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Abstract
Asymptotic sampling is an efficient simulation-based technique for estimating small failure probabilities of structures. The 
concept of asymptotic sampling utilizes the asymptotic behavior of the reliability index with respect to the standard devia-
tions of the random variables. In this method, the standard deviations of the random variables are progressively inflated 
using a scale parameter to obtain a set of scaled reliability indices. The collection of the standard deviation scale parameters 
and corresponding scaled reliability indices are called support points. Then, least square regression is performed using these 
support points to establish a relationship between the scale parameter and scaled reliability indices. Finally, an extrapola-
tion is performed to estimate the actual reliability index. The accuracy and performance of the asymptotic sampling method 
are affected by various factors including the sampling method used, the values of the scale parameters, the number of sup-
port points, and the formulation of extrapolation models. The purpose of this study is to make a critical evaluation of the 
performance of the asymptotic sampling method for highly safe structures, and to provide some guidelines to improve the 
performance of asymptotic sampling method. A comprehensive numerical procedure is developed, and structural mechanics 
example problems with varying number of random variables and probability distribution types are used in assessment of 
the performance of asymptotic sampling method. It is found that generating the random variables by Sobol sequences and 
using the 6-model mean extrapolation formulation give slightly more accurate results. Besides, the optimum initial scale 
parameter is approximately around 0.3 and 0.4, and the optimum number of support points is typically four for all problems. 
As the reliability level increases, the optimum initial scale parameter value decreases, and the optimum number of support 
points increases.

Keywords Asymptotic behavior · Extrapolation models · Reliability index · High reliability

1 Introduction

Structural reliability is predicted using a limit state function 
(or performance function) that is used to separate the safe 
and failure regions of an input space. The probability of fail-
ure estimation requires calculation of the multi-dimensional 
integral of the joint probability density function of all the 
random variables over the failure region

where I is the indicator function that takes the value of 1 
when the condition is true and 0 when the condition is false, 
fX(x) denotes the joint probability density function of the set 
of random variables X, and g(x) is the limit state function. 
For most real life structural problems the analytical inte-
gration of this multi-dimensional function is not possible; 
therefore, analytical and simulation-based approaches have 
been proposed to estimate failure probability.

Analytical approaches require a small number of limit 
state function calculations; therefore, they are typically com-
putationally inexpensive compared with simulation-based 
approaches. The most popular analytical methods are the 
first-order (Hasofer and Lind 1974; Rackwitz and Fiessler 
1978) and second-order reliability methods (Breitung 1984; 
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Tvedt 1990), which are based on the first-order and second-
order expansions of the limit state function at the most prob-
able failure point (MPP), respectively. Although the analyti-
cal approaches are computationally advantageous compared 
to other methods, they are not necessarily suitable for real-
life problems which have complex and nonlinear limit state 
functions (e.g., problems with multiple failure modes).

Simulation-based approaches can yield accurate results 
provided that a sufficient number of simulations are applied. 
The most popular simulation-based approach is the Monte 
Carlo simulation (MCS) method (Rubinstein and Kroese 
2016). Unfortunately, MCS is computationally expensive 
for estimating small failure probabilities. Variance reduction 
techniques such as importance sampling (Melchers 1989) 
and adaptive importance sampling (Wu 1994) can be used 
to improve the accuracy of failure probability estimations. 
These methods rely on the concept of MPP search and most 
MPP search algorithms may fail or yield erroneous results 
when the limit state function is highly nonlinear or discon-
tinuous. In such cases, simulation-based methods that do 
not rely on MPP search such as stratified sampling (Iman 
and Conover 1980), subset simulation (Au and Beck 2001) 
or line sampling (Koutsourelakis et al. 2004) can be used.

Other alternatives include the utilization of metamodels 
such as Kriging (Kaymaz 2005; Xiao et al. 2020; Zhou et al. 
2020), neural networks (Gondal and Lee 2012; Papadopou-
los et al. 2012), support vector regression (Basudhar and 
Missoum 2010), radial basis functions (Zhou et al. 2019a, 
b), and polynomial chaos expansions (Diaz et al. 2018; Zhou 
et al. 2019a, b). Owing to the extremely large computational 
cost of implicit functions in certain problems, surrogate 
models are widely used as a replacement (Jiang et al. 2019; 
Chojaczyk et al. 2015). However, the performances of surro-
gate models are affected by the curse of dimensionality when 
the dimensions are large. That is, the computational effort 
required to construct a surrogate model grows dramatically 
with the number of random input variables.

Extrapolation-based methods are used to overcome the 
disadvantages of other methods used in high reliability sys-
tems. Asymptotic sampling (Bucher 2009) is an extrapola-
tion-based method for estimating small failure probabilities. 
This method extrapolates from low reliability indices to the 
high reliability indices based on the asymptotic behavior of 
the failure probability with respect to the standard devia-
tion of the variables. By using a scale parameter, the stand-
ard deviations of the random variables are progressively 
inflated to obtain various (smaller) scaled reliability indices 
that can be predicted accurately using a small number of 
samples. Subsequently, least squares regression is used to 
establish a relationship between the standard deviation infla-
tion parameter and scaled reliability index values. Finally, 
extrapolation is performed to estimate the actual reliability 
index. This method can reduce the computational cost for the 

estimation of the high reliability index due to the fact that 
the low reliability index can be estimated with lower compu-
tation. Zhangchun et al. (2013, 2014) improved the accuracy 
of the asymptotic sampling method using mean prediction 
of various extrapolation models. Acar (2016) increased the 
effectiveness of the asymptotic sampling by re-formulating 
the extrapolation formulation for highly safe structures with 
separable limit state functions.

The aim of this paper is to critically evaluate the perfor-
mance of the asymptotic sampling method, and to provide 
guidelines to improve it. A comprehensive numerical pro-
cedure is developed, and example problems with varying 
numbers of random variables and probability distribution 
types are used to assess the performance of asymptotic sam-
pling method.

Prof. Raphael (Rafi) T. Haftka developed novel 
approaches in the field of reliability prediction. The exam-
ples include the probabilistic sufficiency factor (Qu and 
Haftka 2004), multiple tail median (Ramu et al. 2010), con-
servative reliability estimation with bootstrapping (Picheny 
et al. 2010), and separable Monte Carlo (Smarslok et al. 
2010; Chaudhuri and Haftka 2013), to name a few. In par-
ticular, the multiple tail median formulation (Ramu et al. 
2010) inspired Zhangchun et al. (2013, 2014) to develop 
a mean extrapolation formulation, which will be covered 
in Sect. 3. This paper is dedicated to the memory of Prof. 
Rafi Haftka.

The remainder of this paper is organized as follows: The 
asymptotic sampling method is described briefly in the 
next section. The mean extrapolation formulation used in 
asymptotic sampling is presented in Sect. 3. The numerical 
examples and computational procedure used in this study are 
discussed in Sect. 4. The results obtained from these exam-
ple problems are presented and discussed in Sect. 5. Finally, 
a summary of the important conclusions is given in Sect. 6.

2  Asymptotic sampling

Bucher (2009) developed an asymptotic sampling method 
that enables accurate estimation of high reliability indices. In 
this method, the standard deviation of the random variables 
are artificially inflated using a scale parameter to obtain 
smaller reliability indices, known as “scaled” reliability indi-
ces. Subsequently, a functional relationship is established 
between the scale parameters and scaled reliability indices. 
Finally, the actual reliability index is predicted using the 
established functional relationship.

Bucher first considered a problem involving a linear 
limit state function and suggested that this problem can be 
reduced to a single variable with standard deviation of σ via 
an appropriate coordinate transformation. Then, the reliabil-
ity index can be formulated as
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where f is the scale factor and �f  is the scaled reliability 
index computed for the scaled standard deviation of the 
random variable σf = σ/f. The actual reliability index can 
be computed using �act = �(f = 1). It is noteworthy that for 
problems with multiple input random variables, the standard 
deviations of all random variables are scaled using the same 
scale factor f.

To obtain a good estimate for �act , the reliability index for 
a larger value of σ (a smaller value of the scale factor f) can 
be computed using MCS, and then simply extrapolated by 
multiplying the result with f.

Additionally, Bucher considered a second analyti-
cal problem with a (hyper)circular limit state function in 
n-dimensional Gaussian space in which failure is expressed 
as g(X) = R2 − XTX ≤ 0. In this case, the reliability index is 
expressed in terms of the χ2-distribution with n degrees of 
freedom, as follows:

This relationship between reliability index and the standard 
deviation scale parameter f is shown in Fig. 1.

Based on the asymptotic behavior of the reliability 
index with respect to the standard deviation scale param-
eter, Bucher assumed the following functional relationship 
between the reliability index and the standard deviation scale 
parameter f

Notice that as f → ∞ (that is, as σf → 0) the reliability index 
β → ∞ so that the asymptotic behavior is ensured. Coeffi-
cients A and B are determined from least squares regression 
analysis based on the estimates of � for different values of 

(2)�(f ) =
�f

f

(3)� = Φ−1[1 − �2(f 2R2, n)]

(4)� = Af +
B

f

f smaller than 1. That is, a set of “support points” [fi, β(fi)] 
shown in Fig. 2 is used in the regression.

To assign equal weights to all support points for the 
regression analysis, Eq. (4) can be rewritten in terms of a 
scaled reliability index as follows:

For this method, it is essential to use a sampling method 
that yields stable results. A typical choice is Latin hypercube 
sampling (LHS) method (Iman 1982; Florian 1992). Alter-
natively, pseudo-random sequences with low-discrepancy 
sampling methods such as Sobol sequences (Bratley and 
Fox 1988), Halton sequences (Halton 1960) or Good lattice 
point sets (Fang and Wang 1994) can be utilized. In this 
study, the performance of the asymptotic sampling method 
is investigated by sampling with the commonly used LHS 
and Sobol sequences.

Bucher (2009) initiated the asymptotic sampling algo-
rithm using the scale parameter, f0 = 1. The required number 
of samples in the failure domain was set to N0 = 10. In the 
first step, the actual number of samples NF in the failure 
domain was inadequate (less than N0). Therefore, the param-
eter f was decreased by a factor of 0.9, and the simulation 
was repeated until NF was equal to or exceeded N0. The sup-
port points and regression curve obtained from the extrapo-
lation process are shown in Fig. 2.

Bucher (2009) stated that five support points can be used. 
In his later studies, he used different numbers of support 
points. In a follow-up study, Gasser and Bucher (2018) sug-
gested that four or more support points to yield a more stable 
regression; however, this practice resulted in an increase in 
computational effort. They used different numbers of sup-
port points in different example problems without a clear 
statement on determination of the proper number.

The extrapolation performance is affected by the num-
ber of support points (Ns), initial scale parameter (f0) and 

(5)
�

f
= A +

B

f 2

Fig. 1  Relationship between the reliability index and the standard 
deviation scale parameter f for hyper circular limit state function 
(Bucher 2009) Fig. 2  The concept of asymptotic sampling (Bucher 2009)
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sampling methods used to generate the random variables. In 
this study, we aim to provide guidelines for these parameters 
to improve the asymptotic sampling method.

3  Mean extrapolation technique

As noted earlier, the asymptotic sampling method extrapo-
lates the high reliability index from the low reliability indi-
ces obtained. This technique can decrease the computational 
cost for the evaluation of a high reliability index because the 
low reliability index can be estimated at a lower computa-
tional cost. However, Zhangchun et al. (2013) discovered 
that the use of a single extrapolation model was not robust. 
Inspired by Prof. Rafi Haftka’s multiple tail median formula-
tion (Ramu et al. (2010)), where the median of multiple tail 
model predictions is used, Zhangchun et al. (2013) proposed 
to generate multiple extrapolation models and use the mean 
value of the reliability predictions of these models. Spe-
cifically, they proposed using 10-extrapolation models, as 
expressed in Eqs. (6) and (7).

where t = 1,…, 10 represents the extrapolation model index, 
qt (t = 1, …, 10) is the exponent of the extrapolation model, 
and exp(.) is the exponential operation with natural base e as 
the base. The coefficients At and Bt are determined through 
least squares regression. Then, the actual reliability index is 
computed using the average of these 10 extrapolation mod-
els, expressed as:

In a follow-up study, Zhangchun et al. (2014) proposed a 
new mean extrapolation technique that involves 6 extrapola-
tion models to estimate the actual reliability index. In that 
study, only models corresponding to  q2,  q3 and  q4 in Eq. (6), 
and the models corresponding to  q7,  q8 and  q9 in Eq. (7) are 
used. Zhangchun et al. (2014) did not provide a comparison 
of the accuracies of these two versions; hence, in this study, 
we aim to provide this comparison.

As noted earlier, the studies of Zhangchun et al. (2013, 
2014) were inspired by the study of Ramu et al. (2010), 
where the median of multiple predictive models are used. 
Therefore, in this study, the accuracies of the mean and 
median extrapolation models are also compared.

(6)�t(f ) = Atf +
Bt

f qt

(

t = 1, 2, 3, 4, 5;q1 = 3, q2 = 2, q3 = 1, q4 = 0.5, q5 =
1

3

)

(7)�t(f ) = Atf +
Bt

exp(f qt )

(

t = 6, 7, 8, 9, 10;q6 = 3, q7 = 2, q8 = 1, q9 = 0.5, q10 =
1

3

)

(8)
�(1) =

1

10

∑10

t=1
�t(1) =

1

10

(

∑5

t=1

(

At + Bt

)

+
∑10

t=6

(

At + Bt∕e
)

)

4  Numerical examples and procedure

This section provides six structural mechanics example 
problems to investigate the effects of various parameters 
(including the sampling method, values of scale parameters, 
number of support points, and extrapolation model formu-
lations) on the performance of the asymptotic sampling 
method. To reduce random sampling effect, all asymptotic 
sampling processes are repeated 1000 times. The average 
numbers of limit state function evaluations (NFE) are stored 
such that the computational costs can be analyzed for each 
problem. The performance of the asymptotic sampling is 
measured through normalized RMSE (RMSEnor) values 
obtained from 1000 runs, where RMSEnor is computed from:

To explore the effect of the sampling method, LHS and 
Sobol sequences are used for all example problems and all 
reliability levels, and RMSEnor values obtained are com-
pared. In this study, the number of samples is limited to 

512, based on Bucher (2009). To investigate the effect of 
the initial scale factor, we compare the RMSEnor values cor-
responding to different initial scale parameter (f0) values 
ranging from 0.2 to 1.0. To explore the effect of the num-
ber of support points, we compute RMSEnor values for the 
number of support points of 2, 3, 4 and 5, and compare 
them to find the proper number of support points. In this 
study, we use 10% RMSEnor value as threshold value while 
finding the proper values of the abovementioned parameters 
with smallest number of limit state function evaluations. We 
investigated the performance of the asymptotic sampling for 
these example problems for the reliability index values of 4, 
4.5, 5, 5.5, and 6, which correspond to the failure probabili-
ties of 3.17 ×  10−5, 3.40 ×  10−6, 2.87 ×  10−7, 1.90 ×  10−8, and 
9.87 ×  10−10, respectively.

All the example problems presented herein are selected as 
structural mechanics problems. The first example problem 
is a simple two-variable problem involving a linear limit 
state function; therefore, the analytical solution can easily 
be obtained. Starting from this simple example, the dimen-
sionality and the nonlinearity of the functions are varied. 
Here, the dimensionality refers to the number of variables, 
and the nonlinearity is measured with the square root of the 

(9)RMSEnor =
RMSE

�act
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mean of the square of the deviation of the response from 
the linear response surface, inspired from Emancipator and 
Kroll (1993). For each problem, a linear response surface is 
constructed in the range of mean plus/minus six times the 
standard deviation of the input random variables. Finally, our 
nonlinearity metric (NM) is defined as the root mean square 
deviation (defined above) normalized with the range of the 
corresponding response (see Eq. 10). The linear response 
surfaces are constructed by generating 10,000 data points in 
the input random variable range mentioned above. Table 1 
shows the dimensionality and nonlinearity of the example 
problems used in the paper.

where n = 10,000, ŷi is the value of the response predicted 
by the linear response surface, yi is the actual value of the 
response, ymax and ymin are the maximum and minimum 
values of the response used in construction of the linear 
response surface.

4.1  Connecting rod problem

The connecting rod problem under axial loading is illus-
trated in Fig. 3. The problem is a two-variable simple prob-
lem involving the following linear limit state function

where R and C denote stress and strength, respectively, and 
both are random variables. The statistical properties of the 
random variables are listed in Table 2.

The mean value of the stress µR can be changed to obtain 
various levels of reliability index values. For this problem, 
the actual reliability index can be obtained easily using Eq. 
(12) as the limit state function is linear and both random 
variables follow normal distribution. In Eq. (12), μ and σ 

(10)NM =

�

1

n

∑n

i=1

�

ŷi − yi
�2

y
max

− y
min

× 100

(11)g = C − R

correspond to the mean and standard deviation of the cor-
responding quantity, respectively.

4.2  Cantilever beam problem

The cantilever beam problem (Wu et al. 2001) is illustrated 
in Fig. 4. The limit state occurs when the tip displacement 
exceeds the allowable, Do.

where E is the modulus of elasticity, X and Y are mutually 
independent random loads, and width w = 2.7″ and thickness 
t = 3.4″ are the design parameters. The definitions of the 
random variables are presented in Table 3. The allowable 
displacement D0 can be varied to obtain various reliability 
levels as given in "Appendix A".

4.3  Central crack problem

In this example (Bayrak and Acar 2018), a rectangular plate 
of finite width W with a central through-thickness crack of 
length 2a loaded in tension with a uniform stress, S, is con-
sidered (see Fig. 5). The limit state function for this problem 
can be written as:

where a is the half crack length, W is the plate width, S is the 
applied stress, KIC is the fracture toughness, and all these 
variables are taken random. The probability distributions as 
well as the mean and the standard deviations of the random 
variables are given in Table  4. The mean value of the 

(12)� =
�C − �R
�

�2

C
+ �2

R

=
100 − �R
√

82 + 62
= 10 −

�R

10

(13)g = D0 −
4L3

Ewt

√

(

Y

t2

)2

+
(

X

w2

)2

(14)g = KIC −

�

sec

�

�a

W

�

S
√

�a

Table 1  The dimensionality and nonlinearity of the example prob-
lems

ID Problem Dimensionality 
(nvar)

Nonlinearity 
metric (NM)

1 Connection rod 2 0
2 Cantilever beam 3 4.31
3 Central crack 4 0.48
4 Fortini's clutch 4 6.02
5 Roof truss 6 4.25
6 I beam 8 2.40

Fig. 3  The connecting rod under axial loading

Table 2  Statistical properties of the random variables in the connect-
ing rod problem

Random variable Distribution Mean Standard 
deviation

R Normal µR 6
C Normal 100 8
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fracture toughness 
(

KIC

)

 is varied to adjust the reliability 
level (see "Appendix A").

4.4  Fortini’s clutch problem

The Fortini’s clutch, used in many tolerance analysis liter-
ature (Creveling 1997), is illustrated in Fig. 6. The contact 
angle y is given in terms of the independent component 
variables, X1, X2, X3, and X4 as follows:

The statistical properties of the random variables are pre-
sented in Table 5. The limit state function of this problem is 
expressed as follows

where ycrit can be customized to obtain various reliability 
levels, as presented in "Appendix A".

4.5  Roof truss problem

A roof truss subject to uniform loads, introduced by Song 
et al. (2009), is shown in Fig. 7. The top boom and compres-
sion members are concrete, and the bottom boom is made of 
steel. The limit state function is expressed as follows:

where c is the vertical deflection at the peak of the structure 
(node C in Fig. 7), q is uniform load, l is length, As and Ac 
are sectional areas and Es and Ec are the modulus of elastic-
ity. The definitions of the random variables are presented 
in Table 6. The value of the vertical deflection c can be 
changed to arrange the reliability level of the problem as 
given in "Appendix A".

4.6  I‑beam problem

A simply supported I-beam illustrated in Fig. 8. The beam 
is subjected to a concentrated load as discussed in Huang 
and Du (2006). This problem involves a limit state func-
tion, which is defined as the difference between the strength 
(S) and the maximum normal stress (σmax) due to bending, 
expressed as follows:

where

(15)y = arccos

(

X1 + 0.5(X2 + X3)

X4 − 0.5(X2 + X3)

)

(16)g = y − ycrit

(17)g = c −

(

ql2

2

)

(

3.81

AcEc
+

1.13

AsEs

)

(18)g = S − �max

(19)�max =
Pa(L − a)d

2LI
;I =

bf d
3 − (bf − tw)(d − 2tf )

3

12

Fig. 4  The cantilever beam 
under vertical and lateral bend-
ing

Table 3  Statistical properties of the random variables in the cantile-
ver beam problem

Random variable Distribution Mean Standard deviation

X (lb) Normal 500 100
Y (lb) Normal 1000 100
E (psi) Normal 29 ×  106 1.45 ×  106

Fig. 5  Central cracked plate 
with a finite width

Table 4  Statistical properties of the random variables in the central 
crack problem

Random variable Distribution Mean Standard deviation

a (mm) Normal 25 0.75
W (mm) Normal 500 5
S (MPa) Normal 100 10
KIC ( MPa

√

m) Normal K
IC

0.1 K
IC
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The statistical properties of the random variables in this 
example are listed in Table 7. The mean value of the strength 

can be tailored to accommodate the reliability level of the 
problem, as given in "Appendix A".

5  Results

5.1  Effect of sampling method

Bucher (2009) suggests using low-discrepancy sampling 
methods (e.g., Sobol sequences, Halton Sequences, etc.) to 
populate a variable space more uniformly such that more 
stable support points can be obtained. In this study, we con-
sider two well-known sampling methods, namely LHS and 
Sobol sequences, and compare their effectiveness in asymp-
totic sampling. The results obtained using these two sam-
pling methods are compared based on both the 6-model and 
10-model mean extrapolation formulations.

While comparing the results, we examine the average 
of the RMSE values (RMSEavg) obtained for all problems 
at each reliability level. Although no significant difference 
is observed between them, the use of the Sobol sequences 
yields smaller estimation errors, as expressed in terms of 
RMSE of the reliability indices, particularly at higher reli-
ability levels (see Fig. 9). Hence, we conclude that using 
Sobol sequence is more efficient than using LHS; therefore 

Fig. 6  Fortini’s clutch (Lee and 
Kwak 2006)

Table 5  Statistical properties of the random variables in the Fortini’s 
clutch problem

For X1 the scale parameter is λ = 4.01, and shape parameter is 
ζ = 0.0014. For X4, the location parameter is µ = 101.6, and scale 
parameter is β = 0.062

Random variable Distribution Mean Standard deviation

X1 (mm) Lognormal 55.29 0.0793
X2 (mm) Normal 22.86 0.0043
X3 (mm) Normal 22.86 0.0043
X4 (mm) Extreme type I 101.6 0.0793

Fig. 7  Roof truss

Table 6  Statistical properties of the random variables in the roof truss 
problem

Random variable Distribution Mean Standard deviation

q (kN) Normal 20 ×  103 1400
l (m) Normal 12 0.12
As  (m2) Normal 9.82 ×  10–4 5.892 ×  10–5

Ac  (m2) Normal 0.04 4.8 ×  10–3

Es (GPa) Normal 1 ×  1011 6 ×  109

Ec (GPa) Normal 2 ×  1010 1.2 ×  109
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we carry out sampling with Sobol sequences in the subse-
quent studies. The abovementioned finding is consistent 
with the suggestion of Bucher (2009), who reported that 
low-discrepancy sampling methods populate the variable 
space more uniformly, thereby affording more stable sup-
port points. As the support points become more stable, the 
RMSE values decrease. It is noteworthy that the RMSE 
values presented in Fig. 9 are 0.55 in terms of reliability 
index; however, it might result in larger error values in 
terms of the probability of failure.

5.2  Effect of extrapolation model formulations

In this section, a comparison of the 6-model and 10-model 
extrapolation formulations proposed by Zhangchun et al. 
(2003, 2004) is presented. We compare these formulations 
in terms of two aspects: the performance of (i) the best 
individual extrapolation model, (ii) the mean extrapolation 
model. In this paper, we call the models in Eq. (6) as “nor 
q3”, “nor q2”, “nor q1”, “nor q0.5” and “nor q1/3”, in the order 
they appeared in the equation. Similarly, we call the models 
in Eq. (7) as “exp q3”, “exp q2”, “exp q1”, “exp q0.5” and “exp 
q1/3”, in the order they appeared in the equation.

Considering the performance of the best individual mod-
els in both extrapolation formulations, it is discovered that 
the RMSE of the best individual model in the 10-model 
extrapolation formulation is always smaller than or equal to 
that of the 6-model extrapolation formulation (see Fig. 10a), 
as expected. Table 8 shows that the “nor q2” and “nor q3” 
models are the most accurate models of the 6-model and 
10-model extrapolation formulations for most of the reli-
ability levels, respectively. For the roof truss problem, “nor 
q1” is found to be the most accurate model for all reliability 
levels except β = 6, and “nor q0.5” is found to be the most 
accurate model β = 6. Furthermore, it can be observed that 
none of the “exp” model performed as the most accurate 
individual for any of the examples at any reliability level.

Fig. 8  The cross section and 
loading for the simply supported 
I beam

Table 7  Statistical properties of the random variables in the I beam 
problem

Random variable Distribution Mean Standard 
deviation

P Normal 6070 200
L Normal 120 6
a Normal 72 6
S Normal S 0.15 S
d Normal 2.3 1/24
bf Normal 2.3 1/24
tw Normal 0.16 1/48
tf Normal 0.26 1/48

Fig. 9  The average RMSE values of LHS and Sobol sampling for different reliability levels
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Based on a comparison of the performances of the two 
mean extrapolation formulations, Fig. 10b shows that there 
is no strong reason to choose 10-model formulation over 
6-model formulation. For the example problems investi-
gated, it is observed that the 6-model mean extrapolation 
yields slightly more accurate results than the 10-model 
mean extrapolation (see Fig. 10b). It is discovered that add-
ing more models to the mean extrapolation formulation 
does not necessarily improve the performance of the mean 
extrapolation prediction, because some individual models 
participating in the mean prediction deteriorates the perfor-
mance of the extrapolation method. Because the 6-model 
mean extrapolation results in more accurate predictions than 
the 10-model mean extrapolation, we decide to carry out the 
subsequent studies using the 6-model mean extrapolation 
formulation.

Additionally, we compare the accuracies from using 
the mean and median values of multiple predictive mod-
els. Figure 11 shows that using the mean value of multiple 
predictive models yields lower RMSEnor values for both the 
6-model and 10-model extrapolation formulations.

5.3  Effect of initial scale parameter

Another factor that substantially affects the performance of 
asymptotic sampling is the value of the initial scale param-
eter, f0. The use of a smaller f0 value causes an increase in 
the number of samples falling into the failure domain in the 
first steps of the asymptotic sampling process. Hence, the 
required number of samples in the failure domain is attained 
faster, and the NFE value used throughout the process 
decreases, which reduces the computational cost. For the 
cantilever beam problem at a reliability index value of 4.03, 
as a demonstration example, Fig. 12a shows that the number 
of limit state function evaluations, NFE, corresponding to 
f0 = 0.2 is substantially smaller than the NFE corresponding 

to f0 = 1.0. By contrast, the use of a smaller f0 value results 
in a set of support points with smaller scaled reliability 
indices and leaves more room for extrapolation error. Fig-
ure 12a shows that the RMSEnor corresponding to f0 = 0.2 is 
substantially larger than that corresponding to f0 = 1.0. This 
behavior is similar for all example problems and reliability 
indices presented herein (see "Appendix B"). Therefore, the 
optimum f0 value should be determined.

To determine the optimum value of f0, we generate NFE 
versus RMSEnor plots for a wide range of f0 values (we 
decrease f0 from 1 to 0.2 at 0.1 intervals). We consider that 
RMSEnor values above 10% are not acceptable. We obtain 
the value of f0 that gives acceptable RMSEnor values with the 
smallest NFE, and regard it as the optimum f0. Figure 12b 
shows the NFE versus RMSEnor plots for f0 = 0.3, f0 = 0.4 and 
f0 = 0.5. As shown, the initial scale parameter f0 = 0.4 yields 
acceptable RMSEnor values with the smallest NFE; therefore, 
we regard it as the optimum value for this problem at this 
reliability level.

Table 9 lists the optimum f0 values for all the example 
problems investigated. It is discovered that the optimum f0 
value ranges between 0.2 and 0.5. For reliability level β = 4, 
the average value of the optimum f0 over all the problems 
considered is 0.4. Furthermore, it is also observed that as the 
reliability level increases, the optimum f0 value decreases.

Next, we evaluate the effects of dimensionality and non-
linearity on the optimum initial scale parameter. For the reli-
ability level of β = 4, Fig. 13 shows that the dimensionality 
does not have a linear relationship with the optimum value 
of f0 (notice small R2 values in the figures), whereas the 
nonlinearity has (notice significant R2 values in the figures). 
As the nonlinearity of the limit state function increases, the 
optimum value of f0 also increases. The effects of dimen-
sionality and nonlinearity at the other reliability levels of 
(that is, β = 4.5, 5.0, 5.5) are explored in "Appendix C". For 
those reliability levels, the finding is the same that not have 

Fig. 10  RMSE values of a the best individual extrapolation models, and b the mean extrapolation models for the 6-model and 10-model extrapo-
lation formulas for different reliability levels
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a linear relationship with the optimum value of f0, whereas 
the nonlinearity has, and that the optimum value of f0 also 
increases as the nonlinearity of the limit state function 
increases.

5.4  Effect of number of support points

To improve the performance of asymptotic sampling, the 
appropriate number of support points, Ns, must be used. In 
this regard, Bucher (2009) suggested the use of five sup-
port points. However, in his later studies, he used different 
numbers of support points. In a follow-up study, Gasser and 
Bucher (2018) suggested using four or more support points 
to yield a more stable regression; however, this approach 
resulted in an increase in computational effort. They used 
different numbers of support points in different example 
problems without clarifying the process by which appropri-
ate number is determined.

In this study, we obtain the optimum number of support 
points in a similar fashion as we performed in determining 
the optimum value of f0. We generate NFE versus RMSEnor 
plots for Ns values ranging between 2 to 5, find the value of 
Ns that gives acceptable RMSEnor values with the smallest 
NFE, and regard it as the optimum Ns. Figure 14 shows that 
the optimum value of Ns is 4 for the cantilever beam problem 
at a reliability index of β = 4.03.

Table 10 lists the optimum Ns values for all the examples 
presented herein. The optimum Ns value is 4 for most ıf the 
cases. Furthermore, as the reliability level increases, the Ns 
value should be increased to 5. In summary, for the moder-
ate reliability index values (β=4, 4.5, and 5) Ns should be 
4; however, at reliability levels with higher reliability index 
values (β=5.5, and 6) Ns should be increased to 5.

Next, we evaluate the effects of dimensionality and non-
linearity on the optimum number of support points. For reli-
ability level β = 4, Fig. 15a shows that neither the dimension-
ality nor the nonlinearity have an important effect on the 
optimum number of support points. On the other hand, for 
reliability level β = 6, Fig. 15b shows that the optimum num-
ber of points increases as the nonlinearity increases, even 
though the dimensionality is still not effective. The effects 
of dimensionality and nonlinearity at the other reliability 
levels (i.e., β = 4.5, 5.0, and 5.5) are explored in "Appendix 
C". The observations at β = 4.5 and β = 5.0 are the same as 
those of β = 4.0, and the observations at β = 5.5 are the same 
as those of β = 6.0.

5.5  Application to a complex problem

The limit state functions for the example problems presented 
thus far involve functional expression between the input 
and output parameters. However, the asymptotic sampling 
method does not impose such a restriction. Next, we present Ta
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an example to demonstrate the application of the asymptotic 
sampling method to a complex problem without a functional 
expression between the input and output parameters.

The design of an automobile torque arm is presented 
in this section. This problem was originally presented by 

Bennett and Botkin (1986) and has been investigated by sev-
eral researchers including Picheny et al. (2008), Rahman 
and Wei (201), and Acar (2011). Briefly, the torque arm is 
subject to a horizontal load Fx =  − 2789 N, and a vertical 
load Fy = 5066 N (see Fig. 16). The loads are transmitted 
from a shaft at the right hole, and the left hole is fixed. The 
torque arm material has Young’s modulus of E = 206.8 GPa, 
and Poisson’s ratio of ν = 0.29. Seven design variables (d1 
through d7) alter the shape of the torque arm as shown in 
Fig. 17.

The limit state function for the torque arm problem is 
formulated as

where �f  is the failure stress of the torque arm material and 
�max is the maximum von Mises stress developed at the 
torque arm. The stresses at the control arm are computed 
through finite element analysis using a MATLAB finite 

(20)Y = �f − �
max

Fig. 11  The average RMSEnor values of mean and median of the multiple predictive models

Fig. 12  Comparison of performances of the asymptotic sampling method for different values of f0 for cantilever beam problem for reliability 
index of β = 4.03

Table 9  Optimum f0 values for all example problems at various reli-
ability levels

Problem Rel. index

4 4.5 5 5.5 6

CB 0.4 0.4 0.4 0.4 0.3
CC 0.4 0.3 0.3 0.3 0.2
CR 0.3 0.3 0.3 0.3 0.2
FC 0.5 0.4 0.4 0.4 0.3
IB 0.4 0.4 0.3 0.3 0.3
RT 0.4 0.4 0.4 0.4 0.4
Average 0.4 0.37 0.35 0.32 0.28
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element toolbox developed by Maute (2009) and CALFEM 
(1999). Figure 18 depicts the von Mises stress distribution 
on the torque arm when the design variables and the applied 
loads are assigned to their mean values. All the seven design 
variables (d1 through d7), applied loads (Fx and Fy), and fail-
ure stress are regarded as random variables. The statistical 

properties of the random variables are presented in Table 11. 
For the loads, a load safety factor of nL = 3 is used to main-
tain a sufficient reliability level.

The reliability estimation of the torque arm is performed 
using asymptotic sampling, where the Sobol sequence is 
used in sampling, 6-model mean extrapolation formulation 
is adopted, the initial scale parameter is chosen as 0.4, and 
four support points are used. For this problem, the asymp-
totic sampling process is repeated 100 times (as opposed to 
1000 times for the earlier examples). The reliability index of 
the torque arm is also estimated using MCS to have a basis 

Fig. 13  The effects of dimensionality and nonlinearity on the optimum value of f0

Fig. 14  Comparison of performances of the asymptotic sampling 
method for different Ns values for CB problem for reliability index 
β = 4.03, and f0 = 0.4

Table 10  Optimum Ns values 
for all example problems

Problem Rel. index

4 4.5 5 5.5 6

CB 4 4 4 5 5
CC 4 4 4 4 4
CR 4 4 4 4 4
FC 4 4 4 5 5
IB 4 4 4 4 4
RT 4 4 4 4 5
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for comparison. A sample size of  106 is used, and the reli-
ability index is computed as 4.17. Table 12 shows that the 
reliability index is estimated to be 4.21 on average, which is 
similar to that estimated through MCS (with approximately 
1% error), and the RMSEnor value is estimated to be 9.2%. 
Furthermore, Table 12 shows that if the number of support 
points is increased to 5, then the NFE will increase from 
2048 to 2560, without a significant accuracy gain.

6  Concluding remarks

The performance of the asymptotic sampling method 
depends on various factors including the sampling method, 
formulation of extrapolation models, initial scale param-
eter, and number of support points. To analyze the effects 
of these factors, the asymptotic sampling method with 
different settings of these factors was applied to various 

Fig. 15  The effects of dimensionality and nonlinearity on the optimum number of support points Ns

Fig. 16  The loading and bound-
ary conditions for the torque 
arm. Dimensions are in cm. 
[Courtesy of Picheny et al. 
2008]
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structural mechanics example problems with varying 
numbers of random variables and probability distribution 
types, and the following conclusions were drawn:

• First, the effect of the sampling method on the asymptotic 
sampling performance was analyzed. The use of LHS 
and Sobol sequence was compared, and it was found that 
there was no remarkable difference between the sampling 
methods. However, the use of Sobol sequences yielded 
slightly smaller prediction errors at higher reliability lev-
els.

• Next, we compared the 6-model and 10-model mean 
extrapolation formulations. We discovered that the 
6-model mean extrapolation formulation was more 
accurate than the 10-model mean extrapolation formula-
tion. This finding implied that adding more models to 
the mean extrapolation formulation did not necessarily 
improve the performance of the mean extrapolation pre-
diction.

• Subsequently, the effect of the initial scale factor was 
explored. It was find that the initial scale parameter could 
be set between 0.3 and 0.4 for a reliability index range 
of 4–6. As the reliability level increased, the initial scale 
parameter should be decreased. For all reliability levels, 
it was found that the dimensionality did not have a linear 
relationship with the optimum f0 value, whereas the non-
linearity had. It was also observed that the optimum f0 
value also increased as the nonlinearity of the limit state 
function increased.

• Next, the effect of the number of support points was 
explored. It was discovered that the use of 4 support 
points provided the best compromise between accu-
racy and efficiency. Meanwhile, if the reliability index 
is extremely high, then the use of 5 support points is 
recommended to achieve an acceptable level of accuracy. 
For reliability indices 4, 4.5 and 5.0, it was observed 
that neither the dimensionality nor the nonlinearity had 
an important effect on the optimum number of support 
points. On the other hand, for larger reliability indices, 
the optimum number of support points increased as the 
nonlinearity increased, even though the dimensionality 
was still not effective.

• Finally, the performance of the asymptotic sampling was 
tested on a complex problem that was similar to real-life 
problems. The Sobol sequence was used for sampling, 
6-model mean extrapolation formulation was adopted, 

Fig. 17  Design variables used to alter the shape of the torque arm. 
[Courtesy of Picheny et al. 2008]

Fig. 18  Von Mises stress distribution on the torque arm when the 
design variables and the applied loads are assigned to their mean val-
ues. Stresses are in MPa

Table 11  The statistical properties of the random variables for the 
torque arm problem. A load safety factor of nL = 3 is used

Random variable Distribution type Mean; standard deviation

d1 through d7 Normal 0; 0.1
Fx Normal − 2789/nL; 278.9/nL

Fy Normal 5066/nL; 506.6/nL

S Lognormal 300; 30

Table 12  The performance of the asymptotic sampling for the torque 
arm problem

Number of support points 4 5

Number of function evaluations 2048 2560
Rel. index prediction (average over 100 

runs)
4.21 4.23

RMSEnor 0.092 0.084
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the initial scale parameter was set to 0.4, and four sup-
port points were used. It was found that these settings 
provided a good compromise between accuracy and effi-
ciency.

Some limitations of the current study are as follows:

• The asymptotic sampling method is based on the assump-
tion that the reliability index increases monotonically as 
the standard deviation scale factor increases. For prob-
lems with multiple failure modes and multiple MPPs, this 
assumption may not be applicable. Hence, this method is 
not applicable to these abovementioned problems.

• The asymptotic sampling method works for non-normal 
distribution types provided that the distributions of inter-
est are not described by higher moments.

• Even though the suggested settings yielded good results 
for the complex application problem (i.e., torque arm 
problem), the number of example problems should be 
increased to further validate these settings.

Future research could focus on the following subjects:

• In the mean extrapolation formulations, a simple averag-
ing is used. A better strategy is to use a weighted average 
formulation rather than simple averaging. The accuracy 
of each individual extrapolation model can be estimated, 
and the weight factors in the weighted average model 
could be selected such that the accurate models have 
larger weight factors.

• Asymptotic sampling can be combined with importance 
sampling to further increase its efficiency.

• In the numerical examples tested, the reliability levels are 
changed by scaling the constraint bounds. The effect of 
the standard deviations on the results is worth investigat-
ing in the future.

Appendix A: Reliability levels 
of the numerical example problems

For all numerical example problems, five different reliabil-
ity levels are considered by changing a proper term in the 
LSF (see Table 13). The reliability index values reported in 
Table 13 are predicted using crude Monte Carlo simulations 
with a sample size of  107,  108,  109,  1010, and  1011 for reli-
ability indices of 4, 4.5, 5, 5.5, and 6. Note that the reliability 
indices of 4, 4.5, 5, 5.5, and 6 correspond to the failure prob-
abilities of 3.17 ×  10–5, 3.40 ×  10–6, 2.87 ×  10–7, 1.90 ×  10–8, 
and 9.87 ×  10–10, respectively.

Appendix B: NFE versus RMSE plots for all 
example problems and all reliability levels

The NFE values corresponding to different values of f0 for 
all reliability levels of the example problems are provided 
in Figs. 19, 20, 21, 22, 23 and 24. It can be realized that the 
RMSEnor values are greatly increased when f0 = 0.2 at all 
reliability levels for all example problems. For this reason, 
we did not investigate the values of f0 below 0.2.

Appendix C: The effects of dimensionality 
and nonlinearity on the optimum initial 
scale parameter and the number of support 
points

In this appendix, the effects of dimensionality and nonlinear-
ity on the optimum value of the initial scale parameter f0 and 
the optimum number of support points Ns for the reliability 
levels β = 4.5, 5.0, and 5.5 are explored. Note that the effects 
in the reliability levels β = 4.0 and 6.0 are explored in the 
main text, in Sects. 5.3 and 5.4.

Figure 25 shows for all reliability levels that the dimen-
sionality does not have an important effect on the optimum 

Table 13  The reliability levels considered for the example problems

a The term in the limit state function that is varied to change the reliability level
b The value of the term
c Corresponding reliability index

ID Problem Terma Valueb βc Valueb βc Valueb βc Valueb βc Valueb βc

1 Connection rod µR 60 4.00 55 4.50 50 5.00 45 5.50 40 6.00
2 Cantilever beam D0 2.50 4.03 2.62 4.51 2.75 5.00 2.89 5.54 3.04 6.05
3 Central crack K

IC
52 4.01 57 4.52 63 5.01 70 5.52 79 6.04

4 Fortini's clutch ycrit 4.05 4.02 3.55 4.53 3.02 5.01 2.31 5.50 1.20 6.04
5 Roof truss c 0.0360 4.07 0.0378 4.53 0.0400 5.01 0.0425 5.50 0.0466 6.07
6 I beam S 410 ×  103 4.07 490 ×  103 4.50 630 ×  103 5.01 880 ×  103 5.49 1700 ×  103 6.06
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value of f0, whereas the nonlinearity has a substantial effect. 
As the nonlinearity of the limit state function increases, the 
optimum value of f0 also increases.

Figure 26 shows for the reliability levels β = 4.5 and 
β = 5.0 that neither dimensionality nor nonlinearity have an 
important effect on the optimum number of support points 
Ns. However, for the reliability level β = 5.5, it is seen that 

Fig. 19  NFE values corresponding to f0 values for cantilever beam problem
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the optimum number of support points increases as the non-
linearity of the LSF increases, even though the dimensional-
ity is still insignificant.
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Fig. 20  NFE values corresponding to f0 values for central crack problem
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Fig. 21  NFE values corresponding to f0 values for connection rod problem
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Fig. 22  NFE values corresponding to f0 values for Fortini’s clutch problem
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Fig. 23  NFE values corresponding to f0 values for I beam problem
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Fig. 24  NFE values corresponding to f0 values for roof truss problem
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Fig. 25  The effects of dimensionality and nonlinearity on the optimum f0 value for reliability levels β = 4.5, 5.0, and 5.5
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Fig. 26  The effects of dimensionality and nonlinearity on the optimum Ns value for reliability levels β = 4.5, 5.0, and 5.5
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