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Abstract
Design optimization of structural and multidisciplinary systems under uncertainty has been an active area of research due 
to its evident advantages over deterministic design optimization. In deterministic design optimization, the uncertainties of 
a structural or multidisciplinary system are taken into account by using safety factors specified in the regulations or design 
codes. This uncertainty treatment is a subjective and indirect way of dealing with uncertainty. On the other hand, design 
under uncertainty approaches provide an objective and direct way of dealing with uncertainty. This paper provides a review 
of the uncertainty treatment practices in design optimization of structural and multidisciplinary systems under uncertainties. 
To this end, the activities in uncertainty modeling are first reviewed, where theories and methods on uncertainty categori-
zation (or classification), uncertainty handling (or management), and uncertainty characterization are discussed. Second, 
the tools and techniques developed and used for uncertainty modeling and propagation are discussed under the broad two 
classes of probabilistic and non-probabilistic approaches. Third, various design optimization methods under uncertainty 
which incorporate all the techniques covered in uncertainty modeling and analysis are reviewed. In addition to these in-depth 
reviews on uncertainty modeling, uncertainty analysis, and design optimization under uncertainty, some real-life engineering 
applications and benchmark test examples are provided in this paper so that readers can develop an appreciation on where 
and how the discussed techniques can be applied and how to compare them. Finally, concluding remarks are provided, and 
areas for future research are suggested.
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1 Introduction

1.1  Motivation of the review

Though uncertainty has been incorporated into many studies 
on design and optimization of structural and multidiscipli-
nary systems, the current literature lacks a combined review 

of uncertainty modeling, uncertainty analysis, and design 
optimization under uncertainty in a single review paper. 
Hence, this paper aims to (1) provide an in-depth review 
of uncertainty treatment practices such as uncertainty mod-
eling, uncertainty analysis, and design under uncertainty; (2) 
suggest areas for future research; and (3) complement exist-
ing reviews on similar topics such as reliability analysis by 
Rackwitz (2001), sampling-based methods for uncertainty 
and sensitivity analysis by Helton et al. (2006), reliability-
based optimization by Valdebenito and Schuëller (2010), 
uncertainty handling theories by Li et al. (2012), uncertainty 
representation by Zio and Pedroni (2013), and others. In 
addition to the in-depth review on uncertainty treatment in 
engineering fields, practical engineering applications and 
benchmark test examples are listed in this paper so that read-
ers can easily understand where to apply the topics explained 
in the paper or how to compare them.
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1.2  Definition of uncertainty

The term uncertainty has different meanings depending on 
the domain of application. In economics, Knight (1921) 
used the term uncertainty to describe the unquantifiable 
knowledge about some possible occurrence, as opposed 
to the presence of quantifiable risk. In terms of computa-
tional modeling and simulation perspective, Oberkampf 
et al. (2002) used the term total uncertainty to describe 
potential deficiency in any phase or activity of the mod-
eling process. The US National Research Council’s com-
mittee on improving risk analysis approaches defined 
uncertainty as a general concept that reflects our lack of 
sureness about something or someone, ranging from just 
short of complete sureness to an almost complete lack of 
conviction about an outcome (Council et al. 2009). It is 
seen that the content and intent affect the definition of 
uncertainty in a particular field.

In this paper, we use the definition provided by 
Nikolaidis et al. (2004b), where a useful functional defi-
nition of uncertainty is given as “information/knowledge 
gap between what is known and what needs to be known 
for optimal decisions, with minimal risk.” Based on this 
definition, the uncertainty is classified into two catego-
ries: aleatory uncertainty and epistemic uncertainty. Alea-
tory uncertainty refers to the inherent uncertainty due to 
probabilistic variability, and is also known as statistical 
uncertainty. This aleatory uncertainty is irreducible and 
usually characterized by a probability distribution. On the 
other hand, epistemic uncertainty stems from the lack of 
knowledge such as inadequate understanding of the under-
lying processes, incomplete knowledge of the phenom-
ena, or imprecise evaluation of the related characteristics 
(Alleman 2014). Epistemic uncertainty is also known as 
systematic uncertainty, and is reducible if we have more 
information on the system. Epistemic uncertainty can be 
characterized by methods such as probability bounds anal-
ysis, fuzzy logic, or Dempster–Shafer theory. This paper 
will review uncertainty modeling, uncertainty analysis, 
and design under uncertainty according to the definition 
of uncertainty and its categorization explained above.

1.3  Organization of the paper

The remainder of the paper is organized as follows. Sec-
tion 2 provides a fundamental background of uncertainty 
treatment—uncertainty modeling, uncertainty analysis, 
and design under uncertainty—in engineering applica-
tions. Section 3 presents a review of uncertainty modeling 
practices. Uncertainty categorization (or classification), 
uncertainty handling (or management), and uncertainty 

characterization activities are reviewed in this section. 
Characterized uncertain inputs are to be propagated 
through the analysis models to obtain uncertain outputs. 
Section 4 provides a review of analysis models, methods, 
and tools. Probabilistic techniques (e.g., sampling-based, 
stochastic, analytical, and dimension reduction) to deal 
with aleatory uncertainty and non-probabilistic techniques 
(e.g., interval analysis, convexity approaches) to deal with 
epistemic uncertainty are covered in this section. Output 
uncertainty information can be used in reliability-based 
design optimization (RBDO) of engineering systems. 
The current manuscript predominantly reviews time- and 
space-independent approaches, though we discuss a few 
time-dependent literature in Sect. 4.1.5. Section 5 provides 
a review of RBDO according to the purpose of research, 
reliability estimation, and type of uncertainty. Analytical 
approaches using most probable point (MPP) and sam-
pling approaches for RBDO under aleatory uncertainty as 
well as various approaches to deal with RBDO under both 
aleatory and epistemic uncertainty induced by insufficient 
data are covered in this section. Section 6 reviews bench-
mark examples and application problems in the literature. 
Finally, Sect. 7 provides some concluding remarks on the 
current status of uncertainty treatment practices and pos-
sible future research directions.

2  Fundamentals

2.1  Uncertainty modeling

In this section, we aim to provide some basic formulations 
concerning uncertainty modeling, analysis, and optimiza-
tion. An experienced researcher in uncertainty treatment 
might choose to skip this section. Commonly used uncer-
tainty handling theories are probability theory (the most 
used), evidence theory, fuzzy set theory, possibility theory, 
interval analysis, info-gap decision theory, and hybrid 
approaches.

In probability theory, first a sample space Ω is defined 
that relates to the set of all possible outcomes. For each 
element x ∈ Ω , the probability function f(x) is associated, 
which satisfies

Each subset of Ω is called an event E, and the probability of 
an event is defined as

In evidence theory, first a space of mass is defined as 
m ∶ 2X → [0, 1] , where X is the universal set including all 

(1)f (x) ∈ [0, 1] for all x ∈ Ω; and
∑

x∈Ω

f (x) = 1

(2)Pr(E) =
∑

x∈E

f (x)
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possible states, and 2X is the set of all the subsets of X. The 
mass function is also called basic belief assignment. For a 
subset S ∈ 2X ,m(S) is derived from the evidence that sup-
ports S:

Evidence from different sources are combined to arrive at a 
degree of belief. Belief is the summation of all the evidence 
that fully supports S, and plausibility is the summation of all 
the evidence that partly or fully supports S. That is,

The probability of a set S ∈ 2X falls into the range of 
[ belief(S), plausibility(S) ]. In fuzzy set theory, the notion 
of a regular crisp set is extended by introducing a member-
ship function. In this theory, there is a gradual rather than 
sharp transition between non-membership and full mem-
bership. For each element x ∈ Ω , the membership function 
�A ∶ 2X → [0, 1] depicts the degree of membership. The 
membership function �A and the set(A) constitutes a fuzzy 
set.

In possibility theory, two measures are attached to one 
event, namely a ‘necessity measure’ and a ‘possibility meas-
ure.’ Both are membership functions that can take values 
between 0 and 1. If an event A is completely necessary, 
its necessity measure is one (N(A) = 1) , and the possibil-
ity measure of its complement event is zero (Π(A) = 0) . 
Similarly, if an event is completely possible, its possibil-
ity measure is one (Π(A) = 1) , and necessity measure of its 
complement event is zero (N(A) = 0) . To characterize the 
uncertainty of event A, both of these measures are needed. 
The necessity degree describes the indications supporting 
the event, and 1 minus the possibility degree describes the 
indications weighing against it.

The interval analysis aims at placing upper and lower 
bounds for the range of a function defined in terms of uncer-
tain variables. Real intervals are typically used as given 
below, where a = −∞ , and b = +∞ are allowed.

In info-gap decision theory, uncertainty level � of a param-
eter x is modeled by using the envelope model as

where x̃ is the point estimate of x, and U(𝛼, x̃) is the set of all 
values of x whose deviation from x̃ will never be more than 
𝛼x̃ . The decision maker does not know the values of x and 
� . Two decision concepts are used, namely robustness and 

(3)
∑

S∈2X

m(S) = 1

(4)belief(S) =
∑

T⊆S

m(T), plausibility(S) =
∑

T∩S≠𝜙

m(T)

(5)[a, b] = {x ∈ ℝ|a ≤ x ≤ b}

(6)U(𝛼, x̃) =
||||
x − x̃

x̃

||||
≤ 𝛼

opportuneness. The robustness strategy satisfices the out-
come and maximizes the immunity to error, and this strat-
egy is different from outcome optimization. The opportune-
ness strategy, on the other hand, seeks windfalls at minimal 
uncertainty.

2.2  Uncertainty analysis

In the context of structural design, one usually solves differ-
ent variants of the following equation:

where � is the vector of input variables which are mostly 
independent variables. However, if input variables are 
dependent, they can be converted to independent vari-
ables through Rosenblatt transformation. y is the output or 
response and f is the function that relates � and y. In real 
life, most of these inputs are uncertain and it is imperative to 
design against these uncertainties. As a first step, the uncer-
tainties in � are handled based on the class of uncertainty as 
discussed earlier. The characterized uncertainties are then 
propagated through f. f oftentimes is not available explicitly 
and researchers typically use approximations such as surro-
gates or metamodels to obtain an emulator for f. Establishing 
f requires an � and the corresponding y and typically follows 
the form:

The weights � are essentially the coefficients and one finds 
them using an optimization formulation on least square 
or maximum likelihood approaches, while v is a constant. 
Though the regression itself is linear, complex functions can 
be approximated by using different basis functions such as 
radial basis and Gaussian process. Obtaining y is usually an 
expensive process and requires a physical experimental set 
up or a computational analysis model. Once the surrogate 
is built and uncertainty is propagated, the resultant y is also 
random which calls for uncertainty handling approaches 
such as reliability or robustness-based design to account for 
the uncertainty in y while making decisions based on the 
response.

Depending on the amount and type of data available, the 
approaches used to address the uncertainties are either prob-
abilistic or non-probabilistic in nature. The amount of data 
that one can seek and the type of data influence the choice of 
design of experiment which is the preceding step to model 
building and analysis. Majority of the approaches that pos-
sess an underlying probabilistic essence fall under one or a 
combination of the following: sampling, stochastic, analyti-
cal, and dimension reduction techniques. Sampling-based 
approaches are usually variants of the Monte Carlo simula-
tion (MCS) where each realization is propagated through the 

(7)y = f (�)

(8)y = �T� + v
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model. The model itself is usually a surrogate that can be 
built on one shot design of experiment, adaptively refined, 
ensembled, or be multi-fidelity. Once the model is available, 
crude MCS can be used to estimate probability of an event 
(E) as follows:

where N is the number of samples, I is an indicator function 
which takes a value of 1 if [.] is true and 0 if [.] is false. G is 
the limit-state function and xj is the jth random realization 
from PDF fx() . Since evaluating I is usually expensive, one 
would like to keep the evaluation count as low as possible. 
Several surrogate models such as noise-free Gaussian pro-
cess (GP), which is also called Kriging, radial basis function 
(RBF), etc. are widely used. Despite the use of the surrogate 
model, more efficient samplings than the crude MCS are 
necessary such as importance sampling (IS), line sampling, 
and subset simulation. In addition, various sequential sam-
pling methods such as efficient global reliability analysis 
and local adaptive sampling have been proposed to further 
improve the efficiency of the surrogate modeling.

Since estimating small failure probabilities requires large 
samples, techniques such as IS, subset simulation, and adap-
tive sampling techniques that progressively place samples in 
the regions of interest are developed and used. Polynomial 
chaos expansion presented in (10) is one of the widely used 
stochastic approaches to propagate the uncertainties.

where p is the number of coefficients, Ci is the expan-
sion coefficients, � is the multivariate polynomial that is 
obtained as a product of d-univariate orthogonal polynomi-
als Pj which allows use of powerful statistical properties. 
There are also developments in stochastic collocation type 
of approaches. Popular analytical approaches include first-
order reliability method (FORM), second-order reliability 
method (SORM), and dimension reduction method (DRM) 
according to how a limit-state function is approximated. 
Major inroads were made in contributing to the reliability 
estimates such as probabilistic performance measure, prob-
abilistic sufficiency factor, and percentile measure. These 
inverse measures operate in performance space and aid in 
stable convergence. When the dimensions are large, even 
surrogates suffer from the curse of dimensionality. Hence, 
dimension reduction approaches are preferred. The underly-
ing idea is to combine the dimensions in a linear sense along 
a dimension of larger variation. While approaches such as 
principal component analysis were used in the past, recent 
techniques such as active subspace are being widely adopted. 

(9)Pr(E) ≃
1

N

N∑

j=1

I[G(x̂j ≤ 0)]

(10)y ≈

p∑

i=1

Ci�i(x) =

p∑

i=1

CiΠ
d
j=1

Pj(xj)

The primary idea in active subspace is to rotate the coor-
dinates such that the directions of the strongest variation 
are aligned with the rotated coordinates and the model built 
and analysis performed along the most important rotated 
coordinates. P-box based approaches are used to obtain con-
servative estimates when scarce samples are available and 
probabilistic approaches are required.

When the data available are scarce and usually in terms 
of bounds or intervals, non-probabilistic approaches are 
widely used. When the available information is in the 
form of interval variables, interval approaches are used to 
model the uncertainties and perform optimization. Interval 
approaches are usually conservative but better than deter-
ministic designs. Convex models combine concepts of inter-
val and convexity concepts to develop uncertainty repre-
sentation. The idea of convexity approaches is to bound the 
uncertain domain using different geometric shapes and use 
their properties for quantifying uncertainties.

2.3  Design optimization under uncertainties

RBDO is to find a reliable optimum while satisfying proba-
bilistic constraints. It has gained wide popularity in engi-
neering applications through accurate reliability analysis 
under various uncertainties. Depending on the uncertainty 
it deals with, design optimization under uncertainty is classi-
fied into two categories: (1) design optimization under alea-
tory uncertainty also called RBDO and (2) design optimiza-
tion under both aleatory and epistemic uncertainties. RBDO 
under aleatory uncertainty basically assumes that input sta-
tistical models and limit-state functions are fully known and 
perfectly accurate. On the other hand, when epistemic uncer-
tainty caused by lack of knowledge and insufficient data is 
involved in the design optimization, it is extremely difficult 
to know exact input statistical models and output simulation 
models in the real world.

In general, RBDO is formulated as

where G is the limit-state function, � is deterministic design 
variable, � is the random variable, � is the random parame-
ter, and Retarget is the target reliability. The probability meas-
ure Pr in (11) is equivalent to a multidimensional integration 
where f�,�(�,�) is a joint probability density function (PDF) 
of random variables and parameters

(11)

min
�,��

cost(�,��,��)

subject to Pr(G(�,�,�) ≤ 0) ≥ Retarget

where Pr(G(�,�,�) ≤ 0) ≡
�G(�,�,�)≤0

f�,�(�,�)d�d�
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2.3.1  Design optimization under aleatory uncertainty

The multidimensional integration in (11) is difficult or even 
impossible to accurately compute. Hence, RBDO under 
aleatory uncertainty approximates either the limit-state 
function (analytical approach) or the numerical integration 
(sampling approach). To alleviate the computational cost 
for the double-loop RBDO in (11), decoupled loop such as 
sequential optimization and reliability assessment (SORA) 
and single loop such as single-loop approach and single-
loop single vector methods have been proposed where the 
probabilistic constraints can be transformed to deterministic 
constraints. To alleviate the computational cost for the sam-
pling approach, efficient and accurate surrogate modeling 
methods and various sequential sampling methods have been 
proposed.

2.3.2  Design optimization under both aleatory 
and epistemic uncertainties

In this study, epistemic uncertainty in design optimization is 
categorized into input and output model uncertainties. The 
purpose of design optimization under epistemic uncertainty 
is not to reduce the epistemic uncertainty but quantify it for 
reliability estimation. There are two ways of dealing with the 
epistemic uncertainty in the input statistical model: (1) non-
probabilistic approach and (2) probabilistic approach. In the 
non-probabilistic approach, the typical RBDO formulation in 
(11) may not be applicable since the input statistical model 
is not described as PDF. Instead, interval analysis, evidence 
theory, possibility theory, and fuzzy set theory described 
using membership functions can be used to describe the 
epistemic uncertainty. Using these, mixed-variable design 
optimization where interval and random variables coexist, 
evidence-based design optimization, and non-probabilistic 
RBDO have been proposed. On the contrary, the probabilis-
tic approach attempts to describe the incomplete input statis-
tical model using non-parametric kernel density estimation 
(KDE), the Bayesian approach combined with the bootstrap-
ping method, and parametric distributions with conservative 
parameter estimation. In this case, confidence-based design 
optimization utilizes the confidence of reliability to replace 
the probabilistic constraints in (11).

Output models, such as surrogate models or simulation 
models, may not perfectly emulate simulation models or 
experiments, respectively, and it can lead to inaccurate reli-
ability analysis. Thus, design optimization under surrogate 
model uncertainty has been proposed, which utilizes the pre-
diction variance calculated from a Kriging model to obtain 
the distribution of reliability. In other words, the uncer-
tainty induced by an inaccurate surrogate model is taken 
into account to prevent the overestimation of reliability. On 
the other hand, the simulation model always has discrepancy 

with experimental results. It is necessary to calibrate the 
simulation model to estimate unknown model parameters 
and discrepancy and validate it. Thus, model calibration and 
validation methods such as Bayesian model calibration and 
optimization-based model calibration have been studied. 
The seminal work, called KOH framework (Kennedy and 
O’Hagan 2001; Roy and Oberkampf 2011), described vari-
ous uncertainties in simulation model and gives a Bayes-
ian approach to deal with the uncertainties, especially for 
model calibration, and thus it may be helpful to understand 
the model uncertainties. Even though the simulation model 
is calibrated and validated, simulation model uncertainty 
cannot be perfectly eliminated since experimental data may 
be limited in the real world. Thus, the simulation model 
uncertainty has to be quantified and taken into account in 
design optimization.

3  Uncertainty modeling

Uncertainty modeling constitutes uncertainty categorization 
(or classification), uncertainty handling (or management), 
and uncertainty characterization (Fig. 1). Uncertainty cat-
egorization refers to the classification of uncertainty into 
different categories. This classification is an important step 
before uncertainty handling and quantification because spe-
cific methods on uncertainty handling and quantification are 
suitable for specific class of uncertainty. Uncertainty han-
dling refers to the management of uncertainties by various 
theories such as probability theory, evidence theory, fuzzy 
set theory, possibility theory, interval analysis, and info-gap 
decision theory. Uncertainty characterization refers to statis-
tical description of input uncertainties. It includes distribu-
tion fitting (e.g., PDF, membership function), parameter esti-
mation (e.g., mean value, standard deviation, quantile), and 
correlation modeling of the input uncertainties. Note that 
uncertainty characterization is the first stage of uncertainty 
quantification (UQ) that also involves uncertainty analysis 
and propagation, which will be covered in Sect. 4.

3.1  Uncertainty categorization (or classification)

Uncertainty is usually classified into aleatory uncertainty 
and epistemic uncertainty (Hoffman and Hammonds 1994; 
Rowe 1994; Hora 1996; Ferson and Ginzburg 1996; Paté-
Cornell 1996; Ferson et al. 2004; Acar et al. 2006; Sanka-
raraman and Mahadevan 2011; Li et  al. 2012). In this 
distinction, epistemic uncertainty includes both the non-
deterministic behavior due to the lack of knowledge (e.g., 
mathematical modeling approximations), and also the recog-
nizable deficiency that is not due to lack of knowledge (e.g., 
computer programming errors).
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Aleatory uncertainty also referred to in the literature 
as variability, stochastic uncertainty, inherent uncertainty, 
and irreducible uncertainty is recognized as the inherent 
randomness originating from the natural variability of the 
physical system. Aleatory uncertainty cannot be eliminated 
or reduced by collecting more information or gathering more 
knowledge. Epistemic uncertainty also referred to in the lit-
erature as subjective uncertainty, informative uncertainty, 
and reducible uncertainty is recognized as non-deterministic 
behavior due to lack of knowledge of the physical system 
along with the ability of modeling and measuring the physi-
cal system. Unlike aleatoric uncertainty, epistemic uncer-
tainty can be reduced through quality control (Acar et al. 
2007), structural testing (Acar et al. 2010), non-destructive 
inspection (Kale and Haftka 2008), and sometimes can even 
be eliminated.

There also exist studies that use more than two classes for 
uncertainty categorization. For instance, Oberkampf et al. 
(2002) classified uncertainty as variability, uncertainty, and 
error. In that classification, variability describes the inherent 
variation associated with the physical system under consid-
eration. Uncertainty is defined as a potential deficiency in 
any phase or activity of the modeling process that is due to 
lack of knowledge. Error is defined as a recognizable defi-
ciency in any phase or activity of modeling and simulation 
that is not due to lack of knowledge.

3.2  Uncertainty handling (or management)

The main theories used for uncertainty handling (or manage-
ment) can be considered as the following: (1) probability 
theory, (2) evidence theory, (3) fuzzy set theory, (4) possibil-
ity theory, (5) interval analysis, (6) info-gap decision theory, 
and (7) hybrid approaches. The main difference among these 
approaches relate to the techniques used for describing the 
uncertainty in input parameters. The origins of different 
approaches are presented in this section, and advances on 
these approaches are discussed in the next section.

3.2.1  Probability theory

Probability theory is the oldest and the most widely used 
uncertainty handling theory. Parsons and Hunter (1998) note 
that this theory dates back to several hundred years and it is 
difficult to state where the definitive account may be found. 
The earliest known forms of probability and statistics were 
developed by Arab mathematicians studying cryptography 
in the eight century according to Broemeling (2011). The 
classical interpretation is known to be completed by Laplace 
(1812) according to Hájek (2019), in probability theory, it is 
assumed that the input parameters are random variables with 
a known PDF or cumulative distribution function.

Uncertainty modeling

Uncertainty 
characterization

Uncertainty categorization (or 
classification)

Probability theoryAleatory

Epistemic

Uncertainty handling (or 
management)

Evidence theory

Fuzzy set theory

Possibility theory

Interval analysis

Hybrid approaches

Info-gap theory

Parametric approach in 
probabilistic handling

Non-parametric approach in 
probabilistic handling

Characterization in non-
probabilistic handling

Fig. 1  Uncertainty modeling tree structure
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In structural mechanics, geometric parameters, loading, 
and material properties are random and are usually repre-
sented by PDF or cumulative distribution function. Most 
manufacturing operations produce normally distributed 
dimensions if they are performed in a controlled manner 
(Rao 1992). The dead loads (e.g., gravity load) are often 
represented with normal distribution (with 10 % coefficient 
of variation), and the live loads are usually modeled with 
extreme type I distribution (Ellingwood 1980). It is advised 
that the type-II extreme value (or Frechet) distribution could 
be used to describe the yearly maximum wind velocity at any 
location (Thom 1960).

Hess et al. (2002) analyzed the data bank generated by 
Kaufman and Prager (1990) by using the computer program 
BestFitⓇ (1995) to explore which PDF were most represent-
ative of the sample data for the material properties of steel 
used in marine applications. They found that lognormal, 
Weibull, and extreme value distributions were good choices 
for describing the yield strength of steel, whereas Weibull 
and normal distributions well represented the ultimate 
strength as well as the elastic modulus of steels. There also 
exists studies on probabilistic modeling of fatigue endurance 
of steel. Mischke (1987) found that the fatigue life data of 
steel alloys can be well represented with Weibull distribution 
and lognormal distribution.

Bayes theorem is based on probability theory (Bayes 
1991). It relates two or more events through conditional 
probabilities to make inferences. It is often used when there 
is a lack of direct information about an event. It describes 
the probability of an event, based on prior knowledge and 
provides a way to update the probability of that event (poste-
rior probability) given new or additional evidence. Jiao and 
Moan (1990) used Bayesian theory to investigate the effect 
of proof tests on structural safety. Beck and Katafygiotis 
(1998) addressed the problem of updating a probabilistic 
structural model using dynamic test data from structure by 
using Bayes theorem. Acar et al. (2010) used Bayes theo-
rem to update the failure stress distribution of an aircraft 
structural element based on results of the element tests. It is 
also worthy to note that a probabilistic graphical model enti-
tled Bayesian network (Mahadevan et al. 2001; Pearl 2014) 
is established to symbolize the random variables and their 
conditional dependencies by using a probabilistic directed 
acyclic graphical model.

In a probabilistic approach, probability distribution is 
used to characterize uncertainty. In some cases (e.g., scarce 
data), it may not be possible to specify the precise values of 
the input distribution parameters, precise probability dis-
tributions, and dependencies between input parameters. In 
these cases, probabilistic approach is not effective, and other 
uncertainty handling theories are developed to address some 
of these limitations.

3.2.2  Evidence theory

The evidence theory was first developed by Dempster (1967) 
and extended by Shafer (1976). Therefore, this theory is also 
called the Dempster–Shafer theory. This theory combines 
evidence from different sources and arrives at a degree of 
belief by taking into account all the available evidence. In 
this theory, belief and plausibility are defined as the lower 
and upper boundary, and a set of belief and plausibility dis-
tribution functions is used to describe the input uncertainty.

While handling subjective uncertainty arising from 
experts, Bayes theorem requires prior and error assumptions, 
and the obtained results are sensitive to these assumptions. 
Evidence theory, on the other hand, does not require these 
assumptions. Soundappan et al. (2004) provides a compari-
son of Bayesian approach and evidence theory in handling 
epistemic uncertainty.

3.2.3  Fuzzy set theory

Fuzzy set theory is developed by Zadeh (1965) and it models 
epistemic uncertainty through fuzzy sets with membership 
functions. Fuzzy set theory extends the notion of a regular 
crisp set and expresses classes with vague boundaries such 
as tall, good, and important. It provides a natural way of 
dealing with problems in which the source of uncertainty is 
the absence of sharply defined criteria of class membership 
rather than the presence of random variables (Zadeh 1973). 
In this theory, the transition between non-membership and 
full membership is gradual rather than sharp, and a fuzzy set 
is represented by stating its membership function, where a 
degree of membership in the interval [0,1] is given to every 
element in the set (Zimmermann 2001).

3.2.4  Possibility theory

Possibility theory is based on the notion of fuzzy sets, and it 
was first presented by Zadeh (1978). It utilizes two measures 
attached to one event, namely a “necessity measure” and a 
“possibility measure.” Both are membership functions that 
can take values between 0 and 1 (Dubois and Prade 1988).

Possibility theory is analogous to probability theory as 
they both use the [0,1] interval for their measures as the 
range of their respective functions (Zimmermann 2001). The 
fundamental difference between probability and possibility 
is that probability is a measure of the frequency of occur-
rence of an event, while possibility is used to quantify the 
meaning of an event (Agarwal and Nayal 2015). Probability 
distribution functions are required to add to 1, while for pos-
sibility distributions the largest values are required to be 1. 
Therefore, possibility can be seen as an upper probability.
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3.2.5  Interval analysis

Roots of interval analysis can be traced back to Moore 
(1966). It is a branch of the numerical analysis that allows us 
to compute closed intervals for the exact values of integrals. 
In interval analysis, the uncertain parameter is denoted by a 
simple range, and if a preference function is to describe the 
desirability of using different values in this range, then fuzzy 
theory can be used (Rao and Berke 1997).

When the uncertainties in structural system are modeled 
with random variables, the failure probability and reliability 
index are deterministic values. However, the failure proba-
bility (or reliability index) becomes an interval number with 
the lower and upper bounds if interval variables are included 
in the structural system (Gao et al. 2011).

Convex method (Elishakoff et al. 1994a), anti-optimiza-
tion method (Elishakoff et al. 1994b), perturbation method 
(Chen and Yang 2000), interval finite element method 
(Muhanna et al. 2005), MCS method (Sim et al. 2007), and 
affine arithmetic (Degrauwe et al. 2010) have been combined 
with interval operations to analyze structures with interval 
parameters.

3.2.6  Info‑gap decision theory

Info-gap decision theory is developed by Ben-Haim (2001). 
It is a non-probabilistic decision theory for prioritizing 
alternatives and making choices and decisions under deep 
uncertainty (Ben-Haim 2006). An “info-gap” is the dispar-
ity between what is known and what needs to be known 
for a responsible decision. Info-gap models of uncertainty 
represent uncertainty in parameters and in the shapes of 
functional relationships.

Info-gap decision theory offers two decision concepts: 
robustness and opportuneness. The robustness strategy sat-
isfices the outcome and maximizes the immunity to error, 
and this strategy is different from outcome optimization. The 
opportuneness strategy, on the other hand, seeks windfalls at 
minimal uncertainty. Info-gap decision theory has been used 
in truss optimization, (Kanno and Takewaki 2006), pipeline 
reliability improvement (Cicala and Irias 2014), energy hub 
management of electric vehicles (Soroudi and Keane 2015), 
wind power uncertainty analysis (Soroudi et al. 2017), air-
plane landing gear design (Platz and Götz 2017), freshwa-
ter management in coastal aquifers (Ranjbar and Mahjouri 
2019), etc.

3.2.7  Hybrid approaches

Different theories used for uncertainty handling can be com-
bined to take advantage of the ability of each theory. Ferson 
and Ginzburg (1996) combined probability theory and inter-
val analysis to produce probability boxes (p-boxes); Tonon 

et al. (2001) combined probabilistic, fuzzy, and anti-optimi-
zation approaches; Guyonnet et al. (2003) combined prob-
abilistic and possibilistic approaches; Jiang et al. (2012a) 
combined probabilistic and interval analysis approaches; 
Chutia (2017) combined probabilistic and fuzzy approaches. 
Jiang et al. (2017) present a literature review on probability-
interval hybrid uncertainty analysis for structures with both 
aleatory and epistemic uncertainties.

3.3  Uncertainty characterization

Uncertainty is characterized by using a probability distribu-
tion function (e.g., PDF) when it is handled by probabil-
ity theory. While using probability theory, a parametric or 
a non-parametric approach can be used (McFarland and 
Mahadevan 2008; Kim et al. 2019). Brief details of these 
approaches are given below, followed by the studies on cor-
relation modeling. Finally, uncertainty characterization in 
non-probabilistic uncertainty handling approaches is pre-
sented in this sub-section.

3.3.1  Parametric approach in probabilistic handling

Parametric approach consists of two steps. In the first step, 
a proper distribution function is determined (Kang et al. 
2019b), which could be performed based on expert knowl-
edge (Soundappan et al. 2004) or by using a model selec-
tion method such as Akaike information criterion (Akaike 
1974), Bayesian information criterion (Burnham and Ander-
son 2004), and Bayesian method (Schwarz 1978; Noh et al. 
2010). In the second step, the parameters of the distribution 
function are estimated by using a goodness of fit test such as 
Anderson–Darling test (Anderson and Darling 1952), Kol-
mogorov–Smirnov test (Kolmogorov 1933; Smirnoff 1939; 
Kolmogoroff 1941), or chi-squared test (Ayyub and McCuen 
2016). The main downside of the parametric approach is 
that the use of incorrect distribution function may lead to 
erroneous results.

In many structural problems, the input random variables 
are correlated (Annis 2004; Nikolaidis et al. 2004a). How-
ever, these variables have often been assumed to be inde-
pendent because of the difficulty in constructing the joint 
distribution of correlated input variables (Noh et al. 2010). 
Even when the correlation is taken into account, usually the 
joint Gaussian distribution has been used while the correct 
joint distribution could be non-Gaussian (Nataf 1962; Noh 
et al. 2009). In that case, copulas (functions that couple 
multivariate distribution functions to their one-dimensional 
marginal distribution functions) can be used (Noh et al. 
2010). Similarly, intrusive (Paulson et al. 2017) or non-
intrusive (Lin et al. 2020) polynomial chaos method can be 
used to deal with correlated random variables, where the 
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multivariate orthogonal polynomial basis corresponding to 
the correlated input random variables is constructed by solv-
ing the moment-matching equations based on the correlation 
statistical moments. In some problems, point and interval 
samples might be available for the estimation of distribu-
tion parameters. For those problems, the correlations among 
interval distribution parameters can be modeled using ellipse 
models (Xiao et al. 2020).

3.3.2  Non‑parametric approach in probabilistic handling

In non-parametric approach, on the other hand, probabil-
ity distribution is determined directly from the data. Histo-
grams or KDE are widely used in non-parametric approach 
(McFarland and Mahadevan 2008; Cho et al. (2016c)). The 
non-parametric approach is recommended over parametric 
approach if the random variables follow non-parametric dis-
tributions or the number of given data is insufficient, even 
though the true distribution of the data is a parametric distri-
bution (Kang et al. 2017b). However, if the number of data 
is very small (e.g., less than 10 samples), the non-parametric 
approach is very sensitive to the quality of the given data 
and it may lead to erroneous results (Kang et al. 2019a). 
Non-parametric approach can be combined with an interval 
analysis to overcome the limitations of the non-parametric 
approach (Kang et al. 2018).

For the correlation modeling for non-parametric 
approaches, multivariate non-parametric KDE is often used 
(Wang and Wang 2015a). The KDE is similar to the use 
of empirical probability mass function, but each point of 
the mass function is replaced with a continuous, symmet-
ric distribution centered at that point. The scale parameter 
of the symmetric distribution (i.e., the bandwidth) has a 
substantial effect on the performance of the KDE. Ahmad 
(1982), Wand and Jones (1994), and Duong and Hazelton 
(2003) used fixed bandwidth, whereas Zhang (2011) and 
Zougab et al. (2014) used adaptive (or variable) bandwidth 
in KDE. In univariate case, the bandwidth is a scalar, where 
it turns into a matrix (e.g., the covariance matrix). The 
selection of the bandwidth or the covariance matrix can 
be done through cross-validation (Bowman 1984; Duong 
and Hazelton (2005)), maximum likelihood (Wang 2007; 
Konečná and Horová 2019), Bayesian approach (Zhang et al. 
2006; Zougab et al. 2014), or method of penalizing functions 
(Bashtannyk and Hyndman 2001).

3.3.3  Uncertainty characterization in non‑probabilistic 
handling

Uncertainty is characterized by using a membership func-
tion when it is handled by fuzzy set theory. Cheng and Chen 
(1997) determined the membership function such that the 
corresponding fuzzy event has maximum entropy, based 

on the fact that a larger entropy of an information system 
indicates more information contained in the system (Martin 
and England 1981). Civanlar and Trussell (1986) presented 
a guideline to construct the membership functions for fuzzy 
sets whose elements have a defining feature with a known 
PDF, and showed that their method is capable of generat-
ing membership functions in accordance with the possibil-
ity–probability consistency principle. Jang (1993) presented 
an adaptive-network-based fuzzy inference system, a fuzzy 
inference system implemented in the framework of adaptive 
networks. By using a hybrid learning procedure, adaptive-
network-based fuzzy inference system can construct an 
input–output mapping based on both human knowledge (in 
the form of fuzzy if-then rules) and stipulated input–output 
data pairs. Hong and Lee (1996) proposed a general learning 
method as a framework for automatically deriving member-
ship functions and fuzzy if-then rules from a set of given 
training examples to rapidly build a prototype fuzzy expert 
system. Simon (2002) presented a modified form of gradi-
ent descent and Kalman filter methods for optimization of 
asymmetric triangular membership functions. Determination 
of fuzzy membership functions through genetic algorithm 
(Arslan and Kaya 2001), ant colony optimization (Jiang et al. 
2008), and particle swarm optimization (Omizegba and Ade-
bayo 2009) was also presented. Hasuike and Katagiri (2016) 
constructed the appropriate membership function based on 
size of fuzzy set and mathematical programming. Jalota 
et al. (2017) constructed membership function for uncer-
tain portfolio parameters by using a credibilistic framework.

4  Uncertainty analysis

In this section, we discuss the uncertainty analysis mod-
els, methods, and tools. The quantified uncertainties using 
uncertainty characterization or modeling techniques that 
were discussed in the previous section need to be propagated 
through the analysis models to obtain random responses or 
outputs. The resulting uncertain output needs to be quanti-
fied and is commonly referred to as model uncertainty analy-
sis (Ghanem et al. 2017). Based on system complexities, 
the analysis models could be simple closed-form analytical 
functions or computer models such as finite element mod-
els, computational fluid dynamic models, or physical experi-
ments. Uncertainty analysis involves accessing these analy-
sis models repeatedly to obtain a random characterization 
of the output. That is, in a sampling perspective, for each 
realization of the random input, the analysis model needs to 
be accessed to obtain the corresponding response. The inter-
est in the output includes finding the moments, estimating 
tail probabilities, and computing the PDFs towards design 
under uncertainty such as robust or reliability-based design.
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The uncertainty analysis tree structure is presented in 
Fig. 2. A wide variety of uncertainty analysis approaches 
can be broadly classified into (1) probabilistic and (2) non-
probabilistic techniques. Depending on the availability of 
probabilistic information, output requirement, and complex-
ity of the analysis model, either of the above techniques can 
be used. Any of the techniques discussed in the subsections 
below can be used on the models directly or on metamodels 
constructed based on design of experiment points.

4.1  Probabilistic techniques

There are different approaches that fall under the probabil-
istic techniques umbrella (Lee and Chen 2009). Required 
probabilistic information can be modeled using differ-
ent approaches as discussed in the previous section. The 
approaches in probabilistic techniques for uncertainty anal-
ysis can be broadly classified into 4 categories as shown 
in Fig. 2. All categories are discussed in the following 
subsections.

4.1.1  Sampling‑based approaches

Sampling-based approaches predominantly include MCS 
techniques (Madsen et al. 2006) or its variants such as sepa-
rable Monte Carlo (Smarslok et al. 2010), IS (Cadini et al. 
2015), multilevel Monte Carlo approaches (Giles 2008), and 
adaptive sampling techniques (Liu et al. 2018b). In the event 
of knowing the probability information of the inputs, MCS 
is directly used in the crude form if the analysis model is 
computationally cheap to evaluate. Oftentimes, the analysis 
model is replaced by a metamodel (Li et al. 2012). Popu-
lar metamodels include polynomials (Hosder et al. 2001), 
Kriging (Booker et al. 1999), support vector regression 
(SVR) (Basudhar and Missoum 2008), or their ensembles 
(Goel et al. 2007; Viana et al. 2009). Recent developments 
in metamodels for uncertainty treatment include approaches 
such as deep GP (Radaideh and Kozlowski 2020) and game 
theory-driven approaches (Chen et al. 2020). Basudhar and 
Missoum (2008) and  Basudhar et al. (2008) applied sup-
port vector machine (SVM) for solving limit-states with 
discontinuous limit-states as well. In large variable prob-
lems, beyond the usual screening process to identify influ-
ential inputs, Iooss and Le Gratiet (2019) have suggested to 
model the non-influential inputs as another GP. Using the 

Uncertainty analysis

Non-probabilisticProbabilistic

Sampling

Stochastic or functional 
and local expansion

Analytical

Dimension reduction

Polynomial chaos expansion

Taylor series

Perturbation methods

Adaptive / Sequential
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Eigenvector dimension 
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Active subspace

Interval analysis

Convexity approaches

Fuzzy, Possibility theory 

Fig. 2  Uncertainty analysis tree structure
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joint metamodel, the uncertainties are then propagated. Long 
run times in end-to-end complex designs with uncertainties 
are avoided by using a combination of grouped sensitivity 
analysis, expert opinions to certify surrogate models, and 
verification and validation techniques (Allaire et al. 2014). 
In the context of multidisciplinary problems, Baudoui et al. 
(2012) suggest processing the uncertainty locally in each 
discipline with minor changes to the initial multidisciplinary 
system. Hoseyni et al. (2014) use a hybrid qualitative and 
quantitative approach for uncertainty assessment. It is to be 
noted that there are other reduced order modeling techniques 
such as projection-based approaches (Benner et al. 2015), 
Krylov spaces (Freund 2003), and Centroidal voronoi tes-
sellations which are typically used in applications such as 
computational fluid dynamics, control theory, and dynamics. 
While literature discussed above employs models of par-
ticular fidelity throughout the analysis, there are also tech-
niques that use multi-fidelity approaches. Ng and Willcox 
(2014) discuss strategies for uncertainty propagation with 
variable fidelity models. Peherstorfer et al. (2018) discuss 
several variable fidelity approaches for uncertainty analysis 
and optimization.

Since failure probabilities are typically small, MCS 
requires many model evaluations until samples in the tails 
of the distributions are sampled for an accurate estimate. IS 
is a variance reduction technique that permits reduction of 
number of model evaluations by utilizing a targeted sam-
pling strategy. Dubourg et al. (2013) use IS along with meta-
models to estimate the augmented probability. They then add 
a correction term to remove bias in the event of the meta-
model not being accurate and demonstrate the approach’s 
efficiency up to 100 variables. Chaudhuri and Haftka (2013) 
use separable MCS and IS for reliability estimation. Zhang 
and Taflanidis (2019) use Kriging to approximate the func-
tion in both the design variable and random variable space 
so that UQ and Pareto front can be achieved simultaneously. 
They combine the metamodel with IS to sample only in the 
regions of interest and selectively propagate the uncertain-
ties. Peherstorfer et al. (2016) propose a multi-fidelity IS 
method where they build a surrogate model for the high-
fidelity simulations during the construction of the biasing 
distribution. Then, a high-fidelity model is evaluated at the 
samples drawn from the biasing IS distribution that allows 
to estimate small failure probabilities. Papaioannou et al. 
(2015) propose a sequential importance sampling approach 
for estimating reliability. Here, the samples from the ran-
dom variable distributions are translated to samples from an 
approximately optimal IS density. Sample transition happens 
through a sequence of intermediate distributions based on 
a resample-move scheme. This is further used (Papaioan-
nou et al. 2018) for computing the sensitivity of reliability 
estimates. Cadini et al. (2015) combine metamodels and 
IS approach with an adaptive sampling scheme to estimate 

failures as less as 10−6 while achieving an order of magni-
tude reduction in the number of required runtime. A similar 
approach is proposed by Echard et al. (2013) while using an 
active Kriging metamodel and by Cadini et al. (2014) for 
estimating multiple low probability failure regions. Yang 
et al. (2018) combined active Kriging with IS for low failure 
probability estimates. Zhang et al. (2020) proposed adaptive 
Kriging and IS for system reliability analysis.

In addition to IS, other adaptive sampling techniques 
which usually focus on building accurate metamodels locally 
are also used for uncertainty analysis. Volpi et al. (2015) 
develop a dynamic RBF approach where the stochastic ker-
nel is defined by an uncertain tuning parameter. The effect 
of tuning parameters on prediction are determined by UQ 
methods. Prediction uncertainty and parallel infill are used 
for adaptive sampling and effectively reduce the number of 
high-fidelity simulations. Weinmeister et al. (2018) com-
bine polynomial chaos expansion (PCE), Kriging and adap-
tive sampling for UQ. While most of the adaptive sampling 
schemes operate on the idea of prediction variance from 
the constructed metamodel, Romero et al. (2004) proposed 
to use progressive lattice sampling to incrementally add 
samples for accurate metamodels. A similar approach was 
discussed by Helton and Davis (2003). Metamodel-based 
adaptive sampling was proposed by Bichon et al. (2008) 
using efficient global optimization procedure which ensures 
accuracy of the limit-state. Another suite of algorithms focus 
on estimating the sensitivities of the probability estimates 
(Jensen et al. 2009; Valdebenito and Schuëller 2010). Tafla-
nidis and Beck (2008a, 2008b) propose the stochastic subset 
optimization approach where the subset simulation approach 
(Au and Beck 2001) is employed to explore both uncertain 
parameter space and design variable space simultaneously. 
The fundamental idea behind subset simulation is to express 
the failure probability as a product of conditional probabili-
ties which are usually larger and can be estimated with lesser 
samples. Subset simulation and its extensions were exten-
sively used to estimate small failure probabilities (Zuev et al. 
2012; Meng et al. 2015a; Papaioannou et al. 2015; Šehić and 
Karamehmedović 2020). Li and Cao (2016) present Matlab 
codes for the algorithm. However, there are limitations as 
well to this approach as pointed by Breitung (2019).

4.1.2  Stochastic or functional expansion and local 
expansion approaches

Spectral finite element and approaches such as PCE can be 
classified under this category. PCE is based on representing 
a random variable by a series of polynomial chaos basis. 
Chaos here refers to the Gaussian random process. The gen-
eralized PCE generates an orthogonal basis based on dis-
tribution characteristics of input random variables. Care-
fully chosen orthogonal basis yields approximate structural 
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response after multiple iterations. PCE can also be viewed 
as a metamodel because the coefficients need to be com-
puted. Widely used approaches for the coefficient estima-
tion are least squares and projection approaches. However, 
neither of the approaches escape the curse of dimensional-
ity. In order to reduce the computational effort when the 
dimensions increase, a series of sparce PCE approaches 
are proposed (Blatman 2009; Blatman and Sudret 2010a, 
b; Chen et al. 2018; Xu and Wang 2019). The sparse PCE 
techniques help in reducing the number of expensive com-
putations. Researchers have combined dimension reduction 
technique and sparse PCE to emulate the reduced output 
(Nagel et al. 2020) while sensitivity information is obtained 
by postprocessing the coefficients. Zhou et al. (2019b) use 
sparse PCE for sensitivity analysis. Rajabi (2019) compares 
PCE and GP emulation in the context of ground water appli-
cations. They observe that PCE provides better accuracy in 
moment and tail estimates with less variance across different 
runs. Researchers develop a metamodel by combining PCE, 
dimension reduction approach, and information-theoretic 
entropy (He et al. 2020). A multi-fidelity PC approach is 
developed by extending the multilevel co-Kriging multi-
fidelity modeling framework in the deterministic domain to 
the stochastic one (Wang et al. 2019a). Zhang et al. (2019) 
obtain the multimodal input distributions through a GP and 
propagate them through the response using an integration 
of the sparse grid numerical method and maximum entropy 
method. Wu et al. (2017) use a sparse grid collocation tech-
nique to build metamodel and a combination of Bayesian 
analysis and Markov chain Monte Carlo is used to solve the 
inverse UQ problem. Teckentrup et al. (2015) suggest a mul-
tilevel stochastic collocation approach to deal with random 
inputs. Proper orthogonal decomposition is combined with 
PCE for efficient UQ of complex acoustic wave problems 
with large number of output physical variables (El Moçayd 
et al. 2020). Kumar et al. (2020) use PCE on complex geo-
metrically irregular spatial domains and the surrogate mod-
els are constructed using stochastic collocation. The local 
expansion-based methods include approaches such as Taylor 
series or perturbation method (Der Kiureghian 1996; Gha-
nem and Spanos 1991). Such methods suffer under large 
variability of inputs and non-linearity of performance func-
tions (Lee and Chen 2009). While using the advanced first-
order second moment approach to estimate reliability, the 
suboptimization process to estimate MPP is accelerated by 
using the Neumann expansion technique (Lee and Kwak 
1995) to deal with random state equations.

4.1.3  Analytical approaches

Analytical approaches such as FORM and SORM approxi-
mate the reliability estimation and allow for analytical 
uncertainty analysis. They typically require the limit-state 

functions and the distribution of input parameters. These 
approaches are broadly classified as single-loop, double-
loop, and decoupled approaches (Valdebenito and Schuëller 
2010; Aoues and Chateauneuf 2010; Bichon et al. 2008). 
The double-loop approach has the optimization outer loop 
and reliability estimation inner loop. In the inner loop, reli-
ability estimates such as Reliability Index (Tu et al. 2001), 
probabilistic sufficiency factor (Ramu et al. 2006), proba-
bilistic performance measure (Youn et al. 2003), or percen-
tile performance measure (Du et al. 2004) are estimated. 
All these approaches focus on estimating the MPP in a for-
ward reliability estimation or inverse reliability approach. 
Detailed discussions are presented in Valdebenito and 
Schuëller (2010).

There have been numerous studies on efficient strate-
gies to deal with a non-linear high-dimensional limit-state 
function for MPP search in RBDO. In the beginning, there 
were two different approaches for RBDO: reliability index 
approach (Hasofer and Lind 1974) and performance meas-
ure approach (PMA) (Tu et al. 1999). Several developments 
have been proposed for reliability index approach: Santosh 
et al. (2006) applied the Armijo rule to optimal step length 
selection for the Hasofer–Lind and Rackwitz–Fiessler 
method, and the HLRF–BFGS optimization algorithm was 
proposed exploiting the BFGS updates to approximate the 
Hessian matrix since the conventional Hasofer–Lind and 
Rackwitz–Fiessler algorithm can be treated as the sequential 
quadratic programming method where the Hessian matrix of 
Lagrangian is approximated by an identity matrix (Periçaro 
et al. 2015). In addition, stability transformation method for 
chaos control (CC) of MPP search using Hasofer–Lind and 
Rackwitz–Fiessler is proposed by Yang (2010), In PMA, 
Youn et al. (2003) proposed the hybrid mean value method 
integrating conventional advanced mean value method with 
conjugated mean value method to exploit both methods 
selectively according to whether a limit-state function is 
convex or concave. In addition, several strategies for effi-
cient RBDO are developed in enriched performance meas-
ure approach (PMA+) (Youn et al. 2005a). A hybrid chaos 
control for PMA is proposed by integrating advanced mean 
value and modified chaos control procedures to find MPP 
more efficiently and robustly (Meng et al. 2015b). Modified 
chaos control further improves the convergence by extending 
the iterative point of CC method to the constraint bound-
ary (Yang et al. 2020). Keshtegar and Hao (2017) proposed 
hybrid self-adjusted mean value (SMV) method to enhance 
the SMV method. Jung et al. (2020b) proposed an intelligent 
initial point for MPP search in RBDO to improve the effi-
ciency of MPP search utilizing the sensitivity of MPP with 
respect to design point.

There has been a multiple MPP issue when the limit-state 
function is highly non-linear. To resolve this issue, Der Kiu-
reghian and Dakessian (1998) firstly developed an algorithm 
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to find multiple MPPs (i.e., multiple design points), and 
Au et al. (1999) tried to resolve the issue using asymptotic 
approximation and IS. However, research on multiple MPPs 
has been still limited so far.

4.1.4  Dimension reduction approaches

When the number of variables is large, DRM is a sought 
after technique. The underlying idea of most DRM tech-
niques is to translate the function from regular variable space 
to reduced dimension variable space. The variables in the 
reduced dimension are usually a combination of the regular 
variables that contribute the most. Mean-based DRM (Rah-
man and Xu 2004; Xu and Rahman 2004; Lee et al. 2008a) 
and MPP-based DRM (Rahman and Wei 2006) were pro-
posed and widely used. Lee et al. (2008b) use the inverse 
MPP-based approach to enable efficient sensitivity estima-
tion. Eigenvector dimension reduction (EDR) method for 
probabilistic analysis without sensitivity information was 
proposed (Youn and Wang 2008; Youn and Xi 2009). In 
order to overcome the limitations of the univariate approxi-
mation (Lee et al. 2008b), several advances have been imple-
mented (Bae and Alyanak 2016; Kang et al. 2017a; Jung 
et al. 2019a; Park et al. 2020). Researchers combine a DR 
technique and maximum entropy for efficient uncertainty 
analysis (Li and Zhang 2011; Chen et al. 2019b). Active 
subspace (AS) emerged as a popular DRM in the last dec-
ade which typically identifies a one-dimensional structure 
in the map from inputs, irrespective of the dimension of the 
problem. Constantine et al. (2015) reduce a computation-
ally expensive (9500 CPU hours/run) 7 variable problem to 
a one variable problem. UQ of satellite conceptual design 
is performed in Hu et al. (2015). They employ bootstrap 
to identify confidence intervals of the AS and verify the 
results with an MCS estimate. Often, metamodels are built 
in the AS for analysis purposes (Hu et al. 2017; Jiang and 
Li 2017; Ji et al. 2019). Duong et al. (2019) solve a multi-
objective formulation using AS and PCE. Hu et al. (2017) 
present an alliance algorithm to solve a multidisciplinary 
optimization where the in-loop UQ is achieved by using AS. 
Tripathy et al. (2016) proposed a probabilistic version of AS 
that does not require gradient information and works well 
in high dimension. Recent advances include a study that 
combines active learning, active subspace, GP, and MCS 
(Zhou and Peng 2020); a deep learning-based decomposi-
tion of high-dimensional input variables to low-dimensional 
latent space (Li and Wang 2020); and using it for reliability 
analysis, a deep learning-based high-dimensional UQ with 
AS (Tripathy and Bilionis 2018).

4.1.5  Conservative estimates, p‑box models, 
and time‑dependent reliability models

When the available sample or probabilistic information 
is less, conservative estimates are also used by research-
ers (Picheny et al. 2008; Cho et al. 2016a; Ito et al. 2018). 
Surrogates are also constructed and used in a conservative 
estimate perspective (Viana et al. 2010; Zhao et al. 2013). 
Iooss and Le Gratiet (2019) approximate the functional risk 
curve using a metamodel and provide the confidence due 
to the approximation. They use the perturbed-law based 
sensitivity indices to understand the effect of misjudgment 
on the sensitivity of the functional risk curve to the input 
parameter’s PDF.

When the distribution type or moment information is 
known, several approaches are available to develop the dis-
tributional p-box model (Zhang et al. 2010a; Oberguggen-
berger and Fellin 2008; Lee et al. 2016; Wang et al. 2018). 
When the distribution or moment information are not avail-
able, Liu et al. (2019) construct the cumulative distribution 
function p-box based on the maximum entropy principle. 
The interval Monte Carlo is developed by combining the 
interval sampling and interval finite element method for 
uncertain analysis with p-boxes (Zhang et al. 2010a, b, 
2011). Xiao et al. (2016) perform monotonicity analysis on 
probability transformations of the random variables. This 
allows capturing the relations between the interval dis-
tribution parameters and probability bounds of the struc-
tural response which is then used to develop parametrized 
p-boxes. Liu et al. (2018a) propose an optimized sparse 
grid numerical integration to calculate the bounds of the 
statistical moments of the response function and the cumu-
lants which are then used with a saddlepoint approxima-
tion to obtain the whole range of probability bounds of the 
response function. Simon and Bicking (2017) proposed a 
hybrid approach to model and analyze reliability estimates. 
They use p-box models, acyclic graphs, and belief functions 
to account for different types and levels of uncertainty infor-
mation available. Liu et al. (2018a) use an optimized uni-
variate DRM to compute the bounds of statistical moments 
which is then utilized to identify the p-box from the family 
of Johnson distribution.

Analytical and sampling approaches are widely used to 
solve time-dependent reliability analysis (Hu and Du 2013a, 
b, 2015). Surrogates are also used extensively in reliability 
estimates that require time series data (das Chagas Moura 
et al. 2011; Wang and Wang 2012; Kaymaz and McMahon 
2005; Zhang et al. 2017; Wang and Chen 2017; Hawchar 
et al. 2018; Wang and Matthies 2019; Wang et al. 2019c). 
Wu et al. (2018) propose to use an inverse UQ under the 
Bayesian framework which allows capturing the uncertain-
ties in its estimates rather than merely determining the best-
fit values. They project the time series data on to principal 
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component subspace and perform the propagation in the 
reduced space. Recent developments include learning-based 
concepts such as transfer learning for time-dependent reli-
ability prediction (Zafar and Wang 2020).

4.2  Non‑probabilistic techniques

Difficulty in obtaining sufficient data from complex engi-
neering systems leads to the development of non-probabil-
istic methods. Non-probabilistic approaches, unlike proba-
bilistic techniques, can operate with small sample size to 
treat uncertainties. The non-probabilistic approaches can be 
attributed to stem from the argument of lack of credibility in 
probabilistic analysis results (Annis 2004) when the sample 
size is small. The choice of opting for a non-probabilistic 
approach depends on the degree of extraction of information 
from the available scarce description, need of non-probabil-
istic information, computational complexity, and expenses 
(Moens and Vandepitte 2005). The initial studies on non-
probabilistic approaches were presented by Ben-Haim and 
Elishakoff (1995) illustrating the use of non-probabilistic 
convex models for reliability analysis in structural optimiza-
tion. Recent years have witnessed a surge in the application 
of non-probabilistic approaches in the areas of UQ (Gersem 
et al. 2006; Wang and Matthies 2019), aerospace engineer-
ing (Gersem et al. 2006; Wang and Matthies 2019), (Zheng 
and Qiu 2018), controller design (Wang et al. 2019b), and 
structural reliability and analysis (Qiu and Wang 2003; Kang 
et al. 2011; Hao et al. 2017; Guo and Lu 2015; Meng et al. 
2016; Jiang et al. 2013a; Meng et al. 2019; Cheng et al. 
2020; Luo et al. 2021).

Non-probabilistic approaches can be broadly classified 
into two categories: (1) interval-based approach and (2) 
convex model-based approach. Recent advances in interval 
arithmetic led to the progress of interval-based non-probabil-
istic approaches. By definition, an interval scalar consists of 
a single continuous domain in the domain of real numbers ℝ . 
The range is bounded by a lower and an upper bound. Vari-
ables in which bounds can be used to represent uncertainties 
are modeled using interval analysis approach. Such uncer-
tainties are referred to by the term uncertain-but-bounded 
variables. Whereas, in the convex model approach, all the 
possible values of the uncertain parameters are confined to 
a multidimensional convex set. Convex models are preferred 
in problems where the uncertain parameters are expected 
to possess a correlation, as the interval approach assumes 
that the parameters are uncorrelated. These non-probabilistic 
methods are predominantly used in the fields of reliability 
analysis and optimization and UQ. The review explores the 
different non-probabilistic techniques used to qualify the 
safety level of structures with inherent uncertainties.

4.2.1  Interval‑based approaches

Qiu and Wang (2003) present a numerical interval analysis 
method for the dynamical response of structures with UBB 
external excitation and parameters. Taylor series was used 
to obtain the bounds of the interval dynamical response vec-
tor. The interval structure parameter vector was decomposed 
into the sum of the nominal vector and deviation vector from 
which the reliability of the dynamic response structure was 
calculated. In control theory, Wang et al. (2019b) proposed 
a closed-loop controller design based on the concept of non-
probabilistic time-variant reliability-based optimization for 
structural vibration suppression problems. The boundary 
rules of the output response are deduced from the state-space 
transformation, and this transformation is converted to an 
interval function, and bounds are calculated using Taylor 
expansion. The optimal control parameters are obtained 
through the particle swarm algorithm. Luo et al. (2021) 
proposed the conversion of a probability-based reliability 
optimization problem into a possibility-based reliability 
optimization problem where the constraints on the ultimate 
bearing capacity are mapped to interval functions using a 
satisfaction degree and the optimization is solved using the 
method of Simulated Annealing. In line with this idea, Meng 
et al. (2019) proposed an active learning method with Krig-
ing metamodel to rebuild the limit-state function only by 
considering the most concerned point for reliability analy-
sis. The importance learning function is used to select the 
most concerned point, and the Kriging limit-state function 
is built around the neighborhood of most concerned point 
and demonstrated using a non-probabilistic approach. When 
mixed uncertainties are available (Jiang et al. 2012b), param-
eters with sufficient information were treated as random 
variables while others with less information were treated 
as interval variables. When both interval and random vari-
ables are present (Yoo and Lee 2014), through a sampling-
based approach, the probability of failure can be directly 
used to obtain the worst combination of interval variables. 
Parameter intervals of the basic variables in conjunction 
with conventional reliability theory (Qiu et al. 2008) allow 
obtaining system failure probability interval. Based on the 
shape function and interval analysis, Liu et al. (2016) pro-
posed an inverse approach to compute the dynamic load. 
Interval process model extends the interval method (Li et al. 
2019a) for quantifying time varying parameters. Instead of 
using a probability distribution, an interval parameter is used 
to characterize the imprecision of the time varying param-
eter at arbitrary time. Shi and Lu (2019) analyze the safety 
of dynamic structure by a new dynamic reliability analysis 
while accounting for both random and interval input param-
eters by constructing a second-level limit-state function
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4.2.2  Convex model‑based approach

Convex model-based non-probabilistic approaches for reli-
ability analysis are used under the circumstances where 
the uncertain parameters are correlated and when interval 
models result in an over-conservative design. Convexity 
approaches employ interval analysis (Moore et al. 2009) 
and several geometries such as ellipsoid, parallelepiped 
(Jiang et  al. 2015), and super ellipsoid (Elishakoff and 
Bekel 2013) to bound the uncertain region. Ben-Haim and 
Elishakoff (2013) introduced ellipsoid models to applied 
mechanics field. Ben-Haim (1994) introduced the first non-
probabilistic reliability concept which was based on convex 
models. Elishakoff and Zingales (2003) studied the differ-
ences between probabilistic and non-probabilistic, anti-
optimization analyses of uncertainty and concluded that for 
near-unity reliability range these two approaches tend to 
each other. Wang et al. (2011) introduced a convex model 
for structural reliability where ellipse is used to capture the 
region of uncertainty. They concluded that both probabilistic 
approach and convex models are compatible, and the latter 
can be used where probabilistic information is not available. 
Ellipse-based convex model and interval analysis approach 
are compared by Qiu and Wang (2005). They observe that 
if one knows the form of the convex set, convex models 
should be used, else interval analysis is a more practical 
approach. Super-ellipsoid model for uncertainty analy-
sis was introduced by Elishakoff and Bekel (2013). Jiang 
et al. (2015) introduced a non-probabilistic safety measure 
based on multidimensional parallelepiped model. Here, the 
uncertainty is characterized by the interval approach with 
closed bounds. The works of Kang et al. (2011) illustrate a 
multi-ellipsoid convex model-based non-probabilistic reli-
ability index to treat boundary uncertainties. The proposed 
method only requires implicit forms of limit-state function 
in seeking the concerned performance point for solving the 
structural optimization problem.

4.3  Remarks on uncertainty analysis

Oftentimes, the choice of the approaches is dependent on 
the computational budget and details available. Based on 
these features, the approaches are compared in Table 1. This 
permits the user to choose appropriate approaches based on 
the type of data that is available.

A table comparing the various techniques under the dif-
ferent approaches discussed, based on features such as algo-
rithmic complexity, ease of implementation, and computa-
tional time is discussed in Table 2, along with the remarks 
for the particular technique. Each shaded circle is a score. 
More the score, the method scores well in that feature.

5  Design optimization under uncertainties

Uncertainties which may affect performances of engineer-
ing systems are ubiquitous in the real world so that design 
optimization under uncertainties has been developed and 
exploited in various engineering applications. As shown 
in Fig. 3, the design optimization under uncertainties is 
classified in this paper according to the type of uncertainty 
that it deals with.

When only aleatory uncertainty exists, RBDO is uti-
lized to find a reliable optimum design. Research on 
RBDO under aleatory uncertainty assumes that there is no 
epistemic uncertainty, which means that the input statisti-
cal model is perfectly known and the simulation model is 
accurate. Thus, it mainly focuses on efficient and accurate 
multidimensional integration for reliability analysis and 
sensitivity analysis for gradient-based design optimization 
since the simulation model is commonly computationally 
expensive. RBDO under aleatory uncertainty is classi-
fied into analytical approaches and sampling approaches 
according to how to evaluate the reliability. If a limit-
state function is approximated, it mainly utilizes MPP as 

Table 1  Remarks on uncertainty analysis approaches

Approaches Sample/time required Information needed for limit-
state

Model multiple failure modes Remarks

Sampling More Not required Can be applied directly Simple implementation but time 
consuming

Expansion Less Not required Requires algorithm modifica-
tion

Quick but need to watch out for 
approximation errors

Analytical Very less Required (can be approxi-
mated)

Requires complex algorithm 
and implementation

Distribution information 
required

Dimension Reduction Very less Required (can be approxi-
mated)

Requires complex algorithm 
and implementation

Distribution information 
required

Non-probabilistic Less Not Required Can handle In early stages of design, 
extremely useful to provide 
ball park numbers on proba-
bilistic quantities
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Table 2  Table of comparison between various available uncertainty analysis techniques

Modelling Com-
plexity

Implementation Computational
Time

Remarks

Sampling approaches
MCS – Accuracy depends upon the number of

samples
Importance sampling – Requires knowledge of variance of the

distribution sample
– Sampling density choice influences out-
come

Adaptive/Sequence
Sampling

– Requires prior information of the ac-
quired samples
– Different strategies available for differ-
ent class of problem

Expansion approaches
Taylor series – Requires explicit form of derivatives of

the function
– Prone to errors when higher order terms
are truncated

Perturbation methods – Ability to solve highly nonlinear equa-
tions
– Selection of perturbation variable needs
special attention

PCE – Not very efficient for non-normal ran-
dom input distribution
– Under white noise, performance dimin-
ishes

Analytical approaches
FORM/SORM – When underlying variables are non-

normal, errors are incurred during trans-
formation and handling multiple modes of
failure need modification to the base for-
mulation
– Cannot handle highly nonlinear LSFs

Dimension reduction approaches
Eigen dimension
reduction

– Does not require sensitivity of system re-
sponses
– Permits statistically correlated and non-
normally distributed random inputs. How-
ever, careful evaluation in case of higher
order correlated terms is necessary

Active subspace – Very attractive for prohibitively expen-
sive computer models.
– Requires gradient information and varia-
tion in the non active subspace is not pre-
served

Non-probabilistic approaches
Interval analysis – Suitable when no information other than

bounds are available but the approxima-
tions are usually conservative or corre-
spond to worst case
– Can deal only with independent uncer-
tain variables

Co nvexityapproaches – Suitable when less data but more than
the bounds are available
– Can deal with dependent uncertain vari-
ables

Fuzzy, possibility
theory

– Suitable when subjective information
about the process needs to be accounted
– Very attractive for exploring designs in
the conceptual design stage
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a reference point for the approximation. On the other hand, 
the sampling approach requires repeated simulations for 
reliability estimation so that a surrogate model is generally 
utilized to alleviate the significant computational burden. 
The analytical approaches can be further categorized into 
various methods depending on (1) how to approximate 
multidimensional integration, and (2) how to reformulate 
design optimization. The sampling approaches can be clas-
sified into two categories: (1) sampling approaches with 
surrogate modeling whose main focuses are efficient sur-
rogate modeling and sequential sampling methods, and (2) 
sampling approaches with efficient numerical integration 
for reliability and its sensitivity analysis. In addition to 
RBDO under aleatory uncertainty which mainly focuses 
on component design, there have been approaches which 
deal with system design optimization under uncertainties. 
Hence, the system RBDO methods are briefly reviewed in 
this section as well.

Design optimization under both aleatory and epistemic 
uncertainties has concerned lack of knowledge, data, and 
information. Thus, the epistemic uncertainty is classified 
into input and output model uncertainty. Since reliabil-
ity is the probability that response of interest is satisfied 
under input uncertainty, both input and output uncertain-
ties can affect the reliability analysis and lead to an unreli-
able optimum. The input model uncertainty means that an 
accurate input statistical model is unknown but insufficient 
input data are available. Thus, UQ explained in Sect. 3 is 
required to handle or manage input uncertainties. There 
are two approaches to deal with the input model uncer-
tainty: (1) non-probabilistic approaches such as interval 
analysis, fuzzy set theory, and evidence theory to describe 

the uncertainty, which are generally known to be effective 
when input data are extremely scarce, and (2) probabilistic 
approaches to model the input uncertainty through known 
PDF with its epistemic uncertainty existing in distribu-
tion parameters and types. The output model uncertainty 
where the epistemic uncertainty comes from inaccurate 
output responses can be also classified into two: (1) sur-
rogate model uncertainty caused by the limited number of 
simulation samples for surrogate modeling, and (2) simu-
lation model uncertainty represented as unknown model 
parameters, discrepancy between experimental results and 
simulation response, and measurement error.

5.1  Design optimization under aleatory uncertainty

This section explains RBDO research under aleatory uncer-
tainty where input statistical models are assumed to be 
given. Thus, the multidimensional integration to estimate 
reliability is the main focus of research. Regardless of 
approaches, they aim to obtain an accurate optimum satis-
fying the constraints with the minimum number of computer 
simulations. For accuracy comparison, the optimum design 
obtained using MCS is usually used as a benchmark.

5.1.1  Analytical approaches

Analytical approaches are traditional ways to approximate 
the limit-state function. Motivation of the approaches can 
be classified into two ways. First, the improvement of inte-
gration has been developed. The multidimensional integra-
tion can be approximated through moment-based methods 
and MPP-based approximations such as FORM. Besides, 

Design optimization under uncertainties 

Design optimization under epistemic uncertaintyRBDO under aleatory uncertainty

Analytical approach

Approximation of 
integration

Reformulation of 
optimization

Sampling approach

Surrogate 
modelling

Numerical 
integration

Input model uncertainty

Non-probabilistic 
approach

Probabilistic 
approach

Output model uncertainty

Surrogate model 
uncertainty

Simulation model 
uncertainty

Fig. 3  Design under uncertainty tree structure
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many methods for accurate approximations on multidimen-
sional integration are proposed. Second, reformulation of 
double-loop RBDO which requires heavy computations has 
been discussed. To this end, decoupled loop and single-loop 
RBDOs are proposed to reduce the computational burden.

Approximation of integration Approximation of a limit-
state function and its multidimensional integration for reli-
ability analysis affect efficiency and accuracy of RBDO. 
FORM has been widely used and developed in many differ-
ent ways based on MPP such as PMA and reliability index 
approach as mentioned in Sect. 4 (Hasofer and Lind 1974; 
Tu et al. 1999; Chiralaksanakul and Mahadevan 2005). Lin 
et al. (2011) proposed a modified reliability index to prevent 
divergence of FORM using a new definition of reliability 
index since traditional reliability index fails to find the true 
MPP when the origin in the U-space is within the failure 
region. Du and Hu (2012) proposed FORM with truncated 
random variables. Zhang and Du (2010) tried to improve the 
accuracy of FORM while maintaining a similar level of effi-
ciency. It can be achieved by univariate DRM with quadratic 
functions and saddlepoint approximation. Recently, Chen 
et al. (2019a) integrated SORA with identification of mul-
tiple MPPs so that it can be treated in decoupled RBDO.

SORM approximates the limit-state function by a quad-
ratic polynomial function (Breitung 1984). Lee et al. (2012) 
and Park and Lee (2018) developed the novel SORM to 
improve the accuracy of SORM through orthogonal transfor-
mation and integration using general chi-square distribution, 
where errors due to approximating the quadratic function 
by parabolic surface and calculation of reliability are elimi-
nated. Its sensitivity analysis for RBDO is also developed 
by Yoo et al. (2014). Mansour and Olsson (2014) devel-
oped a closed-form expression for reliability by eliminat-
ing the rotation of the Hessian matrix. On the other hand, 
Lim et al. (2014) exploited the symmetric rank-one update 
to approximate the Hessian matrix using the path of MPP 
search in approximated SORM to reduce the computations 
for the Hessian matrix calculation. Huang et al. (2018) esti-
mated a cumulative generating function through quadratic 
approximation and saddlepoint approximation to compute 
the reliability analytically.

DRM is developed to approximate the multidimensional 
integration of a limit-state function as a summation of func-
tions with reduced dimension. The univariate DRM is most 
widely used in RBDO which shows more accuracy than 
FORM and efficiency than SORM (Rahman and Xu 2004; 
Lee et al. 2008b). Youn and Xi (2009) proposed EDR to 
improve the accuracy of DRM by choosing samples along 
the eigenvectors to incorporate the statistical correlation. 
Kang et al. (2017a) developed the so-called HeDRM to 
reduce the effect of cross-terms of univariate DRM through 
rotational transformation. Jung et al. (2019a) further tried 
to reduce necessary number of function evaluations for 

MPP-based DRM utilizing the history of MPP search simi-
lar to approximated SORM, and it shows the same efficiency 
as FORM while maintaining the accuracy of DRM. Park 
et al. (2020) developed selective DRM which allocates the 
integration points using a statistical mode selection method 
such as Akaike information criterion.

On the other hand, there have been studies on moment-
based RBDO which have advantages of not having difficul-
ties of MPP search and multiple MPP problems in reliability 
analysis (Li and Zhang 2011). Huang and Du (2006) directly 
estimated cumulative generating function of the response 
through moments from the dimension reduction and sad-
dlepoint approximation. Kang and Kwak (2009) exploited 
the maximum entropy principle for PDF modeling and 
RBDO. Ju and Lee (2008) combined the moment-based 
RBDO and surrogate model, and Rajan et al. (2020) also 
developed RBDO using higher-order moments of responses 
using local surrogate modeling to overcome the limitations 
in MPP-based methods.

Reformulation of optimization To reduce the compu-
tational burden of conventional double-loop RBDO, two 
approaches have been studied: decoupled loop and single-
loop RBDOs. In the decoupled loop RBDO, reliability 
analysis and design optimization are sequentially performed 
until convergence. On the other hand, design optimization 
only is performed in the single-loop RBDO, and reliability 
analysis is perfectly approximated without any optimization 
loop.

For the decoupled loop RBDO, Du and Chen (2004) pro-
posed SORA where a double loop is decoupled into reli-
ability analysis and deterministic optimization using equiva-
lent deterministic constraints which are shifted to a feasible 
direction according to reliability analysis. Hence, its compu-
tational efficiency is greatly improved. Zou and Mahadevan 
(2006) proposed a direct decoupling approach which also 
decoupled the double loop, but reliability analysis is per-
formed through a sampling method instead of MPP-based 
approximation. Cho and Lee (2011) proposed the improved 
SORA where the shifted constraint in the deterministic 
optimization is replaced by a convex linearized function 
using the gradient and function value obtained from reli-
ability analysis. Thus, no additional function evaluation is 
necessary, and it is shown that its convergence is better than 
SORA. On the other hand, Chen et al. (2013) proposed adap-
tive decoupling approach to enhance the efficiency of SORA 
using novel update angle strategy and feasibility-checking 
method. The update angle strategy can reduce the necessary 
function evaluations, and the feasibility-checking method 
enables to assess only violated and active constraints. Huang 
et al. (2016) proposed the incremental shifting vector utiliz-
ing the information of previous shifting vector. Chen et al. 
(2018) also proposed a probabilistic feasible region approach 
for RBDO to further enhance the efficiency of SORA by 
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selectively assessing the reliability of each limit-state func-
tion. Wang et al. (2020) combined the SORA with moment 
method through univariate DRM and PDF estimation such 
as maximum entropy method.

On the other hand, the single-loop approach has been 
also exploited widely due to its high efficiency compared 
to conventional RBDOs. Various single-loop RBDOs to 
eliminate the reliability analysis such as single-loop single 
vector (Chen et al. 1997; Yang and Gu 2004) and single-
loop approach (Liang et  al. 2008) have been proposed, 
where the Karush–Kuhn–Tucker optimality condition is 
used to replace probabilistic constraints (Mohsine et al. 
2006; Agarwal et al. 2007). Shan and Wang (2008) proposed 
reliable design space to further improve the efficiency of 
single-loop approach by approximating the gradient vector 
at MPP. Jeong and Park (2017) proposed single-loop single 
vector using the conjugate gradient where the convergence 
of single-loop single vector is improved by MPP estima-
tion through conjugate gradient. Jiang et al. (2017) proposed 
adaptive hybrid single-loop method that is more suitable for 
non-linear RBDO sacrificing little efficiency by checking 
the feasibility of the approximate MPP. Similarly, Li et al. 
(2019d) proposed a new oscillating judgment criterion and 
adaptive modified chaos control method to select the MPP 
search formula and integrate with single-loop approach.

5.1.2  Sampling approaches

Sampling approaches are divided in this section into two: 
strategies for more accurate and efficient surrogate modeling 
during RBDO such as a sequential sampling, and various 
numerical integration methods. The sequential sampling 
attempts to find the best sampling point to be added in the 
current sample set to best improve accuracy of a surrogate 
model. The numerical integration method attempts to com-
pute the reliability during optimization with less number of 
samples than MCS.

Strategies for accurate and efficient surrogate modeling-
Dubourg et al. (2011) built a Kriging model on augmented 
reliability space and a strategy to sequentially refine the 
Kriging model, where the reliability is estimated through 
subset simulation. Bichon et  al. (2008, 2013) integrate 
efficient global reliability analysis into RBDO. Chen et al. 
(2014, 2015) proposed a local adaptive sampling for RBDO 
to improve the efficiency of constructing a Kriging model 
based on constraint boundary sampling (Lee and Jung 2008), 
and important boundary sampling accounting for objective 
function, which is integrated with SORA. Similarly, Meng 
et al. (2018) exploited the adaptive directional boundary 
sampling accounting for objective function. Li and Cao 
(2016) proposed a local approximation method using MPP 
to check the feasibility of constraints and locally refine the 
surrogate model around MPP. On the other hand, Liu et al. 

(2017) developed local range RBDO including two phases 
which are to find the local range based on SVM and con-
struct an accurate Kriging model in the local range. Li et al. 
(2019c) developed a sequential surrogate model method for 
RBDO using RBF by sequentially refining the surrogate 
model in the vicinity of the current design. PCE has been 
also popularly investigated to be used in RBDO. Hu and 
Youn (2011) proposed the adaptive-sparse PCE to overcome 
the curse of dimensionality by automatically detecting sig-
nificant polynomials and adjusting the PCE order. Zhou and 
Lu (2019) developed the Bayesian compressed sensing for 
PCE surrogate model and integrated it with the active learn-
ing strategy for RBDO. Zhu and Du (2016) proposed the 
dependent Kriging prediction to consider the correlations 
between prediction at realizations of input random vari-
ables for MCS, so that a new learning function accounting 
for variation of reliability is used for sequential sampling. 
Wang and Wang (2014) developed cumulative confidence 
level to quantify the accuracy of reliability estimation using 
a surrogate model, and then a sequential sampling approach 
for RBDO is adopted based on cumulative confidence level.

Numerical integration methods Au and Beck (2001) and 
Au (2005) developed the subset simulation for reliability 
analysis and its sensitivity analysis, and Li and Cao (2016) 
developed Matlab code for the subset simulation and struc-
tural optimization. Lee et al. (2011) proposed stochastic sen-
sitivity analysis of reliability and statistical moments when 
the input random variables are correlated. The score func-
tion is used to derive sensitivities and the input statistical 
model is described with parametric marginal distribution 
and copula function. Cho et al. (2016b) developed the sam-
pling-based RBDO when standard deviations vary. Dubourg 
et al. (2013) proposed the metamodel-based IS using quasi-
optimal instrumental PDF using probabilistic classification 
functions defined by a Kriging model. Zhu et al. (2015) pro-
posed a new sampling-based RBDO via score function with 
a reweighting scheme so that its computational efficiency 
is improved. Recently, Chaudhuri et al. (2020) proposed IS 
reusing information accumulated from past iterations, which 
is exploited in RBDO to reduce the computational burden.

5.1.3  System RBDO

Component RBDOs discussed so far find an optimum where 
multiple constraints are independently satisfied, whereas 
system RBDO finds an optimum with a single system con-
straint aggregating all probabilistic constraints. Thus, an 
effective approach to obtain the system reliability is the 
key idea of system RBDO studies. Ba-Abbad et al. (2006) 
proposed a modified approach for RBDO of series systems 
adapting SORA where the optimizer distributes the reliabil-
ity of the system over its components while constraining 
the system reliability only. Liang et al. (2007) proposed a 
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single-loop system RBDO that enables to distribute each tar-
get reliability of failure mode, so that only system reliability 
has to be assigned. McDonald and Mahadevan (2008) also 
developed the equivalent formulation including both compo-
nent and system reliability constraints as single-loop RBDO. 
Song and Kang (2009) and Nguyen et al. (2010) proposed 
matrix-based system reliability method and system RBDO 
using matrix-based system reliability, so that it can account 
for statistical dependence between component events. Lee 
et al. (2010) exploited the MPP-based DRM to calculate 
the component reliability and integrate with Ditlevsen’s sec-
ond-order upper bound according to convexity of limit-state 
functions. Wang and Wang (2015b) developed the integrated 
PMA exploiting GP model to accurately estimate system 
reliability. Xiao et al. (2020) developed a system active 
learning Kriging for system RBDO based on expiration risk 
function to refine the Kriging model iteratively.

5.1.4  Robust design optimization (RDO)

Robust design optimization (RDO) attempts to improve 
the product quality by minimizing the variability of an 
output response propagated from input uncertainty. In 
other words, the optimal design gives a high degree of 
robustness that is relatively insensitive to input uncertain-
ties, and several studies have widely investigated RDO 
frameworks to systematically organize the existing stud-
ies (Zang et al. 2005; Beyer and Sendhoff 2007; Schuëller 
and Jensen 2008; Chatterjee et al. 2019). Specifically, 
RDO concentrates on estimating the first two statistical 
moments of the output response and their sensitivities 
(Sandgren and Cameron 2002). Thus, there exist concep-
tual differences between RBDO and RDO. RBDO usually 
treats constraints of catastrophic failure in rare extreme 
events where the cost function to be minimized is gener-
ally deterministic, while RDO emphasizes the response 
sensitivity with respect to the input variations or allows 
for the maximum possible system variability. The efficient 
and accurate estimation of the statistical moments is the 
key to RDO research. Numerical integration such as MCS 
is the most intuitive way but requires a heavy computa-
tional burden, and thus the surrogate model to replace the 
simulation model can resolve it. Chakraborty et al. (2017) 
proposed RDO using polynomial correlated function 
expansion called high-dimensional model representation. 
Coppitters et al. (2019) used PCE to emulate the physical 
model for RDO of the photovoltaic–electrolyzer system. 
Recently, Chatterjee et al. (2019) presented an extensive 
survey to illustrate the performance of surrogate models in 
RDO, Keane and Voutchkov (2020) proposed a combined 
Co-kriging model for RDO. On the other hand, many 
approximation methods on integration have been pro-
posed to reduce the number of function evaluations. For 

instance, the simple Taylor expansion (Lee and Park 2001; 
McAllister and Simpson 2003) and perturbation methods 
(Doltsinis and Kang 2004) are used for the moment esti-
mation, Xu and Rahman (2004) proposed the univariate 
DRM for multidimensional integration, and Youn et al. 
(2005b) proposed the performance moment integration. 
In practical, reliability-based robust design optimization 
(RBRDO) rather than RDO is much effective in consider-
ing two objectives, which are reliability of constraints and 
robustness of product quality (Lee et al. 2008a; Youn and 
Xi 2009; Motta and Afonso 2016). The multi-objective 
cost function is one of the key issues to treat combined 
robustness measures. Yadav et al. (2010) proposed a multi-
objective framework by addressing various quality losses 
simultaneously, Sun et al. (2011) showed multi-objective 
RDO on crashworthiness design of the vehicle to gener-
ate Pareto solutions, and Shahraki and Noorossana (2014) 
presented RBRDO using an evolutionary multi-objective 
genetic algorithm. Meanwhile, epistemic uncertainty 
induced by lack of knowledge also has been treated in 
RDO. Tang et al. (2012) developed RBRDO accounting 
for both reliability and robustness indices under epis-
temic uncertainty represented by info-gap theory. Kang 
and Bai (2013) proposed a new robustness measure and 
RDO based on a convex model for uncertain-but-bounded 
parameters. Zaman and Mahadevan (2013) developed 
RDO for multidisciplinary systems accounting for both 
aleatory and epistemic uncertainties, and Li et al. (2020) 
recently treated both parameter and model uncertainty in 
multidisciplinary RDO. In engineering application, Ghisu 
et al. (2011) presented the RDO of the gas turbine sys-
tem, and Fang et al. (2015) performed RDO for fatigue 
life to design truck cap, and Lee et al. (2020b) exploited 
RDO to the thermoelectric generator system. Especially in 
the composite structure, das Neves Carneiro and António 
(2019) presented the RBRDO of angle-ply composite lam-
inate structure accounting for both weight and determinant 
of covariance of response. Zhou et al. (2019a) exploited 
RDO to variable angle tow composite structures under the 
material and applied load uncertainties, and several studies 
on RDO of composite structures can be found (António 
and Hoffbauer 2009; Bacarreza et al. 2015).

5.2  Design optimization under both aleatory 
and epistemic uncertainties

All RBDO studies introduced in the previous section 
assume that statistical models of input random variables 
are given, and a simulation model gives exact responses. 
However, it is very difficult to know the statistical mod-
els of all input random variables in practical engineer-
ing applications, and the simulation model always shows 
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discrepancy compared with the experimental results. Thus, 
estimation of the input statistical model needs to be per-
formed using collected data as discussed in Sect. 3, and 
the estimated statistical model could be inaccurate when 
insufficient data are used. Also, inaccuracy of a surrogate 
model emulating the simulation model can be epistemic 
uncertainty in RBDO. In this section, studies to find an 
RBDO optimum accounting for epistemic uncertainties 
such as input model uncertainty and output model uncer-
tainty including surrogate and simulation model uncer-
tainty are discussed.

5.2.1  Input model uncertainty

Non-probabilistic approach This section introduces vari-
ous design optimizations where input model uncertainty 
is described in non-probabilistic ways. Interval analysis 
is carried out when only nominal value and its lower and 
upper bounds are available through scarce data or engi-
neer’s experience. Du and Chen (2004) and  Du et al. 
(2005) proposed a design optimization with the mixture 
of random and interval variables. Since identification of 
the worst case interval variables requires heavy computa-
tions, the sequential single loop is employed to improve 
the efficiency. Yoo and Lee (2014) developed sampling-
based design optimization in the presence of interval 
variables. Cho et al. (2020) developed an MPP search 
method for mixture of random and interval variables and 
its sensitivity analysis where both types of variables can 
be iteratively updated to find a correct MPP. Fuzzy vari-
ables described using membership functions are employed 
in possibility-based design optimization. Du et al. (2006) 
integrated PMA with possibility-based design optimiza-
tion improving the efficiency of the optimization by using 
the maximal possibility search method. Youn et al. (2007) 
considered product quality loss analogous with robustness 
of quality and integrated it with possibility-based design 
optimization. Lee et al. (2013) compared possibility-based 
design optimization with RBDO using confidence level 
and measured conservativeness of an optimum for each 
approach through mathematical and engineering examples. 
The evidence theory uses two measures which are belief 
and plausibility to quantify the bounds of the precise prob-
ability. Mourelatos and Zhou (2006) used the evidence 
theory to assess reliability with incomplete information, 
and a computationally efficient optimization is proposed. 
Alyanak et al. (2008) developed a design optimization 
method using the evidence theory based on a gradient pro-
jection technique. Jiang et al. (2013b) developed the most 
probable focal element corresponding to MPP in RBDO, 
and then reliability can be obtained efficiently through 
most probable focal element. Kang et al. (2011) proposed a 
non-probabilistic RBDO exhibiting uncertain-but-bounded 

parameters. The non-probabilistic reliability index based 
on a multi-ellipsoid convex model is used to quantify 
the reliability in RBDO. Guo and Lu (2015) presented 
a mixed interval-convex model non-probabilistic RBDO 
methodology for structures with uncertain-but-bounded 
parameters, where the input uncertain parameters were 
treated as interval variables. Meng et al. (2016) developed 
a decouple approach for the non-probabilistic RBDO by 
shifting constraints of deterministic optimization, and Hao 
et al. (2017) proposed an efficient adaptive-loop method 
for the non-probabilistic RBDO aiming at improving effi-
ciency, where the convex model is used to describe the 
input uncertainty. Recently, Kanno (2019) developed a 
data-driven non-parametric RBDO accounting for confi-
dence level of reliability.

Probabilistic approach This section introduces develop-
ments in RBDO where input statistical model is described 
by a probabilistic way such as the Bayes’ theorem where 
the input distribution parameters can be adjusted or follow 
a posterior distribution obtained from input data. Youn and 
Wang (2008) proposed a Bayesian RBDO combined with 
EDR when the input statistical model is unknown. Noh 
et al. (2011a, b) developed RBDO with confidence level by 
adjusting input standard deviations and correlation coeffi-
cients when input data are not sufficient. Cho et al. (2016a) 
proposed a conservative RBDO using conservativeness of 
reliability where input distribution parameters and types 
are quantified through the Bayesian approach. Following 
the previous frameworks, Jung et al. (2019b, 2020a) tried to 
reduce the computational cost for the conservative RBDO 
exploiting the MPP approach in the space of distribution 
parameters and developed the bi-objective confidence-based 
design optimization to determine the optimal number of 
input data. Zaman and Mahadevan (2017) exploited a four-
parameter flexible Johnson family of distribution to describe 
the input statistical model. Moon et al. (2018) extend the 
previous approach to biased simulation models so that both 
input and output test data are used to estimate the distribu-
tion of reliability. Ito et al. (2018) proposed the conservative 
reliability index that can be decomposed into target reliabil-
ity index and epistemic reliability index, so that aleatory 
and epistemic uncertainties of input random variables can 
be considered simultaneously. Moon et al. (2019) exploited 
a bootstrapping method for bandwidth to obtain the distribu-
tion of reliability using KDE as the input statistical model.

5.2.2  Output model uncertainty

The output model uncertainty means that output responses 
of interest would be inaccurate due to insufficient simulation 
samples for surrogate modeling and fundamental inability 
of a simulation model to numerically emulate the real physi-
cal model. Thus, various researches can be included in this 



2930 E. Acar et al.

1 3

section such as model calibration and validation induced 
by biased simulation models with unknown parameters and 
quantification of surrogate model uncertainty.

Surrogate model uncertainty Picheny et al. (2008) pro-
posed margin to the response predicted by a surrogate model 
using biased fitting. Viana et al. (2010) exploited the cross-
validation method to determine safety margin of a surro-
gate model. Zhao et al. (2013) developed weighted Kriging 
variance for sampling-based RBDO using Akaike informa-
tion criterion. An and Choi (2012) proposed the Bayesian 
framework incorporating the input model and surrogate 
model uncertainties quantified as hyper-parameters of Krig-
ing to perform integrated reliability analysis. The surrogate 
model uncertainty in reliability analysis quantified as cor-
related prediction in Kriging is also taken into account in the 
research of Nannapaneni et al. (2016). Li and Wang (2018) 
proposed confidence-driven design optimization to avoid 
underestimation of reliability in RBDO due to insufficient 
simulation data. Li and Wang (2019) also developed RBDO 
accounting for surrogate model UQ using equivalent reliabil-
ity index exploiting the Gaussian mixture model. Jung et al. 
(2021) recently proposed the confidence-based design opti-
mization accounting for distribution of reliability induced 
by surrogate model uncertainty.

Simulation model uncertainty Simulation models such 
as finite element analysis numerically solve a partial dif-
ferential equation under various assumptions yielding 
discrepancy with experimental results. The goal of model 
calibration of simulation model is to accurately emulate the 
experiment by estimating unknown model parameters and 
model discrepancy. Xiong et al. (2009) proposed the maxi-
mum likelihood estimation-based approach to estimate the 
distribution parameters of unknown parameters instead of 
the Bayesian approach. Arendt et al. (2012) proposed an 
overall framework for model updating, a modular Bayes-
ian approach, so that GP for the simulation model and bias 
function and posterior distribution of calibration param-
eters can be obtained. Jiang et al. (2013b) proposed RBDO 
under model and parameter uncertainties using GP mod-
eling exploiting the multi-fidelity structure. Pan et al. (2016) 
developed a copula-based approach for bias modeling and 
unknown parameter calibration, and then model bias can be 
expressed as conditional PDF. Shi and Lin (2016) showed a 
new RBDO exploiting adaptive response surface using the 
Bayesian metric to prevent inaccurate response surface and 
GP for bias modeling. Moon et al. (2017) proposed RBDO 
using confidence-based model validation, which means that 
the distribution of reliability is taken into account using 
adaptive KDE of insufficient experimental data. Xi (2019) 
developed confidence-based reliability analysis consider-
ing the epistemic uncertainty induced by simulation model 
uncertainty for three representative scenarios. Recently, Lee 
et al. (2019a) and Jiang et al. (2020) investigated studies on 

various statistical model calibration and validation strate-
gies, and categorized it for clarity.

5.3  Remarks (Discussion, Consideration) on design 
and optimization under uncertainties

In this section, several remarks on design optimization 
under uncertainties are given to arrange pros and cons of 
each approach, potential uses, and promising perspectives. 
Design optimization under aleatory uncertainty mainly treats 
a multidimensional integration on joint PDF of random vari-
ables in this paper. The analytical approach focuses on the 
approximation of a limit-state function at MPP, so that it is 
very efficient but cannot ensure accuracy since non-linearity 
of the limit-state function is unknown. In particular, it can be 
much erroneous when decoupled and single loops requiring 
additional approximations are used instead of double loop. 
The alternatives such as the moment-based method can alle-
viate the difficulty induced by approximation at MPP, but it 
still requires estimation of higher moments and the approxi-
mation of parametric PDF. Thus, it can be addressed that an 
analytical approach based on approximation is suitable for 
a high-dimensional problem or a problem where simulation 
is extremely expensive so that surrogate modeling is not 
available.

On the other hand, the sampling approach is a more prac-
tical method in the real world since it is more reliable than 
the analytical approach, and its convergence is guaranteed 
as the number of samples increases. In fact, the accuracy of 
the sampling approach is highly dependent on the accuracy 
of the surrogate model since the direct numerical integra-
tion using the simulation model is extremely difficult. Each 
surrogate model has different characteristics, and it is very 
challenging to determine which surrogate model is suitable 
in such a situation. To resolve the difficulty of DoE in sur-
rogate modeling, various strategies to update the surrogate 
model, also called active learning, have been widely investi-
gated for RBDO. Especially, the method of effectively com-
bining active learning and numerical integration could be a 
good option in RBDO. Thus, it is addressed that if surrogate 
modeling is available, active learning Kriging combining 
efficient integration can be recommended since its accuracy 
can be quantified and improved through additional simula-
tions. Epistemic uncertainty induced by insufficient data, 
knowledge, and information always exists in the real word, 
but conventional RBDOs assumed that prior information 
and the sufficient number of data are available to estimate 
all models, and thus it has focused on efficient and accu-
rate numerical integrations for reliability analysis, surrogate 
modeling, and simulation model calibrations. However, we 
addressed that epistemic uncertainty in each process has to 
be properly quantified and taken into account in reliability 
analysis and design optimization for practical uses.
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Design optimization under input model uncertainty can 
be categorized into non-probabilistic and probabilistic meth-
ods. Although it depends on the characteristics of the input 
uncertainty, non-probabilistic methods such as the convex 
model, which has been vastly studied recently, are known to 
be effective when the input data are extremely limited and 
bounded. On the other hand, the probabilistic method using 
joint PDF and Bayes’ theorem can be erroneous when uncer-
tainty quantification of epistemic uncertainty is inaccurate 
due to a very small number of data and wrong assumptions 
on PDF, but it can show the convergence as more data are 
available and has a perfectly theoretical background. To the 
best of the authors’ knowledge, however, no studies have 
yet to thoroughly compare the effectiveness of these two 
approaches quantitatively or theoretically according to the 
number of given data. Design optimization under output 
model uncertainty, such as surrogate model uncertainty 
and simulation model uncertainty, has been limited even 
though it frequently occurs in the real world. Specifically, 
efforts have been made to improve the surrogate model and 
calibrate the simulation model to estimate unknown model 
parameters and model bias. However, epistemic uncertainty 
cannot be perfectly reduced, and the available data are 
always limited. Therefore, it should be taken into account to 
cope with various situations in the real world. Unfortunately, 
the studies on surrogate modeling and simulation model 
calibration are organized in the literature, but the quantifi-
cation of output model uncertainty and conservative design 
optimization accounting for it have been limited and should 
be developed in the future.

6  Applications, software, and benchmark 
problems

6.1  Applications

Though plenty of methods were introduced and developed 
to treat uncertainties, only in the last decade, the methods 
were liberally used in industrial applications across different 
domains. In the following, we list the various applications 
addressed under the different classes.

6.1.1  Applications of uncertainty modeling

Wunsch et al. (2015) presented quantification of combined 
operational and geometrical uncertainties in turbo-machin-
ery design. Allen et al. (2015) discussed uncertainty man-
agement in the integrated realization of engineered materials 
and components. Azevedo et al. (2015) presented the cali-
bration of traffic microscopic simulation models for safety 
analysis analyzed considering four different key uncertainty 
sources: the input data, the calibration methodology, the 

model structure and its parameters, and the output data. 
Hu et al. (2017) discussed uncertainty quantification and 
management in additive manufacturing, and presented cur-
rent status, needs, and opportunities. Håkansson (2019) 
used a general uncertainty management framework to ana-
lyze the standard uncertainty resulting in the heat transfer 
coefficients obtained with sensor experiments. Kumar et al. 
(2020) demonstrated an efficient uncertainty quantification 
and management in the early-stage design of composite 
applications. Son et al. (2020) addressed statistical model 
improvement consisting of model calibration, validation, and 
refinement techniques using a case study of an automobile 
steering column and then applied the uncertainty modeling 
results to RBDO.

6.1.2  Applications of uncertainty analysis

Cadini et al. (2015) demonstrate sampling-based approach 
in radioactive waste repository and Radaideh and Kozlowski 
(2020) provide a nuclear reactor example. Booker et al. 
(1999) and Hosder et al. (2001) discuss applications in heli-
copter rotor blade and high-speed civil aircraft, respectively. 
Iooss and Le Gratiet (2019) develop a functional risk curve 
in non-destructive testing in aeronautics and steam genera-
tor tubes application. A Krylov space dimension reduction 
approach is demonstrated on a 64-pin radio frequency-inte-
grated circuit-linear time-invariant system by Freund (2003). 
A high-speed delft catamaran example is demonstrated on 
using RBF in Volpi et al. (2015). Bichon et al. (2008) dem-
onstrate efficient global optimization on bistable MEMS. 
Taflanidis and Beck (2008a, 2008b), Jensen et al. (2009), 
and Li et al. (2016) discuss examples on x-storey structures 
subject to different types of base loads.

In the functional expansion approaches, Ishigami, Sobol, 
and Morris functions are discussed in Blatman and Sudret 
(2010a, 2010b) and Zhou and Lu (2019). An urban drainage 
simulation is demonstrated in Nagel et al. (2020). Dodson 
and Parks (2015) and Wang and Matthies (2019) present 
approaches to perform airfoil-shaped optimization while 
robust design of airfoil is also discussed (Dodson and Parks 
2015). Wu et al. (2017) discuss a nuclear reactor system 
design and Kumar et al. (2020) present a rotor blade design 
and associated dynamic studies. Chan et al. (2007) and Du 
and Chen (2004) use analytical approaches to propagate 
uncertainties in Passive vehicle suspension design and a 
vehicle crashworthiness of side impact, respectively. Muk-
hopadhyay et al. (2016) discuss uncertainty propagation in 
composite structures. When the dimensions are large, dimen-
sion reduction techniques are employed to reduce the dimen-
sion in which the propagation or analysis can be performed. 
Several applications in automotives such as vehicle side 
impact (Lee et al. 2008a), lower control arm of a vehicular 
system (Youn and Wang 2008), and aerospace applications 
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such as conceptual sizing (Bae and Alyanak 2016), rotating 
disk (Park et al. 2020), hypersonic scramjet (Constantine 
et al. 2015), and satellite design (Hu et al. 2015, 2017). Non-
probabilistic approaches are used in design of composite 
laminated panels in supersonic flow (Zheng and Qiu 2018) 
and ultra-precision high-speed press (Cheng et al. 2020). 
Interval approaches are used to demonstrate an 8 degrees 
of freedom vehicle vibration problem (Li et al. 2019a) and 
design of an automobile front axle (Shi and Lu 2019).

6.1.3  Applications of RBDO

Allen and Maute (2004) allowed the design of aeroelastic 
structures where the reliability of structural and aerody-
namic criteria should be satisfied, and thus the optimized 
structure yields significantly improved results. In addition, 
there have been many efforts on aerodynamic field apply-
ing RBDO framework (Paiva et al. 2014; Nikbay and Kuru 
2013). Sun et al. (2017) applied multi-objective RBDO to 
tailor rolled blank hat-shaped structure, one of the key light-
weight technology for vehicle crashworthiness. Youn et al. 
(2004) and Acar and Solanki (2009) also utilized RBDO in 
vehicle design for crashworthiness. Grujicic et al. (2010) 
exploited RBDO for durability of suspension in the presence 
of the uncertainty of material properties and shape param-
eters. Lee et al. (2019b, 2020a) applied RBDO to electric 
vehicle design in reliability-based design for market systems 
and to shared autonomous electric vehicle design and opera-
tion under uncertainties. Fan et al. (2019) used the Krig-
ing model to perform RBDO of crane bridges. Hassan and 
Crossley (2008) proposed RBDO of spacecraft, and Shin 
and Lee (2014) exploited RBDO to determine the optimal 
radius and speed limit in windy environments under uncer-
tainty. RBDO framework for composite structure has also 
been widely investigated. Gomes et al. (2011) and Lopez 
et al. (2011) proposed the RBDO of laminated composites 
structure, and Sohouli et al. (2018) and Duan et al. (2020) 
exploited the efficient RBDO for a composite structure such 
as decoupled and single loops. Li et al. (2017) developed 
the framework for RBDO of wind turbine drivetrains under 
wind and manufacturing uncertainties. Azarkish and Rashki 
(2019) performed reliability analysis and sensitivity analysis 
of shell and tube heat exchangers. Makhloufi et al. (2016) 
performed RBDO or wire bonding in power microelectronic 
devices. Li et al. (2019b) introduced the multidisciplinary 
RBDO of a cooling turbine blade along with heat transfer 
analysis and strength analysis. Ronold and Larsen (2000), 
Toft and Sørensen (2011), and Hu et al. (2016) conducted 
RBDO of wind turbine blades.

A two-dimensional mathematical example is one of the 
most widely used mathematical formulations in RBDO since 
it can be visualized and has narrow safe region, and modi-
fied formulation with much non-linear second constraint 

is also popularly used (Youn and Choi 2004; Youn et al. 
2005a). RBDO for crashworthiness of vehicle side impact 
has nine design variables and two design parameters, and 
the limit-state functions are approximated as polynomials 
using response surface method, so that it is proper to verify 
RBDO as a problem with moderately high dimension (Youn 
et al. 2004). On the other hand, the ten-bar truss example has 
maximum stress constraints with knockdown factor, and the 
two-story steel frame example has ultimate and serviceabil-
ity limit-states involving bending moment, axial force, and 
displacement. These examples are also widely recommended 
to demonstrate the RBDO for a simple engineering applica-
tion framework since it has a quite large number of random 
variables, multiple limit-state functions, engineering aspects 
related to simple static analysis, and it is easy to implement. 
Hosseinzadeh et al. (2018) and Jo et al. (2021) exploited 
the bracket’s FEA model for deflection and modal analy-
sis using Matlab partial differential equation toolbox. Jung 
et al. (2020b) solved the heat transfer problem for the cool-
ing flange using COMSOL to calculate the cooling power. 
Park et al. (2020) and Jung et al. (2021) also use the FEA 
model for crank arm optimization in Hyperstudy, analyzing 
the maximum von-Mises stress under static loading.

6.2  Software

Several commercial software packages provide capabili-
ties to treat uncertainty. In the following, we provide some 
insights into few software. (All material are from the respec-
tive software’s website. These are by no means comprehen-
sive in terms of the list of software and the capabilities in the 
listed software). Altair offers uncertainty analysis capabil-
ity through RAMDO (2021) which includes generation of 
random numbers to simulate input variability and perform 
RBDO and RDO. It also has inbuilt dynamic kriging and 
variance window approach. Ansys, in its OptiSLang (2021) 
product, has reduced order modeling, Robust design, and 
Model calibration modules. Dassault Systemes Simulia, in 
its Isight (2021) product, has capabilities on different meta-
models, MCS with a variety of distributions, Mean value 
method, FORM/SORM, and Taguchi techniques for six 
sigma robustness. Esteco, in its modeFRONTIER (2021) 
module, can generate samples from a variety of probabilis-
tic distributions including capabilities such as MCS, PCE, 
Adaptive PCE (Least Angle Regression method is used 
to find, rank, and reduce the most significant polynomial 
terms), and Sobol indices for sensitivity studies. In addi-
tion, frameworks for RDO, RBDO, and Taguchi techniques 
are available. OmniQuest (2021), as part of their Iliad mod-
ule, offers capabilities in RBDO, RDO, n-sigma Design, 
MCS, approximate MCS, and approximate Latin hypercube 
sampling on a variety of distributions. SmartUQ (2021) 
has capabilities on statistical calibration, quick emulator 
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building with large data, propagation of uncertainties using 
metamodels, or PCE. Softwares such as Mathematica and 
Matlab permit programming all the techniques discussed 
in this manuscript. UQLab (Marelli and Sudret 2014) is 
an open source (academic use) Matlab add on. Several 
open source packages in python such as UQpy (Olivier 
and Shields 2020) and UQ-Pyl (Wang et al. 2016) are also 
available. A list of such software packages is provided in 
UQWorld (2021).

6.3  Benchmark problems

This section covers several widely used example problems 
used in structural reliability estimation and RBDO. When-
ever a new reliability estimation or RBDO method was 
proposed, these example problems were used to show that 
the proposed method was capable of handling problems 
with the following properties: (1) large number of ran-
dom variables, (2) non-linear limit-state function(s), (3) 
noisy limit-state function(s), (4) multiple failure regions 

Table 3  Benchmark problems for RBDO

Problem Reference paper(s) Number of random variables Used probability distributions Number of 
limit-state 
functions

Burst margin of a disk Wang et al. (2004) 6 Weibull, Normal, Uniform 1
Duffing type oscillator Schueller and Pradlwarter 

(2007)
4000 All normal 1

Embankment dam Schueller and Pradlwarter 
(2007)

2160 Normal, Lognormal 1

Hyperbola with multiple MPPs Engelund and Rackwitz (1993) 2 All normal 1
I-beam problem Wang et al. (2004) 10 All normal 1
N-dimensional hyperplane Engelund and Rackwitz (1993) 2, 10, 50 All normal 1
Noisy limit-state Liu and Der Kiureghian (1991) 6 All lognormal 1
Parallel system Melchers (1989) 5 All normal 4
Shear beam model Schueller and Pradlwarter 

(2007)
225 All normal 1

Series system Melchers (1989) 6 All normal 3
Tuned mass damper Chen et al. (1999) 2 All normal 1
Limit-states: Linear, Non-linear, 

Quadratic, Numerical
Papaioannou et al. (2015) 20, 100, 100, 200 Standard Normal, Normal 1, 2, 1, 1

Non-linear oscillator Echard et al. (2013) 6 Normal 1

Table 4  Benchmark problems for structural reliability estimation

Problem Reference paper(s) Number of random/
design variables

Used probability distributions Number of 
limit-state 
functions

Cantilever beam Wu et al. (2001) 4/2 All normal 2
Composite panel Qu et al. (2003) 12/4 All normal 1
Mathematical example-1 Youn and Choi (2004) 2/2 Normal, Gumbel 3
Mathematical example-2 Aoues and Chateauneuf (2010) 2/2 All normal 1
Short column design Aoues and Chateauneuf (2010) 6/2 Gumbel, Weibull, Lognormal 1
Ten-bar truss Kumar et al. (2009) 27/10 Uniform, Extreme type I, Lognormal 1
Torque arm problem-1 Kim et al. (2006) 8/8 All normal 1
Torque arm problem-2 Acar (2016) 10/7 Normal, Lognormal 1
Two-bar truss Ramakrishnan and Rao (1996) 5/2 Normal, Beta, Gumbel, Lognormal 2
Two story steel frame Aoues and Chateauneuf (2010) 6/2 Normal, Lognormal 5
Vehicle side crash Youn and Choi (2004) 11/9 All normal 6
Fortini’s clutch Lee and Chen (2009) 4 Beta, Normal, Rayleigh 1
Piecewise linear function 

Metaball function
Breitung (2019) 2 Standard Normal 2,1
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(multiple MPPs), (5) multiple failure modes, and (6) vari-
ables having different probability distributions. Tables 3 
and 4 provide information about the benchmark prob-
lems used in structural reliability estimation and RBDO, 
respectively.

7  Concluding remarks

Despite the fact that design optimization of structural and 
multidisciplinary systems under uncertainties has been a 
topic of growing interest over the past decades, the current 
literature lacks a thorough review of uncertainty treatment 
practices including uncertainty modeling, uncertainty analy-
sis, and design under uncertainty. This article provides a 
comprehensive review of the uncertainty treatment practices, 
and complement existing reviews on similar subjects (e.g., 
reliability analysis, reliability-based optimization, uncer-
tainty representation, sensitivity analysis under uncertainty, 
and uncertainty handling theories). From this review, we can 
draw the following conclusions and provide recommenda-
tions for future studies:

– Probability theory is the oldest and still the most widely 
used uncertainty handling theory, whereas the com-
bined use of various uncertainty handling theories can 
take advantage of the ability of each theory for better 
uncertainty modeling. Hybrid approaches that focus on 
combined use of various uncertainty handling theories is 
an active area of research.

– In probabilistic handling, uncertainty is characterized by 
using a probability distribution function when a paramet-
ric approach is used, whereas it is characterized by KDE 
when a non-parametric approach is used. Multivariate 
modeling that considers correlation between uncertain 
variables is an active area of research.

– When moderate samples are available, uncertainty mod-
eling and propagation are typically through metamodels 
and probabilistic approaches. Though metamodel con-
struction and usage is widely adopted, models such as 
polynomial response surface, Kriging, SVR, and RBF are 
mostly used. Usage of stochastic approaches and machine 
learning algorithms are to be tested and adopted. Propa-
gation of uncertainties through metamodels is an active 
area with potential avenues of improvement in using 
multi-fidelity metamodels for propagation.

– In the event of large dimensions, dimension reduction 
techniques are widely used. However, propagation of 
uncertainties in the reduced dimension and mapping the 
errors in the reduced space to the original space along 
with handling mixed variables are open research area.

– When available samples are scarce, approaches based on 
interval theory and convex models are used. Though dif-

ferent approaches are used for modeling convex regions, 
choice of convex models for data without prior infor-
mation on their characteristics is not available. Hence, 
an ensemble of geometries and respective error meas-
ures along with a continuation to uncertainty design is a 
potential research area.

– Both aleatory and epistemic uncertainties are handled in 
RBDO to find an optimum design to satisfy a given tar-
get reliability or confidence. Various methods reviewed 
in uncertainty modeling and analysis are combined with 
RBDO methods under various uncertainty situations. 
Research in RBDO mainly focuses on how to improve 
its accuracy or efficiency or both.

– RBDO under aleatory uncertainty is classified into MPP-
based approach and sampling-based approach. The MPP-
based approach can be further classified into various 
methods depending on MPP search methods, optimiza-
tion formulation, and limit-state function approximation. 
The sampling-based approach is usually combined with 
surrogate models to alleviate its computational burden. 
To further improve computational efficiency of surrogate 
modeling, efficient surrogate modeling combined with 
sequential sampling strategies have been studied.

– Both input statistical model and output model uncertain-
ties are considered in RBDO under epistemic uncertainty. 
Its main strategy is to guarantee a reliable or confident 
optimum design even when insufficient information 
is available to model the input or output. In addition 
to active research topics that this article covers, vari-
ous machine learning techniques are currently being 
attempted to further improve accuracy and efficiency of 
RBDO.
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