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Abstract: This paper aims to discover how the measures that improve aircraft structural safety compare with each other in terms of
effectiveness. The safety measures we include here are a load safety factor of 1.5, conservative material properties, redundancy, certifi-
cation tests, error reduction, and variability reduction. We consider a static point stress design with a simple redundancy model. We model
individual errors in calculation (loads, stresses, failure) and in geometry and variability in loading, material properties, and geometry. We
use a probabilistic model based on assumed uniform distribution for errors as we often have only upper limits on errors. For variabilities
we also use some lognormal distributions. We find that error reduction is more effective than certification testing, which is more effective
than using an extra load safety factor. Variability reduction is found to be a very effective way of reducing the probability of failure (more
effective than error reduction), but it should be accompanied with an increased B-basis value. In addition, certification testing is found to
be effective when errors are large, whereas structural redundancy is found to be more effective when errors are low. We also find that as

safety measures are added and the probability of failure is reduced, the uncertainty in that probability of failure increases.
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Introduction

Aircraft structures have traditionally been designed using a
deterministic approach based on Federal Aviation Administration
(FAA) regulations. In the deterministic approach, safety of aircraft
structures has been achieved by combining a large number of
measures including a safety factor of 1.5, conservative material
properties (A-basis or B-basis values), tests, and redundancy. In
addition, inspections and quality control along with improved
accuracy of structural analysis and failure assessment are also
amongst measures that improve aircraft structural safety. Even
though the deterministic design leads to a remarkable level of
safety for aircraft structures, there is a growing interest in
replacing safety factors by reliability-based design (e.g., Lincoln
1980; Wirsching 1992; SAE 1997; Long and Narciso 1999) to
attain the same level of safety with lighter structures. Moreover,
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probabilistic analysis can also be used to compare the relative
effectiveness of various safety measures in improving the
structural safety.

In previous work (Acar et al. 2006), we explored how safety
measures compensate for errors and variability. The major finding
of that paper was that certification tests are most effective when
errors are large, variability is low, and the overall safety factor is
low. That paper mainly focused on the effectiveness of
certification testing, but the relative effectiveness of safety
measures was not addressed. The present paper takes a further
step and aims to discover how measures that improve aircraft
structural safety compare with one another in terms of weight
effectiveness. In addition, we modeled structural redundancy—
another safety measure—and compared the effectiveness of error
and variability reduction with other safety measures in this paper.

We consider a static point stress design and simplify the
modeling of redundancy by assuming that the structure will fail
only if two local failure events (possibly correlated) occur.
Aircraft structures have more complex failure modes, such as
fatigue and fracture, which require substantially different
treatment and the consideration of the effects of inspections [see
Kale and Haftka (2007)]. However, this simple model still serves
to further our understanding of the interaction between various
safety measures.

The next section of the paper discusses the safety measures
taken during aircraft structural design. Then, we use a simple
uncertainty classification that distinguishes uncertainties that
affect an entire fleet of an aircraft model (errors) from
uncertainties that vary from one aircraft to the next (variability).
Next, we discuss our modeling of errors and variability. The effect
of certification tests on error distribution is analyzed in a
following section. Next, the details of the calculation of the
probability of failure via separable Monte Carlo simulations
(MCS) are given. Finally, the results and concluding remarks are
given in the last two sections of the paper, respectively.



Table 1. Uncertainty Classification

Type of
uncertainty Spread Cause Remedies
Error Departure of the average Errors in predicting structural Testing and simulation to improve
(mostly fleet of an aircraft model failure, construction errors, the mathematical model and the
epistemic) (e.g., Boeing 737-400) deliberate changes solution

from an ideal
Variability Departure of an individual Variability in tooling, Improvement of tooling and
(aleatory) aircraft from fleet level manufacturing process, construction; quality control

average

and flying environment

Safety Measures

As noted earlier, aircraft structural design is still carried out by
using code-based design, rather than probabilistic design. Safety
is improved through conservative design practices that include the
use of safety factors and conservative material properties. Safety
is also improved by testing of components, redundancy, improved
modeling to reduce errors, and improved manufacturing to reduce
variability. The following gives a brief description of these safety
measures.

Load safety factor: In transport aircraft design, FAA regula-
tions state the use of a load safety factor of 1.5 (FAR-25.303).
That is, aircraft structures are designed to withstand 1.5 times the
limit load without failure.

Conservative material properties: In order to account for un-
certainty in material properties, FAA regulations state the use of
conservative material properties (FAR-25.613). The conservative
material properties are characterized as A-basis and B-basis ma-
terial property values, and the use of A-basis or B-basis values
depends on the redundancy. If there is single failure path in the
structure, A-basis values are used, whereas for the case of mul-
tiple failure paths (i.e., redundant structures), B-basis values are
used. Detailed information on these values is provided in Chap. 8
of Vol. 1 of the Composite Materials Handbook (ASTM 2002).
The basis values are determined by testing a number of coupons
selected at random from a material batch. The A-basis value is
determined by calculating the value of a material property ex-
ceeded by 99% of the population with 95% confidence, while the
B-basis value is the value of a material property exceeded by 90%
of the population with 95% confidence. In this paper, we take the
redundancy of the structure into account, so we use B-basis val-
ues (see Appendix I for the B-basis value calculation). The num-
ber of coupon tests is assumed to be 40.

Tests: Tests of major structural components reduce stress and
material uncertainties for given extreme loads due to inadequate
structural models. These tests are conducted in a building block
procedure [ Composite Materials Handbook (ASTM 2002), Vol. 1,
Chap. 2)]. First, individual coupons are tested, and then a subas-
sembly is tested, followed by a full-scale test of the entire struc-
ture. In this paper, we only consider the final certification test for
an aircraft. Other tests are assumed to be error reduction measures
and their effect is analyzed indirectly by considering the effect of
error reduction.

Redundancy: Transport airliners are designed with double and
triple redundancy features in all major systems to minimize the
failure probability. Redundancy is intended to ensure that a single
component failure does not lead to catastrophic failure of the
system. In the present work, we assume that an aircraft structure
will fail if two local failures occur in the structure.

Error reduction: Improvements in the accuracy of structural
analysis and failure prediction of aircraft structures reduce errors

and enhance the level of safety of the structures (Acar et al.
2006). These improvements may be due to better modeling tech-
niques developed by researchers, more detailed finite element
models made possible by faster computers, or more accurate fail-
ure predictions due to extensive testing.

Variability reduction: Examples of mechanisms that reduce
variability in material properties include quality control and im-
proved manufacturing processes (Qu et al. 2003). Variability in
damage and aging effects is accomplished through inspections
and structural health monitoring. Variability in loads may be re-
duced by better pilot training and information that allows pilots to
more effectively avoid regions of high turbulence. Here we inves-
tigate only the effect of reduced variability in material properties.

Structural Uncertainties

A good analysis of different sources of uncertainty in engineering
simulations is provided by Oberkampf et al. (2000, 2002). To
simplify the analysis, we use a classification that distinguishes
between errors (uncertainties that apply equally to the entire fleet
of an aircraft model) and variability (uncertainties that vary for
the individual aircraft) as presented in Table 1. The distinction is
important because safety measures usually target either errors or
variability. Whereas variabilities are random uncertainties that can
be readily modeled probabilistically, errors are fixed for a given
aircraft model (e.g., Boeing 737-400) but they are largely un-
known. As errors are epistemic, they are often modeled using
fuzzy numbers or possibility analysis (Antonsson and Otto 1995;
Nikolaidis et al. 2004; Vanegas and Labib 2005). Because infor-
mation on errors is typically available only in terms of error
bounds, we model errors probabilistically by using uniform dis-
tributions to maximize the entropy.

Errors are uncertain at the time of the design but they will not
vary for a single structural component on a particular aircraft,
whereas the variabilities vary for individual structural compo-
nents. To model errors, we assume that we have a large number of
nominally identical aircraft being designed (e.g., by Airbus, Boe-
ing, Embraer, Bombardier, etc.), with the errors being fixed for
each aircraft.

Errors, Variability, and Total Safety Factor

The following first discusses the errors in design and construc-
tion. Next, a total error and a total safety factor are introduced,
finally, simulation of variability is discussed.

Errors in Design

We consider static point stress design for simplicity. Other types
of failures such as fatigue, corrosion, or crack instability are not
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taken into account. We assume that an aircraft structure will fail
only if two local failure events occur. For example, we assume
that the wing will fail structurally if two local failures occur at the
wing panels. The correlation coefficient between the limit state
functions defining the probabilities of these two events is assumed
to be 0.5.

Before starting the structural design, aerodynamic analysis
needs to be performed to determine the loads acting on the air-
craft. However, the calculated design load value, P, differs
from the true design load P, under conditions corresponding to
FAA design specifications (e.g., gust-strength specifications).
Since each company has different design practices, the error in
load calculation, e, is different from one company to another.
The calculated design load P, is expressed in terms of the true
design load P, as

Pcalc=(1+eF)Pd (1)

Besides the error in load calculation, an aircraft company may
also make errors in stress calculation. We consider a small region
in a structural part, characterized by a thickness ¢ and width w,
that resists the load in that region. The value of the stress in a
structural part calculated by the stress analysis team, 0y, can be
expressed in terms of the load values calculated by the load team
Py, the design width W, and the thickness 7 of the structural
part by introducing the term e, representing error in the stress
analysis

P
Ocale = (1+ eo’) cale (2)
Wdesignt
Eq. (3) is used by a structural designer to calculate the design
thickness 4.0, required to carry the calculated design load times
the safety factor Sy. That is

SrLPcac SriPy

tdesign=(1+ec) =(1+eu)(1+eP)

design(o-a)calc
3)

where (0,)...=Value of allowable stress for the structure used in
the design, which is calculated based on coupon tests using failure
models such as Tresca or von Mises. Since these failure theories
are not exact, we have

(O-a)calc =(1- ef) (Ua)true 4)

where ey=error associated with failure prediction. Moreover, the
errors due to the limited amount of coupon testing to determine
the allowables, and the differences between the material proper-
ties used by the designer and the average true properties of the
material used in production are included in this error. Note that
the formulation of Eq. (4) is different to that of Egs. (1) and (2) in
that the sign in front of the error factor e, is negative, because we
consistently formulate the expressions such that positive error im-
plies a conservative decision.

Combining Egs. (3) and (4), we can express the design value
of the load carrying area as

design(o-a)calc

Agesien = TaesignW _ (L+e,)(I+ep) SpPy
design = LdesignWdesign =
esign esign”” design 1- ey (Ua)true

(5)

Errors in Construction

In addition to the above-mentioned errors, there will also be con-
struction errors in the geometric parameters. These construction
errors represent the difference between the values of these param-
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Table 2. Distribution of Error Factors and Their Bounds

Distribution Bounds
Error factors type Mean (%)
Error in stress calculation, e, Uniform 0.0 +5
Error in load calculation, ep Uniform 0.0 +10
Error in width, e, Uniform 0.0 +1
Error in thickness, e, Uniform 0.0 +2
Error in failure prediction, e, Uniform 0.0 +20

eters in an average airplane (fleet-average) built by an aircraft
company and the design values of these parameters. The error in
width, e, represents the deviation of the design width of the
structural part, Wyegn, from the average value of the width of the
structural part built by the company prior to certification testing,
Whrotor We use the term prototype and the subscript proto to denote
the aircraft built for certification. We assume that the actual built
airplane after certification will not be different from the prototype
airplane, but the distribution of errors will change because some
designs will not be certified. Thus

Whoroto = (1+ ew)Wdesign (6)

Similarly, the average prototype thickness value, f,;4, Will differ
from its design value such that

lpro{o = (1 + et)tdesign (7)

Then, the prototype load carrying area Ao, can be expressed
using the first equality of Eq. (5) as

Aproto =(1+ 6,)(1 + ew)Adesign (8)

Table 2 presents nominal values for the errors assumed here.
In the “Results” section of the paper we will vary these error
bounds and investigate the effects of these changes on the prob-
ability of failure. As seen in Table 2, the error having the largest
bound in its distribution is the error in failure prediction e, be-
cause we use it to also model the likelihood of unexpected failure
modes.

The errors here are modeled by uniform distributions, follow-
ing the principle of maximum entropy. For instance, the error in
the average prototype thickness of a structural part (e,) is defined
in terms of the error bound (b,) e, Via

e,=Ul0, (bt)prolo] )

Here “U” indicates that the distribution is uniform and “0 (zero)”
is the average value of e, Table 2 shows that (b;)y,=0.02.
Hence, the lower bound for the thickness value is the average
value minus 2% of the average and the upper bound for the
thickness value is the average value plus 2% of the average.
Commonly available random number generators provide random
numbers uniformly distributed between 0 and 1. Then, the error in
the average prototype thickness can be calculated from Eq. (10)
using such random numbers r as

€= (27'— l)(bt)proto (10)

Total Error Factor, ey,

The expression for the prototype load carrying area, A, Of a
structural part can be reformulated by combining Egs. (5) and (8)
as



Sp P,
Aproto = (1 + etotal) Hd (l 1)
(O-a)true
where
1+ I+ 1+ I+
o= (I+e)(I+ep)(l+e)(1+e,) | (12)

1—€f

Here e, represents the cumulative effect of the individual errors
(ey> €p, ...) on the load carrying capacity of the structural part.

Total Safety Factor

The total safety factor, Si, of a structural part represents the ef-
fects of all safety measures and errors on the prototype structural
part. Without safety measures and errors, we would have a load
carrying area, A, required to carry the design load P,

_Pa

Ag= (13)

oy
where G,=average value of the failure stress. Then, the total
safety factor of a prototype structural component can be defined
as the ratio of Ayo0/Ag

(SF)proto = éM = (1 + etotal)SFL %

AO ((Ta)true
Here we take Sp;=1.5 and conservative material properties are
based on B-basis values. Certification tests add another layer of
safety. Structures with large negative e, (unconservative) fail
certification, so the certification process adds safety by biasing the
distribution of e,,. Denoting the area after certification (or cer-
tified area) by A, the total safety factor of a certified structural
part is

(14)

A cert
A 0

(SF)certz (15)

Variability

In the previous sections, we analyzed the different types of errors
made in the design and construction stages, representing the dif-
ferences between the prototype fleet-average values of geometry,
material, and loading parameters and their corresponding design
values. For a given design, these parameters vary from one air-
craft to another in the fleet due to variabilities in tooling, con-
struction, flying environment, etc. For instance, the thickness of
an individual structural part, 7,4, is defined in terms of its proto-
type fleet-average value, 7,1, by

lind = (1+ vt)tproto (16)

Since thickness variation is typically specified in terms of toler-
ance bounds, we assume that v, has a uniform distribution with
3% bounds (see Table 3). Then, the load carrying area of an
individual structural part A;,4 can be defined as

Aind = lindWind = (1 + vt)tproto(l + vw)wproto = (1 + U[)(l + vw)Aprow
(17)
where v,, represents effect of the variability on the prototype
width.
Table 3 presents the assumed distributions for variabilities.

Note that the thickness error in Table 2 is uniformly distributed
with bounds of +2%. Thus the difference between all thicknesses

Table 3. Distribution of Random Variables Having Variability

Distribution
Variables type Mean Scatter
Load acting on individual Lognormal P,=100 10% c.o.v."
structural parts under
actual service conditions, Pj,g
Width of an individual Uniform Wproto 1% bounds
structural part, wiq
Thickness of an individual Uniform Iproto 3% bounds
structural part, 4
Failure stress, of Lognormal 150 8% c.o.v.*
v,, Uniform 0 1% bounds
v, Uniform 0 3% bounds

“c.0.v.=coefficient of variation.

over the fleets of all companies is up to +5%. However, the com-
bined effect of the uniformly distributed error and variability is
not uniformly distributed.

Certification Tests

After a structural part has been built with errors in stress, load,
width, allowable stress, and thickness, we simulate certification
testing for the structural part. Recall that the structural part will
not be manufactured with complete fidelity to the design due to
variability in the geometric properties. That is, the values of these
parameters in individual structural parts w;,q and f,,4 will be dif-
ferent from their prototype fleet-average values wy,o, and 7o
due to variability. The structural part is then loaded with the de-
sign axial force of Sy times P, and if the stress exceeds the
failure stress of the structure o then the structure fails and the
design is rejected; otherwise it is certified for use. That is, the
structural part is certified if the following inequality is satisfied:

SFLPcalc
O—0f=—"

-o,<0 (18)
Winglind

The total safety factor [see Eq. (14)] depends on the load
safety factor, the ratio of the failure stress to the B-basis allowable
stress, and the total error factor. Using the FAA definition (see
Appendix I), the B-basis properties are affected by the number of
coupon tests. As the number of tests increases, the B-basis value
also increases. This means that a lower total safety factor is used.
Amongst the terms in the total safety factor expression, the error
term is subject to the largest change due to certification testing.
Certification tests reduce the probability of failure by mainly
changing the distribution of the error factor e,,. Without certifi-
cation testing, we assume uniform distributions for all the indi-
vidual errors. As noted earlier, this reflects typical lack of infor-
mation on error distributions and we use uniform distribution to
maximize entropy (or randomness). However, since designs based
on unconservative models are more likely to fail certification, the
distribution of e, becomes conservative for structures that pass
certification. In order to quantify this effect, we calculated the
updated distribution of the error factor e, by Monte Carlo simu-
lation (MCS) of a sample size of 1,000,000. Calculation of
updated error distributions is based on the following

procedure.
1.  Generate individual errors based on their initial distribution
(uniform);

2. Calculate the total error from Eq. (12);
3. Calculate the area before certification, A, from Eq. (11);
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Fig. 1. Comparing distributions of prototype and certified total error
el Of SEF and MEF models. The distributions are obtained from
simulation of 1,000,000 structural parts. The lower and upper bounds
for the single error are taken as —22.3 and 25.0%, respectively, to
match the mean and standard deviation of the total error factor in the
MEF model (see Table 12).

4. Calculate area for individual structural parts from Eq. (17);
and
5. Simulate certification test [Eq. (18)];

» Pass=store the errors to form the updated error distribution;

and

* Fail=do nothing.

6. Check if the number of MCS is reached;

*  Yes=stop; and

* No=go to step 1.

Note here that the error updating procedure is performed in
Stage 2 of the separable Monte Carlo simulations (see next sec-
tion). However, for error updating we can use standard Monte
Carlo because tails are not as important compared to probability
of failure calculation where they are.

In a previous paper (Acar et al. 2006), we represented the
overall error with a single error factor e, hereinafter termed the
“single error factor model (SEF model),” and we used uniform
distribution for the initial (i.e., prototype) distribution of this error.
In the present work, we use a more complex representation of
error with individual error factors, hereinafter termed the
“multiple error factor model (MEF model),” and we represent the
initial distribution of each individual error factor with uniform
distribution. In this case, the distribution of the total error is no
longer uniform.

Fig. 1 shows how certification tests update the distribution of
the total error for the SEF and MEF models. For both models the
initial distribution is updated such that the likelihood of
conservative values of the total error is increased. This is due to
the fact that structures designed with unconservative (negative)
errors are likely to be rejected in certification tests. Notice that the
SEF model exaggerates the effectiveness of certification testing.
The reader is referred to Appendix II for a detailed comparison of
the two error models.

Fig. 2 shows the distributions of the prototype and certified
total safety factors of the MEF model. Notice that the structural
parts designed with low total safety factors are likely to be
rejected in the certification testing. The mean and standard
deviations of prototype and certified distributions of the error
factor and the total safety factor are listed in Table 4. Comparing
the mean and standard deviation of the prototype and certified
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Fig. 2. Initial (precertification) and updated (after certification)
distribution of the total safety factor Syp. The distributions are
obtained via Monte Carlo simulations with 1,000,000 structural part
models.

total error (and similarly the total safety factor), we see that the
mean is increased and the standard deviation is reduced due to
certification testing.

Probability of Failure Calculation

As noted earlier, we assume that structural failure requires the
failure of two structural parts. In the following, we first describe
the probability of failure calculations of a single structural part by
using separable MCS. Then, we discuss the calculation of the
system probability of failure.

Probability of Failure Calculation by Separable MCS

To calculate the probability of failure, we first incorporate the
statistical distributions of errors and variability in a Monte Carlo
simulation. Errors are uncertain at the time of design, but do not
change for individual realizations (in actual service) of a particu-
lar design. On the other hand, all individual realizations of a
particular design are different from one another due to variability.
In a previous paper (Acar et al. 2006), we implemented this
through a two-level Monte Carlo simulation. At the upper level
we simulated different aircraft companies by assigning random
errors to each, at the lower level we simulated variability in di-
mensions, material properties, and loads related to manufacturing
variability and variability in service conditions. This provided not
only the overall probability of failure, but also its variation from
one company to another (which we measured by the standard

Table 4. Mean and Standard Deviations of the Prototype and Certified
Distributions of the Error Factor e, and the Total Safety Factor Sy
Shown in Figs. 1 and 2

Standard

Mean deviation
Prototype total error 0.0137 0.137
Certified total error 0.0429 0.130
Prototype safety factor 1.747 0.237
Certified safety factor 1.799 0.226

Note: The calculations are performed with 1,000,000 MCS.



deviation of the probability of failure). This variation is important
because it is a measure of the confidence in the value of the
probability of failure due to the epistemic uncertainty (lack of
knowledge) in the errors. However, the process requires trillions
of simulations for good accuracy.

In order to address the computational burden, we turned to the
separable Monte Carlo procedure (e.g., Smarslok and Haftka
2006). This procedure applies when the failure condition can be
expressed as g,(x;) > g,(x,), where x, and x,=two disjoint sets of
random variables. To take advantage of this procedure, we need to
formulate the failure condition in a separable form, so that g, will
depend only on variabilities and g, only on errors. The common
formulation of the structural failure condition is in the form of a
stress exceeding the material limit. This form, however, is not
separable. For example, the stress depends on variability in ma-
terial properties as well as design area, which reflects errors in the
analysis process. To bring the failure condition to the right form,
we instead formulate it as the required cross-sectional area A/,
being larger than the prototype area A, as given in

Aproto < &; = A
(1+v)(1+v,) ™

where A, =crosssectional area required by individual realiza-
tions of a particular copy of an aircraft model to carry the loading
in actual service conditions, P;,q; and Ar’eq is what the prototype
area (fleet average) needs to be in order for the particular copy to
have the required area after allowing for variability in width and

thickness

(19)

Areq = Pind/O-f (20)

The required area depends only on variability, while the pro-
totype area depends only on errors. When certification testing is
taken into account, the prototype area, A, is replaced by the
certified area, A, Which is the same as the prototype area for
companies that pass certification. However, companies that fail
are not included. That is, the failure condition is written as

failure without certification tests:  Afeq = Aproro > 0

failure with certification tests:  A/oq = Acery > 0 (21)

Eq. (21) can be normalized by dividing the terms with A, [load
carrying area without errors or safety measures, Eq. (13)]. Since
Aprote! Ag 01 Ao/ A are the total safety factors, Eq. (21) is equiva-
lent to the requirement that failure occurs when the required
safety factor is larger than the prototype one

(SF)req - (SF)proto >0
(22a)

failure without certification tests:

failure with certification tests:  (Sp)ieq = (Sp)cern > 0

(22b)

where (Sp) o0 and (Sg)ee=prototype and certified total safety
factors given in Egs. (14) and (15); and the required total safety
factor (Sp)yeq is calculated from

!

A,
(SF)req = —=

A, (23)

For a given (Sp)p, We can calculate the probability of failure,
Eq. (22a), by simulating all the variabilities with MCS.

Fig. 3 shows the dependence of the probability of failure on
the total safety factor using MCS with 1,000,000 variability

— MCS
10’2 L - Lognormal approx.

4|
10

-0

5
10 f

6L
10

&7 |.
10

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-8 1 1 1
10
Sg =Aproto/A0

Fig. 3. The variation of the probability of failure with the prototype
total safety factor. Note that P, is one minus the cumulative
distribution function of (Sp) eq-

samples. The zigzagging in Fig. 3, at high safety factor values is
due to the limited MCS sample. Note that the probability of fail-
ure for a given total safety factor is one minus the cumulative
distribution function (CDF) of the total required safety factor.
This required safety factor depends on the four random variables
Ping> 04, U, and v,,. Among them, Pj,q and o, have larger vari-
abilities compared to v, and v,, (see Table 3). We found that
(Sp)req is accurately represented with a lognormal distribution,
since Pjpq and o, follow lognormal distributions. Fig. 3 also
shows the probability of failure from the lognormal distribution
with the same mean and standard deviation. Note that the nominal
(load) safety factor of 1.5 is associated with a probability of fail-
ure of about 1073, while the probabilities of failure observed in
practice (about 1077) correspond to a total safety factor of about 2.

Details of separable Monte Carlo simulation procedure can be
found in Appendix III.

Additional Effect of Redundancy

The requirement of two failure events is modeled here as a par-
allel system. The large number of random variables contributing
to the limit-state functions is likely to result in approximately
normal distribution. Therefore, we assume that the limit-state
functions of both failure events follow normal distribution to take
advantage of known properties of the bivariate normal distribu-
tion. For a parallel system of two elements with equal failure
probabilities, Eq. (24) is used to calculate the system probability
of failure Ppg (see Appendix IV for details)

, 1" 1 p?
Prg=Pi+-— | == exp| - dz (24)

2 o V1—2z 14z
where P =probability of failure of a single structural part;
p=correlation coefficient of the two limit states; and
B =reliability index for a single structural part, which is related to
P, through

P/= (I)(— B)

where ®=cumulative distribution function of the standard normal
distribution.

(25)
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Table 5. Average and Coefficient of Variation of the Probability of Failure for the Structural Parts Designed with B-Basis Properties and Sp=1.5

CFR*
K (%) (SP)proto” (SP)een” P, 1107 P10 PP,
0.25 6.4 1.725 (4.2%) 1.728 (4.1%) 0.244 (148%) 0.227 (148%) 0.930
0.50 9.3 1.730 (6.9%) 1.741 (6.7%) 0.763 (247%) 0.609 (257%) 0.798
0.75 13.4 1.737 (10.2%) 1.764 (9.7%) 2.70 (324%) 1.66 (357%) 0.616
0.82 14.7 1.740 (11.2%) 1.773  (10.6%) 379 (340%) 2.13 (384%) 0.561
1 18.0 1.747 (13.6%) 1.799 (12.5%) 8.83 (371%) 3.79 (450%) 0.430
1.5 26.0 1.779  (20.5%) 1.901 (17.8%) 60.0 (385%) 11.5 (583%) 0.191

Note: The numbers inside the parentheses represent the coefficient of variation of the relevant quantity.

4CFR =certification failure rate.

b(SF)pmm and (Sp) . =total safety factors before and after certification testing, respectively.

°P,. and P.=probabilities of failure before and after certification testing, respectively.

Results

In this section, the effectiveness of safety measures is investigated
and the results are reported. First, we discuss the effects of error
reduction. Then, the relative effectiveness of error reduction and
certification is compared. Next, the effectiveness of redundancy is
explored. Finally, the effectiveness of variability reduction is
investigated.

Effect of Errors

We first investigate the effect of errors on the probability of fail-
ure of a single structural part. For the sake of simplicity, we scale
all error components with a single multiplier, k, replacing Eq. (12)
by

(1 +key)(1 +kep)(1 +ke)(1 +ke,)
l—kef

1 (26)

Ciotal =

and explore the effect of k on the probability of failure.

Table 5 presents the average and coefficient of variation of the
probability of failure of a single structural part. The coefficient of
variation of the failure probability is computed to explore our
confidence in the probability of failure estimate, as it reflects the
effect of the unknown errors. Columns 5 and 6 of Table 5 show a
very high coefficient of variation for the failure probabilities
(variability in the probability of failure for different aircraft mod-
els). We see that as the error grows (i.e., k increases), the coeffi-
cient of variation of failure probabilities after certification also
grows. This is due to the fact that as the error bounds increase, the
difference between companies also increases. Comparing the fail-
ure probabilities before certification (Column 5) and after certifi-
cation (Column 6), we notice that even though certification tests
reduce the mean failure probability, they increase the variability
in failure probability. This effect of safety measures will be ob-
served repeatedly and it is easiest to explain for the effect of
redundancy. So discussion of this effect is given at the end of the
next section.

Table 5 shows that for nominal error (i.e., k=1) the total safety
factor before certification is 1.747, which is translated into a prob-
ability of failure of 8.83 X 10™*. When the certification testing is
included, the safety factor is increased to 1.799, which reduces
the probability of failure to 3.79 X 107*. Notice also that the co-
efficient of variation of the safety factor is reduced from 13.6 to
12.5%, which is an indication that the certification testing is more
effective than simply increasing the safety factor with an in-
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creased prototype area. A detailed analysis of the effectiveness of
certification testing is given throughout this “Results” section of
the paper.

Column 2 of Table 5 shows a rapid increase in the certification
failure rate with increasing error. This is reflected in a rapid in-
crease in the average safety factor of certified designs in Column
4, (Sp)cer- This increased safety factor manifests itself in the last
column of Table 5 that presents the effect of certification tests on
failure probabilities. As we can see from that column, when the
error increases, the ratio of the two failure probabilities decreases,
demonstrating that the certification tests become more effective.
This trend of the increase of the design areas and the probability
ratios is similar to the one observed in Acar et al. (2006). Note,
however, that even the average safety factor before certification
[(SF)proto in Column 3] increases with the error due to the asym-
metry of the initial total error distribution (see Fig. 1).

Table 5 shows the huge waste of weight due to errors. For
instance, for the nominal error (i.e., k=1.0), an average prototype
total safety factor of 1.747 corresponds to a probability of failure
of 8.83 X 107* according to Table 5, but we see from Fig. 3 that a
safety factor of 1.747 approximately corresponds to a probability
of failure of 7X 1075, two orders of magnitude lower. This dis-
crepancy is due to the high value of the coefficient of variation of
the safety factor. For the nominal error, the coefficient of variation
of the total safety factor is 14%. Two standard deviations below
the mean safety factor is 1.272, and two standard deviations
above the mean safety factor is 2.222. The probability of failure
corresponding to the safety factor of 1.272 (from Fig. 3) is about
2.98 X 1072, while with the safety factor of 1.985 the probability
of failure is essentially zero. So even though only about 0.8% of
the designs have a safety factor below 1.272 (Fig. 2), these de-
signs have a huge impact on the probability of failure. Reducing
the error by half (i.e., k=0.50), reduces the weight by 1%, while
at the same time the probability of failure is reduced by a factor
of 3.

Weight Saving due to Certification Testing and Error
Reduction

We have seen in Table 5 that as structures built with unconserva-
tive errors are mostly eliminated by certification testing; the tests
increase the average safety factor of the designs and therefore
reduce the average probability of failure. As certification testing is
expensive, it is useful to check if the same decrease in the prob-
ability of failure can be achieved by simply increasing the load
carrying area by the same amount (i.e., by increasing the safety



Table 6. Reduction of the Weight of Structural Parts by Certification Testing for a Given Probability of Failure

k Ayl Ag* Acenl Ao P, .10 Pb10+ %AA°
0.25 1.7285 (4.2%) 17283 (4.1%) 0.227 (148%) 0.227 (148%) -0.01
0.50 1743 (6.9%) 1741 (6.7%) 0.609 (252%) 0.609 (257%) -0.14
0.75 1.770  (10.3%) 1764 (9.7%) 1.66 (342%) 1.66 (357%) -0.36
1 1.815 (13.7%) 1.799 (12.5%) 3.79 (416%) 379 (450%) -0.87
1.5 1.961 (20.7%) 1.901 (17.8%) 115 (530%) 115 (583%) -3.09

Note: The numbers inside the parentheses represent the coefficient of variation of the relevant quantity.

*A, n.=required area with no certification testing, the area required to achieve the same probability of failure as certification.

bP,,C and P.=probabilities of failure before and after certification testing, respectively.

“AA=(Acerr—Ayne) A, e indicates weight saving due to testing while keeping the same level of safety.

factor) without certification testing. Column 2 of Table 6 shows
that the required area with no certification testing, A, ,., is greater
than the certified area, A, (i.e., area after certification testing)
shown in Column 3. The last column shows the weight saving by
using certification test instead of a mere increase of the safety
factor. We notice that weight saving increases rapidly as the error
increases. For instance, when k=0.25 the weight saving is very
small. Columns 4 and 5 show that even though we match the
average probability of failure, there are small differences in the
coefficients of variation.

To compare the effectiveness of certification testing and error
reduction, we examine the case of the nominal error (i.e., k=1.0).
For that case, certification testing allows us to use a normalized
weight of 1.799, whereas to achieve the same probability of fail-
ure (3.79 X 10™*) would require a normalized weight of 1.815.
However, as shown in Table 5, we can achieve the same probabil-
ity of failure without certification by reducing the error bounds by
18%, that is by reducing k from 1.0 to 0.82, accompanied by a
normalized weight of 1.740 (see Table 5). So while certification
testing reduces the weight by 0.87%, reducing errors by 18%
would reduce the weight by 4.13%. So error reduction is much
more effective than certification testing in reducing weight.

Effect of Redundancy

To explore the effect of redundancy, we first compare the failure
probability of a single structural part to that of a structural system
that fails due to failure of two structural parts. Certification testing
is simulated by modeling the testing of one structural part and
certifying the structural system based on this test. Table 7 shows
that while the average failure probability is reduced through
structural redundancy, the coefficients of variation of the failure
probabilities are increased. That is, even though the safety is

Table 7. Effect of Redundancy on the Probabilities of Failure

improved, our confidence in the failure probability estimation is
reduced. This behavior is similar to the effect of certification
(Table 5). In addition, we also notice that as the error grows, the
benefit of redundancy also diminishes. This result reflects the fact
that high errors result in high probabilities of failure, and
redundancy is more effective for smaller probabilities of failure.
This behavior, however, is opposite to that resulting from
certification testing. We notice that even though one safety
measure—certification testing—is more effective when errors are
high, another safety measure—redundancy—is more effective
when errors are low. So the level of uncertainty in the problem
may decide on the efficient use of safety measures.

Comparing the reduction probabilities of failure before and
after certification listed in Columns 4 and 7 of Table 7, we notice
that the effect of redundancy is enhanced through certification
testing.

Next, we investigate the interaction of two safety measures:
redundancy and certification testing. Comparing the probability
ratios in Table 8, we see that including redundancy improves the
effectiveness of certification testing. Mathematically, this can be
explained with the following example. For a nominal error, k
=1.0, the probabilities of failure before and after certification of a
structural part are 8.83 and 3.79 X 107, respectively. The system
probabilities of failure before and after certification are calculated
by using Eq. (24) as 1.31 and 0.39 X 1074, respectively. Notice that
the system failure probability ratio is smaller than the component
probability ratio, because redundancy is more effective for small
probabilities of failure. Physically, the reason for the increase in
the effectiveness certification is that in the certification test, failure
of a single part leads to rejection of the design of structural
system, whereas under actual service conditions, two failure
events are needed for the failure of the structure. Thus, modeling

Before certification

After certification

Part System Part System
K P10 P,t107 Reduction® P.2/107 PA1074 Reduction®
0.25 0.244 (148%) 0.005 (230%) 52.1 0.227 (148%) 0.004 (230%) 535
0.50 0763 (247%) 0.029 (388%) 26.3 0.609 (257%) 0.022 (408%) 28.0
0.75 270 (324%) 0.195 (503%) 13.8 1.66 (357%) 0.106 (568%) 15.6
1 8.83 (371%) L11 (563%) 79 379 (450%) 0.390 (718%) 9.7
1.5 60.0 (385%) 17.2 (549%) 35 11.5 (583%) 2.21 (945%) 52

Note: The numbers inside the parentheses represent the coefficient of variation of the relevant quantity. The coefficient correlation between failures of
structural parts is taken as 0.5.

*P,. and P.=probabilities of failure before and after certification testing, respectively.
°The ratio of Py¢’s of the structural part and the system of two parts.
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Table 8. Effect of Redundancy on the Effectiveness of Certification
Testing

PP, PP,
k (part) (system)
0.25 0.930 0.905
0.50 0.798 0.749
0.75 0.616 0.543
1 0.430 0.350
1.5 0.191 0.129

Note: The coefficient correlation between failures of structural parts is

taken as 0.5. P,. and P,=mean values of probabilities of failure before
and after certification testing, respectively.

redundancy is equivalent to modeling a relatively more severe
certification testing. This result is similar to the finding of Kale
and Haftka (2005), who explored the effect of safety measures on
aircraft structures designed for fatigue. They found that
certification testing of an aircraft structure with a large machined
crack of B-basis initial size was more effective than testing the
structure with a random (natural) crack.

Effect of the Correlation Coefficient

Recall that the correlation coefficient of the probabilities of fail-
ure of the two structural parts was assumed to be 0.5. Table 9
shows that as the correlation coefficient decreases, the probability
of failure of the system also decreases, but at the same time our
confidence in the probability estimation also reduces. The last
column of Table 9 shows that as the correlation coefficient de-
creases, certification testing becomes more effective, which can
be explained as follows. As the coefficient of correlation de-
creases, the structural parts behave more independently. Applying
certification testing based on the failure of a single structural part
means using more severe certification testing. This reminds us
that as with any redundant system it pays to reduce the correlation
coefficient of duplicate hardware (e.g., to use a back up part made
by a different company). It is intriguing to speculate on the pos-
sible application to structural design. Is it feasible, for example,
to buy structural materials from different vendors for skin and
stiffeners?

Increased Uncertainty in Probability of Failure

We have observed increased variability in the probability of fail-
ure as it is reduced by various safety measures. It is easiest to
explain for the case of redundancy with zero correlation coeffi-
cient. Consider, for example, two companies, one with a single-
component probability of failure of 0.2 and the other of 0.1. The
average probability of failure is 0.15, the standard deviation is

Table 9. Effect of Correlation Coefficient p on System Failure
Probabilities and Effectiveness of Certification Testing

P P,A107* PA107* P./P,
0.3 0.506 (678%) 0.161 (885%) 0.319
0.4 0.761 (615%) 0.255 (794%) 0.335
0.5 111 (563%) 0.390 (718%) 0.350
0.6 1.60 (519%) 0.583 (655%) 0.365
0.7 227 (480%) 0.859 (516%) 0.378

Note: The numbers inside the parentheses represent the coefficient of
variation of the relevant quantity. The error multiplier £ is taken as 1.0.

P, and P =probabilities of failure before and after certification testing,
respectively.
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Table 10. Additional Safety Factor due to Redundancy

%

increase due

k (Sp_add) ne (Sp_add)e certification
0.25 1.120 1.120 0.0
0.50 1.111 1.112 0.1
0.75 1.101 1.103 0.2
1 1.093 1.096 0.3
1.5 1.078 1.085 0.7

0.05, and the coefficient of variation is 33%. With redundancy,
the two probabilities will be reduced to 0.04 and 0.01. Now the
average is 0.025, the standard deviation is 0.015, and the coeffi-
cient of variation is 60%.

As more safety measures are applied, failure requires a higher
and higher number of simultaneous detrimental errors and vari-
abilities. This means that the above-presented example for redun-
dancy is also likely to explain the increased variability in the
probability of failure as these measures are added.

Additional Safety Factor due to Redundancy

Recall that the results given in Table 7 show how redundancy
reduces the probability of failure. For instance, for k=1.0 the

average probability of failure before certification, P, is reduced
from 8.83 X 107 to 1.11X 107, This reduction in probability of
failure leads to an increase in the total safety factor. For each error
multiplier k£ value, we calculate the additional safety factor re-
quired to reduce the probability of failure of a structural part to
that of the structural system. The second and third columns of
Table 10 show two opposing effects on the additional safety fac-
tor. As the error grows, the probabilities of failure before and after
certification increase, so the effect of redundancy decreases be-
cause the redundancy is more effective for lower failure prob-
abilities. Hence, the additional safety factor due to redundancy
decreases with increased error (see also Fig. 4). However, as in-
dicated in the last column of Table 10 the ratio of safety factors
after and before certification testing increases with increased error
because the certification is more effective for high errors.

Effect of Variability Reduction

Finally, we investigate the effect of variability reduction on the
average safety factor, design area, and system probability of fail-
ure. We observe from Table 11 that the average safety factor and
design area increase with the increase of variability in failure

241 T
—tr—part /
2.0 —&—system —
Effective 5 E/
safety factor 19 i
after :

certification /

L T SO SO oot SO
Ar_______ﬂ_,.,-——d
1.7 v T T v
0.25 0.5 0.75 1 1.25 15

error multiplier, k

Fig. 4. Total safety factors for MEF model for the structural part and
system after certification




Table 11. Comparison of System Failure Probabilities Corresponding to Different Variability in Failure Stress o

c.o.v. CFR* Average Average B B P,

(o)) (%) Aproto Ag” Al Ay P, /1074 P./107* ratio
0 50.0 1.521 1.676 9.27 0.001 0.001
4% 323 1.629 1.727 2.00 0.008 0.040
8% 18.0 1.747 1.799 1.11 0.390 0.350
12% 11.6 1.878 1.910 1.19 0.737 0.619

“CFR =certification failure rate.

bApmm/Ao and A../Ay=total safety factors before and after certification testing, respectively.

stress. In addition, we observe from the P, ratio given in the last
column of Table 11 that certification testing becomes less effec-
tive as variability increases. Fig. 5 also shows the reduced effi-
ciency of testing with increased variability. The second column of
Table 11 shows that the certification testing failure rate (CFR)
reduces with increased variability. As variability is increased, the
prototype load carrying area is also increased (Column 5), so CFR
is reduced accordingly.

Table 11 shows two opposing effects of variability on the two

failure probabilities (before certification, P,., and after certifica-

tion, P_, see Columns 7 and 8). When the coefficient of variation
in the failure stress is increased from 0 to 8%, the safety factor
before certification (Column 3) increases from 1.521 to 1.676,
because a smaller B-basis value is used for the allowable failure
stress. Note that the initial safety factor for no variability would
be 1.5 if the error distribution (hence the safety factor distribu-
tion) was symmetric, but as the distributions are skewed (see
Figs. 1 and 2) the safety factor is 1.521. The increase in the safety
factor with increased error leads to a reduction in the probability
of failure before certification (Column 5). However, for higher
coefficients of variation, the probability of failure before certifi-
cation increases again, because the increased safety factor is not
enough to compensate for the large variation in airplanes. How-
ever, once certification is included, the picture is different. For no
variability, even though the safety factor is increased by only 10%
(from 1.521 to 1.676, see Columns 3 and 4), the probability of
failure reduces four order of magnitudes (Columns 5 and 6) due
to the high effectiveness of certification testing at low variability.
As variability increases, the effectiveness of certification testing
reduces (Column 7), so the probability of failure after certification
is still high.

Table 11 also indicates the advantage of reducing variability.
Reducing variability from 8 to 4% reduces the weight by 4%,
while at the same time reducing the probability of failure by a
factor of 50. However, the certification failure rate is unaccept-
ably increased from 18 to 32%. To compensate for this, however,

1.E-02

1.E-03 z,\
\

Probability of 4 £ g
failure

—ar— before certification | |
—=— after certification

1.E-05

1.E-06 O

c.o.v. of failure stress (%)

Fig. 5. Effect of variability on failure probability

a company may fargo the weight gain and have an additional
safety factor of 1.747/1.629=1.072. This will give a reduced sys-
tem probability of failure of 3.64X107° (compared to 3.90
X 107) and a reduced certification failure rate of 14.7% (com-
pared to 18.0%). A more efficient way, however, is to use the
additional safety factors during the building block testing, which
is not simulated in this paper.

In addition, Table 11 reveals that variability reduction is more
effective than error reduction. For example, reducing all errors by
half (i.e., reducing k from 1 to 0.5) leads to reducing the prototype
safety factor from 1.747 to 1.730 (Table 5), along with reducing
the system probability of failure from 3.90 X 107 to 2.20 X 107
(Table 7). On the other hand, reducing variability by half (that is,
reducing c.o.v. of the failure stress from 8 to 4%) leads to reduc-
ing the prototype safety factor from 1.747 to 1.629, along with
reducing the system probability of failure from 3.90X 107> to
8.0 1077 (Table 11). That is, variability reduction leads to more
weight saving and probability of failure reduction than error
reduction.

Concluding Remarks

The relative effectiveness of safety measures taken during aircraft
structural design is demonstrated in this paper. The safety factor,
conservative material properties, certification testing, redundancy,
error and variability reduction were included in this study and the
following was observed.

1. Although certification testing is more effective for improving
safety rather than increased safety factors, it cannot compete
with even a small reduction in errors.

2. Variability reduction is even more effective than error reduc-
tion, but it needs to be accompanied by increased internal
safety factor to compensate for the increase in the B-basis
value.

3. Our probabilities of failure are still high compared with the
historical record (probability of failure of 10~7). This is prob-
ably due to the effect of building block tests, which we will
address in a future work.

4. One safety measure, certification testing, is more effective
when errors are large, whereas another safety measure, re-
dundancy, is more effective when errors are low. Certifica-
tion testing is more effective when the variability is low. At a
low variability level, redundancy accompanied with certifi-
cation testing is effective.

5. For this specific example problem, adding redundancy by
defining the system failure as probability of two simulta-
neous failure events is equivalent to using an additional
safety factor of about 1.1.
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Appendix I. B-Basis Value Calculation

The B-basis value is the value exceeded by 90% of the population
with 95% confidence. This is given by

B=X—kgs (27)

where B=B-basis value; )_(:sample mean; s=sample standard
deviation; and kz=tolerance coefficient for normal distribution
given by

[
2
21+ \Zj,—ab
kB=

a
Z2 21
T _2 -y
=Ty PRETy ()

where N=sample size, y=0.95, and z,_,=critical value of normal
distribution that is exceeded with a probability of 1-p=0.1. The
tolerance coefficient ky for a lognormal distribution is obtained by
first transforming the lognormally distributed variable to a nor-
mally distributed variable. Egs. (27) and (28) can be used to ob-
tain an intermediate value. This value is then converted back to
the lognormally distributed variable using inverse transformation.

In order to obtain the B-basis values, we assume that 40 struc-
tural parts are randomly selected from a batch. The mean and
standard deviation of 40 random values of allowable stress is
calculated and used in determining the B-basis value of the al-
lowable stress.

Appendix Il. Comparison of the Single Error Model
and the Multiple Error Model

In a previous paper (Acar et al. 2006), we used a single error
factor model (SEF model), where the overall error is represented
with a single error factor e, and uniform distribution is used for
the initial distribution of this error. On the other hand, the present
paper utilizes a multiple error factor model (MEF model), which

Table 12. Equivalent Error Bounds for the SEF Model Corresponding to
the Same Standard Deviation in the MEF Model

From
MEF model
Standard —
Average deviation of to Lower bound Upper bound
k Clotal Cow _ SEF model  for ey for e
0.25 0.0009 0.033 —-0.057 0.059
0.50 0.0034 0.067 —-0.113 0.119
0.75 0.0076 0.101 —-0.168 0.183
1.0 0.0137 0.137 —-0.223 0.250
1.5 0.0317 0.212 -0.336 0.400

Note: The average and standard deviation is calculated via 1,000,000
MCS.
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uses a more complex representation of error with individual error
factors and where initial distributions of each individual error
factor are represented with uniform distribution. In this case, the
distribution of the total error is no longer uniform. We find that
the SEF model exaggerates the effectiveness of certification test-
ing (see Fig. 1). This is due to the fact that the SEF model does
not consider the fact that errors in load calculation affect the load
used in certification testing. In the SEF model (Acar et al. 2006),
the certification testing is assumed to be performed with the av-
erage value of the true design load (P,), whereas in the MEF
model certification testing is performed with the calculated load
(Pa1). Therefore, one component of the error cannot lead to fail-
ure in certification testing and this reduces the effectiveness of
certification testing.

Note that the single error of the SEF model is symmetric. On
the other hand, even though the individual errors of MEF model
are symmetric, the total error has a bell-shaped distribution with a
positive, hence conservative, mean. One of the interesting differ-
ences between the SEF and MEF models is that we have a built-in
safety factor due to asymmetric error distribution. This asymme-
try is due mostly to the term 1/(1-e;) in Eq. (12). Whereas e, is
symmetrically distributed (-0.2, 0.2), 1/(1—e,) varies in (0.833,
1.25). The conservative tilt of the total error may be serendipitous
because it will partially account for designer bias response to the
building block tests used to reduce ey Tests that show that the
failure model is slightly conservative typically do not lead to
updating of the model. In contrast, tests showing even small un-
conservative bias typically lead to correction of the failure model.

In order to compare the effect of the two models on the prob-
ability of failure calculations, we match the mean and standard
deviation values of the total error distribution (MEF model) and
those of a uniform distribution (SEF model). Then, the upper and
lower bounds (Ib and ub) for the uniformly distributed error factor
can be calculated via Eq. (29), where ., and ¢,=mean and stan-
dard deviation of the total error, respectively

Ib=p,—\30,, ub=p,+\30, (29)

Using the equivalent error bounds of the SEF model given on
the right-hand side of Table 12 we calculate the probabilities of
failure before and after certification testing for the SEF model and
we compare them in Table 13 with corresponding failure prob-
abilities of the MEF model from Table 8. In addition, the com-
parison of the probability of failures after certification for the two
models is presented in Fig. 6.

The total safety factor for the SEF model is defined as

A esign g
(SF)design = (114 = (1 + e)SFL;[ (30)
0 a

Similarly, the design area for the SEF model is expressed as
Adesign=(1+6)M (31)
Using the SEF model, we repeat the calculation of the probabili-
ties of failures. The comparison of the SEF and MEF models’
probability of failure calculations are given in Table 13.

When we compare the probability of failure before certifica-
tion, the mean values of the failure probabilities are higher for the
SEF model than those for the MEF model at high errors (see
Columns 2 and 5, Table 13) due to the use of uniform distribution
for the total error factor. Comparing the failure probabilities after
certification, we notice that the MEF model leads to higher prob-

ability of failure values, and higher P /P, ratios (less effective



Table 13. Comparison of System Failure Probabilities for the SEF and
MEF Models

Table 14. Comparison of the Total Safety Factor S; Used in the Design
of Structural Parts for the SEF and MEF Models

P, S S

ko PYFF/107* PMER/1074 P ratio” PSET/107 PSFF/1074 ratio® k Sehm  (Sphm ratio® (P (Se)om ratio®
025 0.0 0.0 0 0 0 0 0.25 1.725 1728 1.002  1.725 1729 1.002
0.50  0.029 0.022 0.749 0.026 0018  0.689 0.5 1.730 1741 1.007 1730 1745 1.009
075  0.195 0.106 0.543 0.165  0.069  0.419 0.75 1.737 1764 1016  1.737 1776 1.023
1 111 0.390 0.350 1.03 0.186  0.181 1 1.747 1799 1.030  1.747 1.825  1.044
15 172 221 0129 277 0311 0.011 1.5 1.779 1901 1.069  1.779 1954 1.099

Note: The coefficient correlation between failures of structural parts is
taken as 0.5.

“P=ratio of the average failure probabilities before and after certification
testing; I_JC/ 1_’,,6.

certification testing). Recall that this is due to the fact that in the

MEF model error in load calculation is also included in the cer-

tification testing. This effect is also apparent when we compare

the total safety factor values for these two models in Table 14 and

in Fig. 7.

The single error factor after certification of failure probabilities
in Table 13 also indicates that the effect of the error bound on the
probability of failure after certification is not monotonic. One
possible explanation for this behavior is the competing effects of
error and the total safety factor. For the highest error bound, the
total safety factor is increased to 2.108 (see Table 14), which
overcomes the effect of high error on the probability of failure.

Comparing the total safety factors, S, after certification cor-
responding to the MEF and SEF models (Columns 3 and 6, Table
14), we see that the total safety factor corresponding to the SEF
model is larger, which will in turn lead to a smaller probability of
failure (see Table 13). Columns 4 and 7 of Table 14 exhibit the
expected trend of an increase in the total safety factor ratio with
increasing error bounds, reflecting more effective certification
testing.

In short, the effect of using a more detailed error model can be
summarized as follows:

1. The uniformly distributed individual error components add
up to a bell-shaped representative total error. This total error
has an asymmetric distribution and this asymmetry results in
a built-in safety factor.

2. The single error model exaggerates the effectiveness of cer-
tification testing, because it does not include the fact that
error in load calculation is also present in the certification
process. The single error model inflates the design area after
certification, thereby leading to underestimation of probabili-
ties of failures.

1.E03

1.E04

Pf after A
1.605

certification

—sr— MEF model
1.E06 ----; <
4 == SEF model

1.E07

error multiplier, k

Fig. 6. System failure probabilities for the SEF and MEF models
after certification

S p=ratio of total safety factors before and after certification.

Appendix lll. Details of the Separable Monte Carlo
Simulation Procedure

The separable MCS procedure applies when the failure condition
can be expressed as g;(x;) > g,(x,), where x; and x,=two disjoint
sets of random variables. For that case, the probability of failure
can be written as

Pr= f @1 = Fy(1)]dt (32)

where f,=probability density function of g, and F';=cumulative
distribution function of g;. Since the two sets of random variables
are disjoint, we can perform one Monte Carlo simulation with x;
to calculate F and then perform a second Monte Carlo simulation
on x, to calculate P, from Eq. (32). Note that 1-F; in Eq. (32) is
the probability of failure if g, takes the value #, and the second
Monte Carlo simulation calculates the average of this probability
over all possible values of g,.

For our problem, f,=probability density function of the pro-
totype safety factor, Ay o0/Ag, and Fy=cumulative distribution
function of the required safety factor, Ay /Ao Since fi() and
F,( ) depend on different sets of random variables, we separate
the MCS into two stages.

In the first stage, the cumulative distribution function of the
required safety factor, Ar’eq/AO, is assessed. We use 1,000,000
MCS for this purpose. It is possible to assess CDF numerically by
dividing the range of A}, /A, into a number of bins (for instance,
1,000 bins) and calculating the CDF for each bin. Then, in the
second stage, the CDF value can be obtained by interpolation.

On the other hand, we notice for our problem that the domi-
nant terms in Ar'eq/Ao are Pj,q and o, as they have much larger
variabilities than v, and v,, (see Table 3). Since P;,4 and o, follow
the lognormal distribution, it is possible to represent Ar’eq/AO with

2.0 T
—t— MEF model ]
—=— SEF model /

1.9 A

Effective

safety factor

after -

certification 1.8

17?_/

0.25 0.5 0.75 1 1.25 1.5

error multiplier, k

Fig. 7. Total safety factors for the SEF and MEF model after
certification
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Fig. 8. Comparison of numerical CDF with the assumed lognormal
for the distribution of the required safety factor

lognormal distribution. We indeed found that numerical CDF is in
good agreement with the assumed lognormal as shown in Fig. 8.

To ensure that the assumed lognormal distribution leads to an
accurate probability of failure estimations, we performed the fol-
lowing study. Five different sets of A, /A, values are obtained
from five different MCS with 1,000,000 sample size. Then, the
probabilities of failure are calculated using the same second-stage
random numbers for both numerical CDF and assumed lognormal
CDF. Table 15 shows that the probability of failure estimation
using assumed lognormal CDF is accurate to the third digit and
also has a smaller standard deviation indicating that the numerical
noise is reduced.

Fig. 9 represents flowchart of a separable MCS procedure.
Stage 1 represents the simulation of variabilities in the actual
service conditions to generate the probability of failure as shown
in Fig. 3. This probability of failure is one minus the cumulative
distribution function (CDF) of the required safety factor (Sz),eq. In
Stage 1, M=1,000,000 simulations are performed and CDF of
(Sp)req is assessed. A detailed discussion on CDF assessment for
(SF)req is given in Appendix IIL.

In Stage 2, N=1,000,000 designs are generated for N different
aircraft companies. For each new design, different random error
factors e, ep, e, €, and e, are picked from their corresponding
distributions to generate the prototype safety factor, (Sg)poro-
Then, each design is subjected to certification testing. If it passes,
we obtain the probability of failure from the distribution obtained
in Stage 1 (Fig. 3). We calculate the average and coefficient of

Table 15. Comparison of the Probability of Failure Estimations

P estimation using
numerical CDF

P estimation using
assumed lognormal CDF

(X107 (X107
MCS 1 8.961 8.855
MCS 2 8.902 8.807
MCS 3 8.901 8.825
MCS 4 8.734 8.856
MCS 5 8.859 8.816
Average 8.871 8.832
s.d. 0.085 0.023
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Simulate M different realizations of the variabilities
related to the actual service conditions —

Calculate the required safety factor, A',»equo
l STAGE -1

Generate the CDF of the
required safety factor

(see Fig, 3) —

Simulate I different error and variabilities related to
design and consructien phases

Calculate the pre-certified safety factor , Aproto/A

|

Perform certification testing
-- Reject the design in case of failure

!

Calculate probability of failure for each design —

|

Calculate the average and coefficient of variation of
probability of failure

STAGE -2

Fig. 9. Flowchart for MCS of component design and failure

variation (c.0.v.) of the failure probability over all designs and
explore the effects of error, variability, and safety measures on
these values in the “Results” section.

The separable Monte Carlo procedure reduces the computa-
tional burden greatly. For instance, if the probability of failure is
2.5X 107, a million simulations varying both errors and variabil-
ity simultaneously estimate this probability with 20% error. We
found for our problem that the use of the separable Monte Carlo
procedure requires only 20,000 simulations (10,000 simulations
for Stage 1 and 10,000 for Stage 2) for the same level of accuracy.

Appendix IV. Calculation of the System Failure
Probability Using Bivariate Normal Distribution

Bivariate normal distribution describes the joint behavior of two
random variables X, and X,, for which the marginal distributions
are normally distributed and correlated through the correlation
coefficient p. The probability density function is defined as [see
Melchers (1999)]

1 ( 1 h% + k> - 2phk
p| - - I PR

2 1-p° )(33)

le)(z(xl’xbp) = ex
21T0'X10'X2

where h=(x,—w,;)/o; and k=(x,—,)/0,; ; and o, =mean and
standard deviation of variable X,; and ., and o0,=mean and stan-
dard deviation of variable X,.

The joint cumulative distribution is defined as

2
Fy x,(x1,%2,p) = Pr[ OI(X,. < xi)]

x| (X
= f f fxlxz(uvv’P)d“dU = q)2(xlax27 p)

(34)
In addition, ®,( ) can be reduced to a single integral (Owen 1956)



B (hk) ( 1h2+k2—2phk>d
—_ €X S —
2 p . \: P 5 1- 22 Z
+ O(h)D(k) (35)

where ®=standard normal cumulative distribution function.

The two local failure events requirement of our problem is
modeled as a parallel system. Thus we aim at computing the
probability of failure of a parallel system composed of two ele-
ments having equal failure probabilities. We assume that the
limit-state functions for these two elements follow normal distri-
bution. Thus we can use the bivariate normal distribution to
calculate the system probability of failure. Since the failure prob-
abilities are identical, the reliability indices are also identical (i.e.,
h=k=p). Then Eq. (35) can further be simplified into Eq. (36).
Thus, given the probability of failure of a single element and the
correlation coefficient p, Eq. (36) can be used to calculate system
failure probability Py

Prg=Dy(- B,— B.p) = P2 L[ —1 ( p* )d
= _— = N = + — e -
FS 2 P o . -2 Xp 112 Z

(36)

where P, and B=probability of failure and the reliability index
for a single element, respectively, which are related to each other
through Eq. (37)

Pr=®(-p) (37)

Notation

The following symbols are used in this paper:

Aind> Aprotor Acer = individual, prototype, and after
certification values of load carrying area,
respectively;

Ar’eq = minimum required load carrying area for
an individual structural part to carry the
loading under actual service conditions
without failure;

A, = load carrying area if no safety measures
applied;

€,:Cp, €5, €, €,, = error factor for material failure stress,
load, stress, thickness, and width;

e — cumulative effect of various errors;

k = error multiplier;

M = number of simulations in the first stage
of MCS;

N = number of simulations in the second
stage of MCS;

Pinds Peaes Py = individual, calculated, and design load,
respectively;
[_’M, 135 = average value of probability of failure

before and after certification;

Sg. = load safety factor (FAA code requirement);

(SF)prolov (SF)cert’ (SF)req

= prototype, certified, and required total
safety factor, respectively;

tina = thickness of an individual structural part;
Iproto = average value of component thickness
built by an aircraft company prior to
certification test;

Wing = width of an individual structural part;
Wproto = average value of component width built
by an aircraft company prior to

certification test; and
o, = failure stress.
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