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Abstract
In this paper, the effects of various design options for improving the crashworthiness performance of a rectangular crash
absorber with diaphragms are explored. These design options include (i) optimal tube and diaphragm dimensioning, (ii)
optimal diaphragm placement, and (iii) tapering of the crash absorber. The wall thicknesses of the absorber and the
diaphragms, the locations of the diaphragms, and the taper angle are taken as design variables to optimize the crashworthiness
performance of the absorber. Before the optimization study, a finite element model is generated and validated with
experimental results available in the literature. The effect of each design variable on crashworthiness performance is
evaluated by solving a series of design optimization problems, and compared with the baseline design. A successive iterative
approach is used in this study, where the optimum design variables obtained from a previous optimization problem are
used as the initial design of the next optimization problem. Maximum specific energy absorption (SEA) is sought in these
optimization problems. A surrogate-based optimization approach is used, where radial basis functions and response surface
models are utilized. Optimal tube and diaphragm dimensioning resulted in 59.2% increase, optimum diaphragm placement
led to 7.7% additional increase, and tapering resulted in 2.5% further increase in SEA. Overall, the design changes considered
in this paper provided 69.4% increase in SEA.

Keywords Crash absorber · Diaphragms · Rail vehicle · Specific energy absorption · Surrogate-based optimization

1 Introduction

Crash absorbers are structures typically located in the front
and rear ends of trains and cars. These structures are used for
a controlled plastic deformation to absorb the crash energy
and thereby contribute to the safety of passengers and
vehicles. Various studies have been carried out to enhance
the absorbers ability to withstand crashes while reducing the
weight of these structures. For a detailed review of the recent
developments in technology and design strategies for crash
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absorbers in passenger rail vehicles, the reader is referred to
Gao and Wang (2019).

Thin-walled tubes are widely used as crash absorbers in
train and automobiles as they are inexpensive and efficient
in terms of energy absorption. The single-cell design can be
considered the simplest form of a thin-walled tube as a crash
absorber. In previous studies on single-cell crash absorbers,
Mamalis et al. (2001) studied the effects of different taper
angles on the crash absorption capability of rectangular
cross-sectional crash absorbers with the same taper angle
on every surface, while Nagel and Thambiratnam (2004)
studied the crashworthiness effects of different taper angles
in axisymmetric crash absorbers. Tarlochan et al. (2013)
investigated the effect of the cross-sectional shape on axial
and oblique crash problems, comparing circular, square,
rectangular, hexagonal, octagonal and ellipse cross sections.
Zhang and Zhang (2016) investigated the effects of different
wall thicknesses in axisymmetric square crash absorbers.
Abolfathi and Alavi Nia (2018) optimized radius, structure
thickness and height, friction coefficient, contact area and
impact angle with the mold-shaped impact surface in
circular cross-sectional shock absorbers. Ming et al. (2019)
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studied the usage of kirigami pattern on design of single-cell
crash absorbers, investigating the effects of kirigami shape
parameters on crashworthiness.

Instead of using a single-cell design, vertical supports
can be introduced to the structure to obtain a multi-cell
design. Qi et al. (2012) studied the effects of different
crash angles, comparing the crashworthiness of single and
multi-cell crash absorbers. Song et al. (2013) optimized
wall thickness, taper angle and foam density in single-
cell crash absorbers supported with foam. An et al. (2015)
optimized the wall thickness of a crash absorbers with
square cross section and aluminum foam support. Wu
et al. (2016) investigated the effects of different shape
and form configurations of multi-cell crash structures on
crashworthiness, and optimized thickness of walls, size of
corner cells and location of connecting flanges in five-cell
crash absorbers. Xiang et al. (2017) developed multi-cell
crash absorbers containing a circular structure inside, once
again taking inspiration from the internal structure of the
beetle elytra, and investigated the impact of these designs
on crashworthiness. Xiang and Du (2017) developed new
forms of honeycomb structures, taking inspiration from
the internal structure of the beetle elytra and studied the
impact of these designs on crashworthiness. Xie et al.
(2017) optimized cell amount, thickness of outer walls and
length of outer sides for crashworthiness. Zhou et al. (2017)
examined the effects of the form of the outer structure
and the scale of the honeycomb cells on crashworthiness
in crash absorbers supported with a honeycomb shaped
inner structure. Zou et al. (2017a) explored the impact of
different cross sections on axial and oblique crash absorbing
capability, and thickness of the outer wall, thickness of the
vertical support wall and length of the vertical support wall
were optimized under different angles of impact. Altin et al.
(2018) optimized the wall thickness, number of tubes, taper
angle, aluminum foam density and the amount of aluminum
foam placed into the structure in multi-cell crash absorbers.
Wang et al. (2018) studied the effects of adding a concave
crash absorber as a vertical support structure inspired by
the human bone structures. Wang et al. (2019) and (Xu
et al. 2019b) constructed hierarchical structures on vertical
supports and investigated the effects of these structures on
crashworthiness. Altin et al. (2019) studied the effects of
vertically positioned support surfaces and the different cross
sections created by these surfaces on crashworthiness.

The use of a multi-tubular design as opposed a single-
tube design was found to improve the crashworthiness
performance of thin-walled tubes. Zou et al. (2017b)
optimized the effects of wall thickness for inner and outer
tubes and the thickness of ribs connecting these two tubes.
Deng and Liu (2019) used a three-tubular structure with a
laterally corrugated middle tube, and investigated the effects

of amplitude and number of corrugations alongside with the
thickness of the corrugated tube.

Introducing cutouts and indentations was found to be a
successful way of improving crash performance of thin-
walled tubes. Acar et al. (2011) optimized cylindrical
tapered tubes with lateral indentations to determine the
optimum values of the number of the axisymmetric
indentations, radius of the indentations, taper angle and
wall thickness. Song and Guo (2013) compared the
crashworthiness of multi-cell and windowed tubes on axial
and oblique impacts. Song (2013) studied the effect of
rectangular hole size on crash absorbers with square cross
sections. Auersvaldt and Alves (2015) studied the effects
of different sized rectangular windows on rectangular crash
absorbers, comparing the absorbing metrics of different
window sizes. Taştan et al. (2016) optimized wall thickness,
taper angle, the cutout diameter and numbers of cutouts in
horizontal and vertical directions in crash absorbers with
circular cross sections. Nikkhah et al. (2017) studied the
effects of different hole shapes on crash absorbers with
square cross sections, investigating several crash evaluation
metrics. Asanjarani et al. (2017) optimized the indentation
cross section, taper angle, wall thickness, number of
indentations and radius of indentations on tapered absorbers
with rectangular cross sections. A dynamic crash problem
was utilized in that study and the crash evaluation
metrics were compared for each model under different
crash velocities and angles. Nikkhah et al. (2019) found
the optimum solutions for different crash absorber cross
sections and hole shapes.

Another way to improve the crash performance of
thin-walled tubes is to place diaphragms inside the crash
absorbers. Gao et al. (2014) examined thickness of
outer wall in crash absorbers with diaphragms on the
energy absorption potential of vertical and angled impacts.
Dong et al. (2015) investigated the effect of number
of diaphragms, inner tube shape and inner tube size
on bi-tubular structures for crashworthiness. Peng et al.
(2015) examined the effects created by the change of wall
thickness and material parameters of honeycomb structure
on crash absorbers with square thin-walled crash absorbers
containing guide rails and honeycomb structures mounted
between diaphragms. Yao et al. (2018) investigated the
effect of a modified honeycomb cross section for crash
absorbing capabilities under crashes with horizontal and
vertical offsets. Xu et al. (2019a) optimized thicknesses
of all the diaphragms and outer tubes in axisymmetric
rectangular crash absorbers with rectangle cross section.
Xu et al. (2020) conducted the crashworthiness sensitivity
analysis and pareto front optimization for diaphragm and
outer tube thicknesses in a crash absorber with rectangular
cross section and diaphragms.
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In the existing studies on crash absorbers with
diaphragms, the thicknesses of all diaphragms as well as
the spacings between them are taken to be the same. The
main contribution of this study to the existing literature is
that the diaphragm thicknesses and the spacings between
the diaphragms are allowed to take different values. Also,
the effect of taper angle on the crashworthiness perfor-
mance of a rectangular crash absorber with diaphragms is
explored.

Since computational cost of crash simulations are
expensive, surrogate-based approaches are widely used in
crashworthiness optimization of crash absorbers and other
thin-walled structures (Acar et al. 2011; Qi et al. 2012;
Song et al. 2013; An et al. 2015; Taştan et al. 2016;
Asanjarani et al. 2017; Fang et al. 2017; Xie et al. 2017;
Abolfathi and Alavi Nia 2018; Altin et al. 2018; Wang et al.
2018; Nikkhah et al. 2019; Tyan and Lee 2019; Xu et al.
2019a) . Surrogate-based optimization is one of the fields
where Prof. Raphael (Rafi) T. Haftka has made seminal
contributions (Roux et al. (1998), Queipo et al. (2005), Goel
et al. (2007), among others). This paper is dedicated to his
memory.

The remainder of the paper is organized as follows.
Design optimization of a rectangular tube with diaphragms
against crash is discussed in Section 2. Finite element
modeling is discussed in Section 3, and the validation of the
finite element model is provided in Section 4. The effects of
various design options are discussed in Section 5, followed
by concluding remarks given in Section 6. To provide a
better readability of the paper, details on surrogate-based
optimization technique, surrogate models, error metrics,
details of the different optimization problems are given in
appendices.

2 Design optimization of rectangular tubes
with diaphragms

Xu et al. (2019a) investigated crashworthiness design
optimization of a rectangular tube with diaphragms by
considering specific energy absorption (SEA) and initial
peak crush force (IPCF). In their study, they considered
three design variables: (i) wall thickness (A) of the long
edge of the tube, (ii) wall thickness (B) of the short edge
of the tube, (iii) the thickness (C) of the diaphragms (see
Fig. 1).

Xu et al. (2019a) considered a multi-objective optimiza-
tion study, while in this paper we focus our attention on
optimization for maximum SEA to simplify the problem,
because the additional design options that we include (i.e.,
optimal diaphragm placement, and tapering of the crash
absorber) have larger impact on SEA than IPCF. Design
optimization for maximum SEA with a limit on EA can be
formulated as:

Find A, B, Cu

Max SEA(A, B, Cu)

s.t. EA(A, B, Cu) ≥ 70 kJ
2 mm ≤ A ≤ 6 mm
2 mm ≤ B ≤ 6 mm
2 mm ≤ Cu ≤ 6 mm

(1)

As seen from (1), the crashworthiness characteristics of
the crash absorbers are evaluated using two metrics: EA and
SEA. Total energy absorbed (EA) refers to the amount of
energy dissipated by the crash absorber. It can be measured

Fig. 1 Design variables used in Xu et al. (2019a)



S. A. Keskin et al.

Fig. 2 Dimensions of a energy absorber, b diaphragm used in the validation study

as the area under the load-displacement curve or calculated
using the following equation;

EA =
δc∫

0

P dδ (2)

where δc refers the maximum amount displacement of the
crash absorber, and P represents the crash force. In this
study, δc is taken as 200 mm.

SEA refers to the ratio of total energy absorbed (EA) to
the mass of the crash absorber structure (m) such that

SEA = EA

m
(3)

3 Finite element modeling

The finite element (FE) model is created in accordance with
the definitions set out in Xu et al. (2019a), and solved using

explicit finite element package LS-DYNA. The energy
absorber structure and the diaphragms are constructed with
the dimensions shown in Fig. 2a and b, respectively.

The FE model of the energy absorber structure and the
impactor are shown in Fig. 3. The bottom plate is fixed,
while the other plate (impactor) moves only on the impact
axis. A solid box is created to be used as an impactor.
The impactor also moves only on the impact axis at a
steady speed of 2000 mm/s. The impactor is modeled with
hexahedral solid elements with constant stress solid element
formulation. Quadrilateral shell elements are used to model
the rest of the structure, where Belytschko–Tsay shell
element formulation with two integration points through the
thickness are used as described in Xu et al. (2019a).

Figure 3 shows the detailed FE model used in validation
study. In this model, outer tube walls are divided into sub-
surfaces with lines between the edges of the diaphragms.
Diaphragms are also divided into sub-surfaces with offset
curves from the diaphragm edges. Thus, a better mesh

Fig. 3 Finite element model
used in the validation study
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Fig. 4 Diaphragm mesh model used in validation study

structure is created in the regions diaphragms contact the
outer tube walls (see Fig. 4).

A mesh converge study is performed to determine the
suitable element size to model the energy absorber structure
and plates on both sides (see Fig. 5). It is found that 5 mm
element size is sufficient to model this energy absorber
structure and plates on both sides. Note also that 10 mm
element size is chosen for the rigid impactor.

In the FE model, two types of contact algorithms are
used. “AUTOMATIC SURFACE TO SURFACE” is used
to define the contact between the impactor and the top plate.
“AUTOMATIC SINGLE SURFACE” is used to define the
contact between the outer walls of the energy absorber,
diaphragms and plates on both sides. Static and dynamic
friction coefficients are defined as 0.3 and 0.2, respectively,
for all contact algorithms as described in Xu et al. (2019a).

Table 1 Material properties for MAT24 model defined in Xu et al.
(2019a)

Mechanical parameters Values

Density (kg/mm3) 7.85 × 10−6

Young’s modulus (GPa) 206

Poisson’s ratio 0.3

Yield stress (MPa) 335

Note that the diaphragms are connected to the tube by
welding. To model this connection, the diaphragms are
connected to the tube by mesh connectivity in the FE model.
Therefore, no contact definition is needed to capture this
connection in the FE model.

Outer walls, diaphragms and plates on both sides
are modeled using the MAT24-PIECEWISE LINEAR
PLASTICITY material model and impactor is modeled
using the MAT20-RIGID material model in the LS-DYNA
software as described in Xu et al. (2019a). The material
parameters given in Table 1 and true stress – true plastic
strain values given in Table 2 are taken from Xu et al.
(2019a), where quasi-static tensile tests are conducted to
obtain material behavior.

4 Validation of the finite element model

In the validation analysis, the energy absorber structure for
which experimental results are available is used. Xu et al.
(2019a) compared the results of their finite element model
with the results of their experiments, which were carried
out with a hydraulic press with a compression velocity of
1200 mm/s for a total displacement of 200 mm. They found
that their finite element model had adequate accuracy. In the

Fig. 5 Results of the mesh convergence analysis for energy absorber structure and plates at both sides for a total energy absorbed, b initial peak
crash force
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Table 2 True stress–true plastic strain values used in the FE model

σt (MPa) 335 408 476 584 695 772 849 1602

εp 0 0.005 0.018 0.066 0.133 0.170 0.253 0.794

experiments, the wall thicknesses as well as the diaphragm
thickness are all taken as 4 mm (that is, A = B = Cu = 4
mm is used). In this paper, this crash absorber configuration
of Xu et al. (2019a) is considered the baseline design.

We validate our finite element model by comparing with
the numerical and experimental results given in Xu et al.
(2019a). Table 3 shows that the EA and IPCF results of
our finite element model are in good agreement with the
experimental and numerical results obtained by Xu et al.
(2019a). The error in EA prediction is found to be 1.5%,
whereas the error in IPCF prediction is observed to be 4.2%.
These errors are considered to be appropriate for a nonlinear
phenomenon like crash.

Figures 6 and 7 provide graphical comparison of the FE
results of this study to the experimental and FE results of Xu
et al. (2019a). Figure 6 indicates that the peaks in the force-
displacement curve obtained by using our FE model are
similar to those of the experimental and numerical results
of Xu et al. (2019a). The explanation for the disparity in
experimental and numerical curves after a displacement of
150 mm is due to the tearing of the welds used in the
development of the experimental model, as explained in Xu
et al. (2019a).

Figure 7 demonstrates the comparison of lobe formation
in our FE model to those of the numerical and experimental
results given in Xu et al. (2019a). Lobe formations are
observed to be similar in all three models at the same
displacement values, which shows that our FE model
is accurate enough to conduct further analysis on the
optimization of the crash absorber.

5 Options to improve crashworthiness
performance

A surrogate-based optimization study is conducted, where
the wall thicknesses of the absorber and the diaphragms,
the locations of the diaphragms, and the taper angle are

taken as design variables to optimize the crashworthiness
performance of the absorber. The effect of each design
option on crashworthiness performance is evaluated by
solving a series of design optimization problems, and
compared with the baseline design discussed in Section 4.
A successive approach is used in this study, where
the optimum design variables obtained from a previous
optimization problem is used as the initial design of
the following optimization problem. Brief explanations
of the surrogate models used in this study are given
in Appendix 1. Accuracies of the surrogate models are
evaluated at some randomly chosen test points, and the
errors in the constructed surrogate models are presented
in Appendix 2. Optimization results obtained through each
surrogate model are given in Appendix 3. The surrogate
model generation and optimization are both conducted by
using MATLAB in this study. The optimization problems
are solved by using fmincon function of MATLAB based
on the sequential quadratic programming algorithm. To
increase the probability of finding the global minimum, a
multi-start approach is used.

Note that all design variables could have been combined
in one optimization formula instead of adopting the
successive approach. However, this practice would increase
the number of training points to very large values. For
instance, the number of coefficients in a fourth order
polynomial in terms of seven design variables is 330,
so we would need around five hundred training points.
Therefore, a successive approach is preferred to alleviate the
computational cost.

5.1 Optimization of the tube and the diaphragm
thicknesses

First, the tube and the diaphragm thicknesses are optimized,
where all diaphragm thicknesses are taken to be the same.
That is, the thicknesses of diaphragms C, D and E are all
taken to be equal to Cu (see Fig. 3). In this subsection,

Table 3 Comparison of the FE result of this study to the experimental and FE results of Xu et al. (2019a), where deformation distance is 200 mm

IPCF (kN) Error (%) EA (kJ) Error (%)

Experimental result of Xu et al. (2019a) 702.8 - 78.15 -

FE result of Xu et al. (2019a) 697.9 0.7% 75.80 3.0%

FE result of the present study 734.0 4.2% 79.31 1.5%

*SEA = 17.49 kJ/kg for the FE result of the present study
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Fig. 6 Comparison of the
force-displacement result of this
study to the experimental and
FE results of Xu et al. (2019a)

the other design options (i.e., diaphragm placement and
taper angle) are not taken into account. The optimization
problems for maximum SEA stated in (1) is solved.

A surrogate-based approach is used in optimization.
Surrogate models are constructed by using 57 training
points, where 30 points are generated by using Latin
hypercube sampling and 27 points (corresponding to three
variables and three levels) are generated using full fractional

design. This is inspired from one of the papers by
Prof. Haftka where FCCCD and LHS were combined to
generate training points in surrogate model construction
(Qu et al. 2003). The reason for this practice was that they
found that LHS might fail to sample points near some
corners of the design space, leading to poor accuracy around
these corners. Following this reasoning, we combined FFD
and LHS to generate training points in this study.

Fig. 7 Visual comparison of the
force-displacement result of this
study to the (a) FE results of Xu
et al. (2019a), b experimental
results of Xu et al. (2019a), c FE
results of present study
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Table 4 Results of
optimization of the tube and
diaphragm thicknesses

Design variables A (mm) 6.00

B (mm) 6.00

Cu (mm) 2.95

Results SEA prediction (kJ/kg) 27.44

SEA FEA result (kJ/kg) 27.85

SEA error (%) 1.5%

EA prediction (kJ) 169.4

EA FEA result (kJ) 170.8

EA error (%) 0.8%

SEA improvement (%) 59.2%

Table 4 shows that SEA can be increased by 59.2%
compared to those of the baseline model. Notice that the
SEA value of the baseline model is 17.49 kJ/kg, and the
SEA value of the optimized design is 27.85 kJ/kg. The wall
thicknesses A and B take their upper limit values of 6 mm,
which is larger than that of the baseline model. The upper
limit values of A and B are taken from the reference study,
Xu et al. (2019b). As the optimum values of A and B take
their upper limits, there is more room for improvement in
SEA. However, this will increase the mass of the crash
absorber, and this practice might not be preferred. The
optimum value of the diaphragm thicknesses Cu is found
to be 2.95 mm, which is smaller than that of the baseline
design. The comparison of the force-displacement results
of the baseline design and the optimum design based on
thickness optimization is shown in Fig. 8.

5.2 Diaphragm location optimization

Next, diaphragm locations are optimized for maximum
SEA. The locations of diaphragms C, D and E are varied

by moving them closer to or away from the impact (see
Fig. 9). Three design variables are used in this study:
(i) location of the diaphragm closest to impact (LC), (ii)
location of the diaphragm in the middle of the crash
absorber (LD), (iii) location of the diaphragm furthest to the
impact (LE).

The optimization values of the outer tube edge thick-
nesses (A and B) and diaphragm thickness (Cu) are used.
The optimization problem for diaphragm location optimiza-
tion study can be stated as

Find LC, LD, LE

Max SEA(LC, LD, LE)

s.t. EA(LC, LD, LE) ≥ 70 kJ
−30 mm ≤ LC ≤ 30 mm
−30 mm ≤ LD ≤ 30 mm
−30 mm ≤ LE ≤ 30 mm

A = 6.00 mm
B = 6.00 mm
Cu = 2.95 mm

(4)

Fig. 8 Comparison of the
force-displacement results of the
baseline design and the
optimum design based on
thickness optimization
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Fig. 9 Locations of the
diaphragms C, D and E

The training points are generated in the same manner
as described in Section 5.1. Table 5 shows the optimiza-
tion results. Diaphragm location optimization leads to a
SEA improvement from 59.2 to 66.9% (additional 7.7%
improvement compared to the thickness optimization).

Table 5 shows that SEA can be improved by moving the
diaphragms closer to the impact side. The location values
LD and LE take their upper limit values. The upper limits
of LD and LE are taken based on intuition, and the spacing
between the diaphragms. These upper limits values can be
changed, and investigation of the effects of these changes
is left for a future study. It is observed that increasing the
distance between LE and the bottom plate leads to a more
efficient local deformation in that region and thereby results
in a higher SEA values. It is also found that the diaphragm
closest to the impact is also moved further to the impact
side, but not as much as the other two diaphragms. The
comparison of the force-displacement results of the baseline
design and the optimum design based on diaphragm location
optimization is shown in Fig. 10.

5.3 Taper angle optimization

Next, a taper angle is applied to all outer edges of the
rectangular tube (see Fig. 11). The optimization thickness
and location values obtained in earlier subsections are used.
The optimization study can be stated as

Find α

Max SEA(α)

s.t. EA(α) ≥ 70 kJ
0◦ ≤ α ≤ 10◦
A = 6.00 mm
B = 6.00 mm
Cu = 2.95 mm
LC = 2.67 mm
LD = 30.00 mm
LE = 30.00 mm

(5)

In surrogate-based optimization, 11 design points created
by dividing the taper angle range (0 to 10◦) into 1◦

Table 5 Results of diaphragm
location optimization Design variables LC (mm) +2.67

LD (mm) +30.00

LE (mm) +30.00

Results SEA prediction (kJ/kg) 28.26
SEA FEA result (kJ/kg) 29.21
SEA error (%) 3.3%
EA prediction (kJ) 173.3
EA FEA result (kJ) 179.1
EA error (%) 3.4%
SEA improvement (%) 66.9%
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Fig. 10 Comparison of the
force-displacement results of the
baseline design and the
optimum design based on
diaphragm location optimization

Fig. 11 Taper angle of the energy absorber

Table 6 Results of taper angle
optimization Design variable α (◦) 2.77

Results SEA prediction (kJ/kg) 29.75

SEA FEA result (kJ/kg) 29.64

SEA error (%) 0.4%

EA prediction (kJ) 169.8

EA FEA result (kJ) 169.2

EA error (%) 0.4%

SEA improvement (%) 69.4%
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Fig. 12 Comparison of the
force-displacement results of the
baseline design and the
optimum design based on taper
angle optimization

Fig. 13 Comparison of the
deformation behavior of the
baseline design, and successive
optimum designs achieved
through thickness, diaphragm
location and taper angle
optimization at various
displacements of the impactor
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intervals, starting from 0◦. Table 6 shows that taper angle
optimization increased the SEA improvement from 66.9
to 69.4% (additional 2.5% improvement compared to the
diaphragm location optimization). It is found that the
optimum value of the taper angle is 2.77◦ for this crash
absorber. The comparison of the force-displacement results
of the baseline design and the optimum design based on
taper angle optimization is shown in Fig. 12.

Finally, the comparison of the deformation behavior
of the baseline design, and successive optimum designs
achieved through thickness, diaphragm location and taper
angle optimization is shown in Fig. 13. It is seen that the
deformation behavior of the crash absorber improves as
the successive optimization progresses. It is also found that
the baseline design collapses in symmetric mode whereas
all other optimized designs collapse in extensional mode.
Abramowicz and Jones (1986) showed that the extensional
mode controls the static progressive buckling of square
tubes (without diaphragms) when w/t ≤ 7.5. We argue that
the diaphragms might increase the threshold value of 7.5 to
larger values. Therefore, the diaphragms improve the crash
performance of the absorbers by activating the extensional
collapse mode for larger values of w/t compared to crash
absorbers without diaphragms.

6 Concluding remarks

In this study, a series of optimization studies was conducted
on a rail vehicle crash absorber with diaphragms. Effects of
changing tube edge and diaphragm thicknesses, diaphragm
locations and taper angle were studied in an iterative fashion
by subsequently solving the mentioned sub-problems. From
the results of this study, the following conclusions were
drawn:

– The diaphragms improved the crash performance of the
absorbers by activating the extensional collapse mode
for larger values of w/t compared to crash absorbers
without diaphragms.

– Optimal tube and diaphragm dimensioning resulted
in 59.2% increase in SEA compared to the baseline
design. The tube wall thicknesses took their upper limit
values, whereas the optimum value of the diaphragm
thicknesses Cu was found to be smaller than that of the
baseline design.

– Optimum diaphragm placement resulted in 7.7% more
increase in SEA. This improvement was obtained by
moving the diaphragms closer to the impact side. It
was observed that increasing the distance between the
diaphragm at the end and the bottom plate lead to
a more efficient local deformation in that region and
thereby resulted in a higher SEA values. It was also

found that the diaphragm closest to the impact is also
moved further to the impact side, but not as much as the
other two diaphragms.

– Tapering resulted in an additional 2.5% SEA improve-
ment. It was found that the optimum value of the taper
angle is 2.77◦ for this crash absorber.

– It was observed that the largest effect on the optimum
SEA response was provided by the optimization of the
tube and the diaphragm thicknesses, followed by the
optimization of the location of the diaphragms, and the
tapering of the crash absorber.

– The successive iterative optimization approach is used
in this study provided an overall 69.4% increase of the
SEA value compared to that of the baseline design.

– The EA constraint in (1), (4) and (5) is intended to
penalize designs that might maximize SEA but not
provide enough EA (less than 70 kJ, required in this
study). In this study, we found that the constraint did
not become active in any of the optimization cases.

Lastly, some limitations of the current study can be listed
as follows:

– Note that all design variables could have been combined
in one optimization formula instead of adopting the
successive approach. However, this practice would
increase the number of training points to very large
values. Therefore, a successive approach is preferred to
alleviate the computational cost.

– It should be noted that the successive iterative
optimization approach used in this paper may result in a
final solution that is not necessarily the global optimum,
because in each subsequent stage, the optimization
searches within a sub-space of the overall design
space. Also, the order of sequential sub-problems might
influence the final solution.

– In optimization problems, some design variables reach
their limits, and investigation of the effect of changing
these limits is left for a future study.

– In this study, the peak force values were not penalized in
optimization. It should be noted that a high peak force
relates to high accelerations, which should be avoided
in a crashworthy design. Also, crush force efficiency
could be added as another objective in optimization.
These exercises are subject of a future study.

– In this study, polynomial response surfaces and radial
basis functions are used as surrogate models. The other
types of surrogate models such as neural networks,
Kriging, support vector regression, etc. could also be
used.
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Appendix 1. Brief explanations of the
surrogate models used

In this study, response surface approximations and radial
basis functions are used as surrogate models. Using
response surface models, the response is approximated as:

f̂ (x) = b0+
L∑

i=1

bixi+
L∑

i=1

biixi
2+

L−1∑
i=1

L∑
j=i+1

bij xixij + . . .

(A1.1)

where f̂ (x) refers to the prediction of response, L refers
to the number of input variables, bi , bii and bij refers to
the parameters of response surface model obtained with
regression (Myers et al. 2016). Quadratic, cubic and quartic
response surface models are used in this study.

Using radial basis functions, the response is approxi-
mated as;

f̂ (x) =
n∑

i=1

λiφ(‖x − xi‖) (A1.2)

where f̂ (x) refers to the prediction of response, λi refers to
parameters of radial basis functions, n refers to the number
of training points, and φ(‖x − xi‖) refers to the radial
basis functions created with ‖x − xi‖ Euclidean norm,
representing the radial distance r . The Euclidean norm is
approximated as;

‖x − xi‖ =
√

(x − xi)T (x − xi) (A1.3)

In this equation, x represents the sampling point an xi

refers to the center [(Buhmann 2003)].
Thin-plate spline (A1.4), gaussian (A1.5) and multi-

quadric (A1.6) radial basis functions are used in this study.
Formulations of these functions are shown below;

φ(r) = r2 log(cr2) (A1.4)

φ(r) = e−cr2
, c > 0 (A1.5)

φ(r) =
√

r2 + c2 (A1.6)

The choice of parameter c = 1 is found suitable for most
function appropriations (Wang et al. 2006). Note that the
hyperparameter c could have been selected in such a way
to minimize the generalized cross validation error (Rippa
1999).

Appendix 2. Errors in surrogatemodels

Accuracies of the surrogate models are computed by
evaluating the performance of the surrogate models at test
points. Every surrogate model is evaluated with 20 test
points, created using Latin hypercube sampling. Normalized
mean absolute error (nMAE), normalized maximum absolute
error (nMaxAE) and normalized root mean square error
(nRMSE) error metrics are used to evaluate the performances
of the surrogate models. Formulations of these error metrics
are given below:

nMAE =

n∑
i=1

∣∣ŷi − yi

∣∣
n × (ymax−ymin)

(A2.1)

nMaxAE = Max

( ∣∣ŷi − yi

∣∣
ymax−ymin

)
(A2.2)

nRMSE = 1

ymax−ymin

√√√√ n∑
i=1

(ŷi − yi)
2

n
(A2.3)

In the formulas above, n refers to the number of test
points. For test point i, ŷi refers to the approximate result
obtained from the surrogate model and yi refers to the
result of finite element analysis. Moreover, ymax and ymin

represents the maximum and minimum results obtained
from the finite element analyses in all test points.

The error metrics computed for all surrogate models
constructed for this study are presented in Tables 7–9.
Table 7 shows the error metrics of all surrogate models
used in optimization of the tube and diaphragm thicknesses
(in Section 5.1). Table 8 shows the error metrics of all
surrogate models used in diaphragm location optimization
(in Section 5.2). It is observed that all surrogate models
have adequate accuracies. Table 9 shows the error metrics
of all surrogate models used in taper angle optimization (in
Section 5.3). It is observed that all surrogate models have
adequate accuracies.
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Table 7 Error metrics for all surrogate models used in tube and diaphragm thickness optimization (in Section 5.1)

Response Metric Quadratic RSM Cubic RSM Quartic RSM Thin-plate spline RBF Gaussian RBF Multiquadric RBF

EA nMAE 0.05 0.04 0.03 0.03 0.08 0.03

nMaxAE 0.10 0.09 0.14 0.09 0.26 0.09

nRMSE 0.05 0.05 0.05 0.04 0.10 0.04

SEA nMAE 0.08 0.07 0.06 0.05 0.13 0.05

nMaxAE 0.20 0.17 0.25 0.16 0.35 0.15

nRMSE 0.10 0.09 0.09 0.07 0.16 0.07

Table 8 Error metrics for all surrogate models used in diaphragm location optimization (in Section 5.2)

Response Metric Quadratic RSM Cubic RSM Quartic RSM Thin-plate spline RBF Gaussian RBF Multiquadric RBF

EA nMAE 0.20 0.20 0.22 0.17 0.15 0.15

nMaxAE 0.71 0.60 0.77 0.63 0.65 0.53

nRMSE 0.25 0.24 0.29 0.23 0.24 0.20

SEA nMAE 0.20 0.20 0.22 0.17 0.15 0.15

nMaxAE 0.71 0.60 0.77 0.63 0.65 0.53

nRMSE 0.25 0.24 0.29 0.23 0.24 0.20

Table 9 Error metrics for all surrogate models used in taper angle optimization for maximum SEA objective function (in Section 5.3)

Response Metric Quadratic RSM Cubic RSM Quartic RSM Thin-plate spline RBF Gaussian RBF Multiquadric RBF

EA nMAE 0.06 0.05 0.04 0.02 0.06 0.02

nMaxAE 0.28 0.22 0.23 0.15 0.33 0.14

nRMSE 0.08 0.07 0.06 0.05 0.10 0.04

SEA nMAE 0.14 0.11 0.10 0.06 0.15 0.05

nMaxAE 0.68 0.54 0.55 0.35 0.70 0.34

nRMSE 0.21 0.16 0.15 0.11 0.22 0.11

Appendix 3. Optimization results obtained
through each surrogatemodel

Table 10 shows the optimum designs for tube and diaphragm
thickness optimization study. It is observed that the maximum
SEA is obtained by using cubic response surface model.

Table 11 shows the optimum designs for diaphragm location
optimization study. Again, it is seen that the maximum SEA
is obtained by using cubic response surface model. Table
12 shows the optimum designs for taper angle optimization
study. This time, it is seen that the maximum SEA is
obtained by using multiquadric radial basis function.

Table 10 Optimization results obtained through each surrogate model when tube and diaphragm thicknesses are optimized (in Section 5.1)

Surrogate model A (mm) B (mm) Cu (mm) SEA pred.
(kJ/kg)

SEA FEA result
(kJ/kg)

SEA
error (%)

EA pred.
(kJ)

EA FEA
result (kJ)

EA error
(%)

Thin-plate spline RBF 6.00 6.00 3.00 27.58 27.66 0.3 170.8 169.9 0.5

Gaussian RBF 5.86 5.94 2.41 28.75 27.39 4.8 175.4 162.1 7.6

Multiquadric RBF 6.00 6.00 2.97 27.57 27.73 0.6 170.6 170.2 0.2

Quadratic RSM 6.00 6.00 3.52 26.45 26.74 1.1 167.0 167.3 0.2

Cubic RSM 6.00 6.00 2.95 27.44 27.85 1.5 169.4 170.8 0.8

Quartic RSM 6.00 5.57 2.58 28.09 26.21 6.7 165.6 154.1 7.0
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Table 11 Optimization results obtained through each surrogate model when diaphragm locations are optimized (in Section 5.2)

Surrogate model A (mm) B (mm) Cu (mm) SEA pred.
(kJ/kg)

SEA FEA result
(kJ/kg)

SEA
error (%)

EA pred.
(kJ)

EA FEA
result (kJ)

EA error
(%)

Thin-plate spline RBF +0.61 +29.43 +30.00 28.63 28.73 0.3 175.6 176.2 0.3

Gaussian RBF 0.00 0.00 0.00 27.85 27.85 0.0 170.8 170.8 0.0

Multiquadric RBF +0.15 +30.00 +30.00 28.63 28.65 0.1 175.6 175.7 0.1

Quadratic RSM +4.49 +30.00 +27.55 27.04 28.05 3.8 165.8 172.0 3.8

Cubic RSM +2.67 +30.00 +30.00 28.26 29.21 3.3 173.3 179.1 3.4

Quartic RSM −7.94 −18.58 +0.39 27.62 26.96 2.4 169.4 165.3 2.4

Table 12 Optimization results obtained through each surrogate model when taper angle is optimized (in Section 5.3)

Surrogate model α (◦) SEA pred.
(kJ/kg)

SEA FEA result
(kJ/kg)

SEA error (%) EA pred. (kJ) EA FEA result (kJ) EA error (%)

Thin-plate spline RBF 2.78 29.74 29.62 0.4 169.7 169.0 0.4

Gaussian RBF 9.65 30.84 28.80 6.6 144.0 134.9 6.3

Multiquadric RBF 2.77 29.75 29.64 0.4 169.8 169.2 0.4

Quadratic RSM 0.00 29.91 29.21 2.3 182.8 179.1 2.0

Cubic RSM 0.89 29.45 29.32 0.4 176.4 175.8 0.4

Quartic RSM 1.22 29.72 29.25 1.6 176.5 173.8 1.5

References

Abolfathi M, Alavi Nia A (2018) Optimization of energy absorption
properties of thin-walled tubes with combined deformation of
folding and circumferential expansion under axial load. Thin-
Walled Struct 130:57–70. https://doi.org/10.1016/j.tws.2018.05.
011

Abramowicz W, Jones N (1986) Dynamic progressive buckling of
circular and square tubes. Int J Impact Eng 4(4):243–270
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