–0.95 Mach number. The curve of total
root mean square ‘g’ (g-RMS) vs Mach number seems to
resemble exponential relation when the flight Mach
number is between 0.6–0.9 and 1–1.9. The shape does not
change but increases generally when the flight altitude
decreases. Corda12 investigated instrumented pod on F-15
to study vibration levels of both low and high frequency
bands. It is seen that vibration levels of the high frequency
terms are lower than the low frequency ones in level flight.
Sevy et al13 studied on prediction of vibration spectrums
on F-4, F-15 and F-16 parts. When predictions in this
reference are investigated, it can be seen that F-16 vi-
bration levels are greater than F-15 in the high frequency
range for cockpit electronics. In-flight responses of
aerospace equipment are predicted by using flight pa-
rameters in the literature. Yildiz14 predicted flutter be-
haviour by means of flight parameters. Kutluay et al15

estimated aerodynamic constants of one-shot autonomous
vehicle by flight tests using artificial neural networks
(ANN). Mallick et al16 predicted pressure coefficients of
the c-shaped buildings using group method of data han-
dling neural network. Comprehensive experimental study
in subsonic wind tunnel is carried out to identify input–
output relationship. Mazhar et al17 estimated longitudinal
dynamic behaviour of an airship by nonlinear autore-
gressive neural network. That network is efficient and
reliable for limited flight test data. Results are also vali-
dated with previous experimental study conducted with
same airship. Quaranta et al18 identified acoustic signatures

of the aeroplanes with ANN. In the procedure, ascending
and descending noise of five different aircraft are used.
Halle et al19 predicted moments and forces on the vertical
tail plane using in-flight data with local networks. The
inputs are taken as the angle of attack, load factors, dy-
namic pressure, aircraft mass, wing sweep angle and the
roll rate. Caliskan et al20 proposed the method of auto-
matic ice detection and protection system for both military
and commercial aircraft by Kalman filter innovation se-
quence. Neural network trained with estimates of the
Kalman filter is used to predict bad-influenced flight
dynamic parameters due to icing. Crowther et al21 esti-
mated flight test flutter speed for four-engined transport
aircraft using neural network. In the procedure, an aero-
elastic model is used and neural network prediction results
are compared with statistical method based on extrapo-
lation of a polynomial fitted to damping data.

There are many studies in the literature which in-
vestigate store’s structural response due to different types
of excitation inputs. Predictions of the spectra in terms of
acceleration spectral density (ASD) and frequency in
terms of Mach number and flight altitude have not been
addressed in the academic literature except military
standards. Different from the studies listed above, this
study proposes a method to estimate the structural re-
sponse of equipment in the frequency domain as function
of four parameters that are used in military standards.
Firstly, power spectral density (PSD) of the acceleration
data is calculated. Secondly, tolerance limits are used to
indicate conservatism on measured values. Finally, ANN
is used to train input–output relationship. The proposed
method is also experimentally validated. Vibration testing
with electrodynamic shaker on ground is an important
issue for experimental validation of complex systems.
Performing the vibration tests using the method described
in this article as the input rather than military standards can
result in cost efficient. In addition, this study can lead
future studies for prediction of acoustical noise, shock and
pyroshock environments in terms of different input
parameters.

The article is structured as follows: In Theoretical
fundamentals, the theoretical background about random
theory, tolerance limits and ANN are given. Also, equa-
tions used in MIL-STD-810 are discussed. In Data col-
lection and tolerance limit estimation, data management
in experimental set-up and usage of tolerance limits are
provided. Prediction results are given in Results. Con-
clusion remarks and future studies are discussed in
Conclusion.

Theoretical fundamentals

Random vibrations

Autocorrelation function can be defined as follows22

RxxðmÞ ¼ E ½xðtÞxðt þ mÞ� (1)

where t is the absolute time,m is the time difference, xðtÞ is
the random process and E is the expected value.
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The power spectral density can be derived, as shown in
the following equation

Pxxð f Þ ¼ 1

fs

X∞
m¼ �∞

RxxðmÞ eð�j2πmf =fsÞ (2)

where f denotes the frequency and fs denotes the sampling
frequency.

The mean power of a signal over a designated fre-
quency band can be written as

P½ f1, f2 � ¼
Z f2

f1

Pxxð f Þdf (3)

where f1 and f2 are the lower and the upper frequency
values.

Tolerance limits

Tolerance limits are generally used to compensate for the
variability in the environment and conditions. Upper
tolerance limits add an extra margin to measurement data
by estimating excessive upper values due to changes in the
environment and conditions. Equipment and systems are
designed to endure these loads to ensure they do not fail
under operational conditions. The level of conservatism in
the upper tolerance limits depends on the coverage and
confidence in the parameters.23

Descriptions and equations used in calculations of
different limits are provided below.

Normal tolerance limit (NTL) is a method used to attain
a conservative limit for the structural response spectra.
Normal tolerance limit performs only to normally distrib-
uted random variables. The spatial variation of structural
responses x to excitation is mainly not normally distrib-
uted.24 However, logarithm transformation y of the spectral
values has an approximately normal distribution.

Sample average and sample standard deviation are
given in equations (4) and (5), respectively

y ¼ 1

n

Xn
i¼1

yi (4)

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðyi � yÞ2
s

(5)

In the above equations, n denotes the sample size and yi
denotes the observed values of sampled items.

NTLy can be expressed as follows

NTLyðn, β, γÞ ¼ yþkn, β, γ þ sy (6)

The parameter kn, β, γ is called the normal tolerance
factor and is a tabulated parameter. It is a function of β, γ
and n which can be found in statistical book references.25

The degree of conservatism in the upper tolerance limits is
determined by the coverage, confidence coefficient and
the number of samples which are abbreviated with β, γ and
n, respectively.

Reverse logarithmic transformation is needed on NTL
of y to get NTL of x. It is given by

NTLxðn, β, γÞ ¼ 10ðNTLyðn, β, γÞÞ (7)

Distribution-free tolerance limit (DFL) is used to avoid
the assumption that the distribution is lognormal. This
assumption is overcome by stabilizing the tolerance limit
to the maximum spectral value. The main benefit of the
distribution-free tolerance limit over the normal tolerance
limit is that it does not change with the spatial distribution
of the spectral values for the responses within the zone.26

DFLx can be expressed as follows

DFLxðn, β, γÞ ¼ xh, γ ¼ 1� βn (8)

where xh is the value that will pass at least the β portion of
xi with a confidence of γ. Calculation of distribution-free
tolerance limits is the same as normal tolerance limits, but
there is an equation of confidence limit integrated with
fraction portion beta.

Normal prediction limit (NPL) is used to yield at
a conservative limit for the structural response spectra.27

Normal prediction limit performs only to normally dis-
tributed random variables. Hence, the logarithmic trans-
formation is necessary to get a nearly normal distribution
for the transformed spectral values. NPLy can be written as

NPLyðn, γÞ ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
tn�1; asy (9)

a ¼ 1� γ (10)

where tn�1;a represents percentage point of Student’s t
variable and is tabulated in any statistics book.

Reverse logarithmic transformation is also needed on
NPL of y to get NPL of x. It is given by

NPLxðn, γÞ ¼ 10ðNPLyðn, γÞÞ (11)

The most prevalent method to calculate at a limit for the
structural response spectra within a zone is to apply the
spectral responses predicted or measured at n points and then
to draw the lines at the maximum spectral values. It does not
provide any conservatism to the measurement in terms of
tolerance limits. It is called envelope approach (ENV).

Third-order polynomial transform (TPNT) is used for
estimating the cumulative distribution function (CDF) of
samples in a transformed space. Probit function and the
logarithm are used on transformation. Third-order poly-
nomial transform works well with the estimation of
quantiles with scarce samples28

ðζ i,Fðζ iÞÞ ¼
�
ζ i,

i

nþ 1

�
(12)

βi ¼ Φ�1ðFðζ iÞÞ (13)

The value ζ i is a set of measurements and Fðζ iÞ is the
empirical distribution function. Φ�1 is the inverse of the
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standardized distribution function, where β is the re-
liability index

ζ i ¼
X3
j¼0

αj
�
β j
i

�
(14)

ζ i ¼ α0 þ α1βi þ α2β
2
i þ α3β

3
i (15)

The monotonicity constraint is achieved as the least
square is performed in equation (14). When the cubic
polynomial is written as shown in equation (15), mono-
tonicity is achieved by providing the following constraints
given

α22 þ 3α1α3 < 0, α3 > 0 (16)

Logarithmic transformation is applied to equation (13)
to obtain third-order polynomial logarithmic transform
(log-TPNT). log βi and ζ i are related as

ζ i ¼
X3
j¼0

αj
�
log β j

i

�
(17)

The cubic polynomial is written in equation (18), while
the monotonicity constraint is provided like TPNT

ζ i ¼ α0 þ α1 log βi þ α2ðlog βiÞ2 þ α3ðlog βiÞ3 (18)

Artificial neural network

Neural networks supply a range of innovative techniques
to solve problems in pattern recognition, experimental
data analysis and control. They have many significant
attributes including high computing speeds and the ability
to learn highly nonlinear relationships by its dynamic
system response to external inputs.29 Artificial neural
networks come to prominence in tabulated data.30,31 The
ANN in Figure 1 can be expressed by the following
equations

uk ¼
Xm
i¼1

wk
i xi (19)

yk ¼ φ
�
uk þ bk

� ¼ φ

 Xm
i¼1

wk
i xi þ bk

!
¼ φ

 Xm
i¼0

wk
i xi

!

(20)

Inputs xi, weights of the inputs wk
i and summing

junctions are three fundamental parts of the neurons in
ANN. bk is called a bias and uk is a weighted sum of
inputs. The output yk is given by operating on an acti-
vation function φ.

Feed forward backprop algorithms are most widely
used network with Levenberg–Marquardt implementation
in aerospace applications.32,33 Besides the advantage of its
simplicity of training and convergence, it is most prevalent
worked network type for prediction of the external
loads.34,35 Hyperbolic tangent sigmoid activation function
is used in this study. MATLAB network/data manager tool
(nntool) is used for ANN calculations.

Figure 1. Smoothed envelope options comparison.

Figure 2. MIL-STD-810 vibration levels for store
equipment’s.
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MIL-STD-810

MIL-STD-810 is a military specification that indicates
vibration levels of the stores which are externally carried
by jet-type aircraft under different loading conditions and
flight parameters. It is not obvious from the standard that
flights were performed with F-16 type aircraft or not. For
instance, it is stated that aircraft buffet tests were per-
formed with F-15, but F-16, F-14 and F-18 have the
potential to produce buffer vibration.

The suggested vibration level defined in the standard
for store equipment carried externally by jet-type aircraft
is given in Figure 2. The slope of the curves between W1-
W2 andW1-W@2000 Hz may be 0 db/octave ±3 db/octave or
±6 db/octave. The vibration levels are described by four
parameters: W1, W2, f1 and f2.

36

Vibration level parameters W1, W2, f1 and f2 are cal-
culated as given in equations (21)–(26)

W1 ¼ 0:005 ×K ×A1 ×B1 ×C1 ×D1 ×E1 (21)

W2 ¼ H ×
�q
ρ

�2
×K ×A2 ×B2 ×C2 ×D2 ×E2 (22)

M ≤ 0:90;K ¼ 1, 0:90 ≤M ≤ 1:0;

K ¼ �4:8x M þ 5:32, M ≥ 1;K ¼ 0:52
(23)

q ¼
�
1

2

�
× ρ0 × σ ×V

2
a ×M

2 (24)

f1 ¼ 105 ×C ×

�
t

R2

�
(25)

f2 ¼ f1 þ 1000 (26)

H in equation (22) and C in (25) are constants and their
metric values are 559 and 254, respectively. q is the
dynamic pressure at flight conditions given in equation
(24). Va,M , σ and ρ0 are the local speed of sound (m/s), the
Mach number, the ratio of local atmospheric density to sea
level atmospheric density and the sea level atmospheric
density (kg/m3), respectively. ρ is the store weight density.
The density term ρ is suggested to be kept between 641
and 2403 kg per cubic metre, if it is out of range. t is the
load carrying thickness in millimetres and R is the overall
store radius in millimetres. Limiting of f1 values between
100 and 2000 Hz is suggested. Free fall stores f1 parameter
is fixed to 125 Hz in standard. The definitions and values
of the parameters A1, A2, B1, B2, C1, C2, D1, D2, E1 and E2

are given in Table 1. Aerodynamically dirty term indicates
the stores that have blunt noses, optical flats, acute corners
or deep cavities on its lengths. In this study, A1, A2, B1, B2,
C1, C2, E1 and E2 are taken as 1. D1 and D2 are taken as 8

Table 1. MIL-STD-81036 parameter definitions and their values.

Parameter definition Configuration Parameter 1 Parameter 2

Usage of special adaptor, AC Single store A1: 1 A2: 1
Usage of special adaptor, AC Side by side store by adaptor A1: 1 A2: 2

Usage of special adaptor, AC Behind other store by adaptor A1: 2 A2: 4
Location of the store Aft half parts of the powered missile B1: 1 B2: 4

Location of the store Other stores aft half parts B1: 1 B2: 2
Location of the store Forward parts of the all stores B1: 1 B2: 1

Usage of special adaptor, AD Single or side by side store by adaptor C1: 2 C2: 4
Usage of special adaptor, AD Behind other store by adaptor C1: 1 C2: 2

Usage of special adaptor, AD Other stores C1: 1 C2: 1
Structural mechanics of the store Production of sheet metal tail cone unit D1: 8 D2: 16
Structural mechanics of the store Powered missile D1: 1 D2: 1

Structural mechanics of the store Other stores D: 4 D2: 4
Liquid existence in the store Firebombs including jelly E1: 1/2 E2: 1/4

Liquid existence in the store Other stores E1: 1 E2: 1

Figure 3. Accelerometer locations on guidance kit.
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and 16, respectively, since it is a metal fin/tail cone unit.
The volume of the store is 0.2 cubic meter.

Data collection and tolerance
limit estimation

Instrumentation and data analysis

Considering the cooperation between TÜBİTAK SAGE
and Ministry of National Defense, it is possible to work
with flight test data of a generic jet fighter aircraft. The
data consist of 83 separate aircraft flight conditions. Data
contain responses from eight accelerometers on the
guidance kit. Eight accelerometers are mounted on
equipment of the store by wax. They are positioned be-
tween two lugs, as shown with star symbols in Figure 3.
All accelerometers are located between suspension lugs in
body 3. Accelerometer 1 is placed near the lateral wall of
body 3 on the equipment. Accelerometers 2, 4, 5 and 8
are located near the bottom wall on the equipment.

Accelerometers 3 and 6 are located near the suspension
lugs on the equipment. Accelerometer 7 is installed on the
equipment between suspension lugs. Close view of data
storage system and location of accelerometer 6 is given in
Figure 4.

Table 2. Accelerometer properties.

Characteristics Specifications

Full-scale range ±250 g
Sensitivity 20 mV/g

Resolution 0.003 g rms
Natural frequency 38000 Hz

Table 3. Parameter values for tolerance limits.38

Method Parameter Value

NTL Beta 0.95
NTL Gama 0.5

NPL T Student Gama 0.05
DFL Beta 0.917

TPNT, Log-TPNT Beta 0.95

NTL: normal tolerance limit; NPL: normal prediction limit; DFL:
distribution-free tolerance limit; TPNT: third-order polynomial
transform.

Figure 5. Acceleration spectral density of flight condition 48.

Figure 6. Test spectrum of flight condition 48.

Figure 4. Close view of data storage system and location of accelerometer 6.
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The sampling frequency is taken as 10,000 Hz because
20–2000 Hz is considered in aircraft vibration problems.
Accelerometer properties are given in Table 2.

Tolerance limit estimation

Constants of tolerance limits used in this study are given
Table 3. Accelerations are collected between the altitudes
of 12,500 ft and 35,000 ft and between 0.5 and 0.9 Mach
numbers. Power spectral density and tolerance limits are

calculated using acceleration data. Duration of one second
windowed time history data is concerned. 2–1/6 octave
band resolution bandwidth is used in spectrums. MAT-
LAB was used to process the collected data.37 Acceler-
ation spectral density of flight condition 48 in training data
and tolerance limits calculated from acceleration data are
shown in Figure 5.

W1 (low frequency amplitude value), W2 (high fre-
quency amplitude value), f1 and f2 are determined for each
limit. The shape of the spectra given in Figure 2 is used to

Figure 7. Comparison of experimental and empirical Mach number versus vibration severity at constant attitude.

Figure 8. Comparison of experimental and empirical dynamic pressure versus vibration severity.

Kaplan et al. 7



fit the limits. Vibration spectrum fitted to flight condition
48 with NTL is shown in Figure 6. The envelope is
smoothed using a series of straight lines. Usage of
maximum seven lines with slopes of 0, ±3 dB/octave and
±6 dB/octave is advised.39 The smoothed envelope shape

is intended to be similar to MIL-STD-810 proposed shape;
however, more than one smoothed envelope can be fitted
to one specific envelope. In these cases, area under the
envelope is minimized since it designates the vibration se-
verity. The approach is given in Supplementary Material.

Results

First, validation of experimental data with literature is
demonstrated. Then, data pool in terms of Mach number
and flight altitude is mentioned. Finally, tolerance limit
comparisons and test case performances are given.

Validation of the data

Vibration severity in terms of g-RMS tends commonly to
increase with augmentation of the Mach number.40 Em-
pirical Mach number versus overall g-RMS relationship41

is replotted in Figure 7 with experimental data used in this

Table 4. Flight conditions of test cases.

Number Mach number Altitude (ft)

1 0.568 13,090
2 0.808 14,513

3 0.699 20,138
4 0.705 31,600

5 0.6 13,573
6 0.783 14,550

7 0.618 24,960
8 0.743 24,960

Figure 9. Data pool in Mach number and attitude.

Table 5. Summary of limit performance (mean absolute error).

Tolerance limit W1 W2 f1 f2

NTL 17.94 15.04 14.4 25.25
DFL 42.42 23.4 19.45 33.38

NPL 52.98 27.65 25.84 31.47
ENV 42.89 31.36 19.13 32.47

TPNT 46.65 28.45 16.59 28.34
Log-TPNT 34.33 30.86 15.24 30.85

NTL: normal tolerance limit; NPL: normal prediction limit; DFL:
distribution-free tolerance limit; ENV: envelope approach; TPNT: third-
order polynomial transform.

Table 6. Summary of limit performance (standard deviation of
error).

Tolerance limit W1 W2 f1 f2

NTL 19.73 12.96 13.65 39.89
DFL 29.04 21.17 20.15 34.67

NPL 80.64 29.27 28.99 49.37
ENV 40.89 28.21 14.03 16.24

TPNT 24.06 24.89 16.55 13.58
Log-TPNT 39.9 28.64 10.63 16.38

NTL: normal tolerance limit; NPL: normal prediction limit; DFL:
distribution-free tolerance limit; ENV: envelope approach; TPNT: third-
order polynomial transform.
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study at 12,500 ft and 20,000 ft. It can be seen that ex-
perimental data taken at 12,500 ft and 20,000 ft remain
between 2000 ft and 30,000 ft of empirical result curves.
Also, increasing trend of vibration severity versus Mach
number is similar to empirical data in the literature.

Vibratory loads increase as the dynamic pressure in-
creases.42 Root mean square vibration is linearly pro-
portional to dynamic pressure.43 Figure 8 shows that
augmentation of dynamic pressure induces more g-RMS
level in the store. Graph is replotted with experimental

Figure 10. Prediction of normal tolerance limit versus MIL-STD-810: (a) Test case 1; (b) test case 2; (c) test case 3; (d) test case 4; (e)
test case 5; (f) test case 6; (g) test case 7; and (h) test case 8.

Kaplan et al. 9



data.44 It is seen that there is a good agreement between
literature and experimental results.

Training and test sets of flight conditions

Test set of flight condition is given in Table 4. In addition,
Figure 9 shows the location of the training and test points
in the Mach number–altitude variable space. Green points
are indicated as test cases.

Tolerance limit comparison

Summary of the limit performance can be seen in Tables 5
and 6. GenerallyW2 predictions are more accurate thanW1

in all limits. Normal tolerance limit results have the lowest
error percentage among limits. Distribution-free tolerance
limit works well on W2 prediction after NTL. Predictions
of log-TPNT on W1 and TPNT on W2 showed that these
methods are second or third among other methods ac-
cording to the arrangement of least mean error.

Mean absolute error of NTL test results are 17.94 for
W1, 15.04 for W2, 14.48 for f1 and 25.25 for f2.
Distribution-free tolerance limit, NPL and ENV in liter-
ature are tested with ANN. It is seen that DFL is more
accurate in W1 and W2 prediction rather than NPL and
ENV. The limits used in scarce sample TPNT and log-
TPNT transform are also tested with ANN training net-
work. It is seen that log-TPNT performance is better than
DFL, NPL and ENV on W1 prediction. Performance of
TPNT and log-TPNT is reasonable compared to other
limits for the remaining parameters W2, f1 and f2. Results
of the individual test cases for the limits are given in
Supplementary Material.

ANN performance on test cases

Eight different test points are randomly selected from
Mach number–altitude space to validate the performance
of the ANN predictions. Artificial neural network–
predicted test spectrum is compared to the experimental
test spectrum. Moreover, the results of the MIL-STD-810
are compared with experimental results. Military standard
levels are given as AD case that uses the parameters C1

and C2 as 2 and 4, respectively.
Figure 10 shows that NTL prediction test spectrums are

more accurate than MIL-STD-810 AD on all test cases.
Also, structural response estimations based on MIL-STD-
810 are conservative, especially for low frequency be-
tween 20 Hz and 125 Hz range. High frequency amplitude
of PSD (W2) based on MIL-STD-810 is found to be more
accurate thanW1, in particular for the test cases 7 (T7) and
8 (T8). MIL-STD-810 AD covers singular accelerometer
measurements except test case 2. Some individual ac-
celerometer responses at high frequency band exceed
MIL-STD-810-AD prediction. They are local overflows in
a narrow band, and the results of MIL-STD-810 AD are
generally found to be highly conservative, especially for
the low frequency range.

W1 values are greater than W2 values in all cases based
on MIL-STD-810 calculations. W2 value is inversely
proportional to the square of the density of the store. The
density of the instrumented pod is high due to its steel
material property, and it may be the reason for the lower
value ofW2 according toW1 at MIL-STD-810 predictions.
MIL-STD-810 also fixes the frequency bands for free fall
stores to 125 Hz and 1125 Hz, respectively. Frequency
values are predicted more accurately than MIL-STD-810
by the proposed method.

Conclusion

The present article introduced a new method for the
prediction of the structural response of equipment inside
the store in terms of Mach number and flight altitude. It
was found that MIL-STD-810 exhibited conservatism on
equipment vibration response, especially in the low fre-
quency region.

The proposed prediction strategy also involves safety
factor by using tolerance limits. Performances of limits
were compared with each other. An artificial neural net-
work was used to train 75 flight conditions. In order to
demonstrate its merit, 8 test cases apart from training data
were studied to check the ANN prediction performance.
Firstly, NTL results showed that structural response could
be predicted by the proposed method. It should be noted
that, all frequency and ASD predictions in the proposed
approach are better than military standard estimates.
Moreover, the structural response was predicted in terms
of four parameters in the frequency domain, contrary to
similar studies which predicts g-RMS value of ASD-
frequency curve. Secondly, different limit performances
were compared through test cases. Two new limits, third-
order polynomial subjected to monotonicity constraint
with normal and logarithmic transforms, were tested in
structural response prediction. It was seen that new limit
results were not as good as NTL, but they provided ac-
ceptable results.

The proposed method can be implemented to any store
that is suspicious whether the outer geometry is AD or not.
AD case depends on separated aerodynamic flow ac-
cording to MIL-STD-810. The proposed method is sen-
sitive to the aerodynamic characteristics of any store.

As for future work, the concept of application of the
method can be implemented on different output pre-
dictions as shock and acoustic noise in terms of input
parameters.
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