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Abstract
In this study, crashworthiness of a bus bumper system with a special honeycomb beam is optimized under impact loading 
using a multi-fidelity optimization approach. The crash performance of the bumper system is evaluated using two metrics: 
crush force efficiency (CFE) and specific energy absorption (SEA). An optimization with aggregated objectives is performed 
to seek for an optimum bumper design. Optimum values of the crashbox length, honeycomb wall angle and honeycomb wall 
thickness are obtained to maximize composite objective function that provides a compromise between these two metrics. 
Commercial finite element software LS-DYNA is used to compute CFE and SEA values. Multi-fidelity modeling is used to 
combine data of low-fidelity model at all training points with high-fidelity data at some randomly selected training points to 
obtain accurate response predictions in less computational time. It is found that multi-fidelity optimization can reduce the 
computational cost by 33% with only 2% smaller composite objective function value compared to the high-fidelity optimi-
zation alternative.

Keywords  Bumper system · Crashworthiness · Crush force efficiency · Energy absorption · Multi-fidelity optimization

1  Introduction

Passenger safety is one of the most essential design ele-
ments in automotive industry (in particular, for busses and 
coaches) and gains more importance day by day. To protect 
driver and co-driver for a bus or coach in case of a colli-
sion, engineers study how to build crashworthy vehicles. 

Energy-absorbing elements are among the main structures 
used in vehicle design to achieve this goal. These structures 
absorb crash energy by transforming it into strain energy, 
while they deform. Due to huge occurrence ratio of frontal 
crashes among all, bumper systems are the most important 
and most studied energy-absorbing structures in vehicle 
design.

Crashboxes are the main energy-absorbing components 
of the structure, while the bumper beam has more rigid 
structure to transmit crash energy to the crashboxes in vari-
ous crash scenarios with a less energy-absorbing capability. 
Therefore, substantial number of studies is performed on 
crashboxes with various shapes, such as cylindrical straight 
tubes [1–3], square extrusions [4–6] and multi-cell cross-
sectioned tubes [7–11]. It is found that these structures are 
efficient energy absorbers that have capability to crush and 
fold stably. Many researchers studied on tapered circular 
tubes [12–14] and tapered rectangular tubes [15–17]. They 
showed the energy absorption advantages of tapered tubes 
under axial impact. In many studies honeycomb [18–22] 
and foam [18, 23–26] filling of these thin-walled tubes are 
investigated. These studies show that honeycomb structures 
and aluminum foams are significantly improved the crash 
performance of crashboxes.
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There exist many studies on shape design of bumper 
beams to increase their crash performance [27–34]. These 
studies show that energy-absorbing capability of a bumper 
can be improved by using different shapes and optimiz-
ing them. Li et al. [35] studied optimization of foam-filled 
bumper beams and found that foam filling increases the 
energy absorption capability of a bumper. Jacob and Arunk-
umar [36] determined that foam and honeycomb incorpo-
rated bumpers absorb significantly more energy compared 
to a hollow steel bumper.

Finite element (FE) simulations are crucial design tools 
for engineers to design crashworthy vehicles. In order to 
obtain realistic results, high degrees of fidelity and robust 
simulations must be performed. However, this ability to 
design competitive products comes with a cost. The higher 
the fidelity of the FE model is, the higher the computational 
cost. A full FE crash simulation of a vehicle takes hours 
to complete. Also, many simulations must be performed in 
order to optimize a multi-variable design depending on the 
number of variables and the expected precision. Combina-
tion of these two may induce days of FE analysis and eventu-
ally leads to increased design time and cost.

However, there is an optimization concept called multi-
fidelity modeling that gains popularity as a remedy for the 
computational burden [37–44]. This method essentially 
combines different fidelity FE model results to obtain high 
accuracy with significantly improved computational time. 
After creating a low-fidelity model complementary to the 
high-fidelity model, few high-fidelity analyses are performed 
at some design points and a function is used to calculate the 
offset between high-fidelity and low-fidelity results. Then, 
optimization runs are performed on low-fidelity model and 
predicted high-fidelity results are calculated using the offset 
function. This method helps to decrease computational cost 
by allowing designers to perform all optimization analyses 
using computationally inexpensive low-fidelity model with 
few costly high-fidelity simulations instead of running all 
simulations on high-fidelity FE model. It should be noted 
that the multi-fidelity approach used in this study is simi-
lar to the space mapping approach, which has been used in 
various applications including crashworthiness optimization 
[45], friction stir welding [46], fluid–structure interaction 
[47], airfoil shape optimization [48] and others [49, 50].

In this study, the effects of various geometrical parameters 
such as length of the crashboxes, wall angle and wall thick-
ness of honeycomb on crash performance of a honeycomb 
filled bumper are investigated. A commercial finite element 
(FE) analysis software LS-DYNA [51] is used to simulate 
crash behavior of the bumper system under impact condi-
tions of ECE R-29 tests [52]. The constructed finite element 
model is validated by using experimental results available in 
the literature. The optimum values of geometrical variables 

are obtained through multi-objective optimization by maxi-
mizing a composite objective function that provides a com-
promised value between crush force efficiency and specific 
energy absorption.

This paper is structured as follows. The next section 
provides the problem description for the optimization of 
honeycomb structure filled bumper system. Section 2 pre-
sents the details of finite element model and its validation. 
Section 4 explains multi-fidelity optimization concept. Sec-
tion 5 describes construction of surrogate models and their 
accuracies. Section 6 discusses high-fidelity, low-fidelity and 
multi-fidelity optimization results. The paper is concluded 
with some remarks given in Sect. 7.

2 � The bumper system

Description of the problem of interest, the crash metrics 
used and the formulation of the optimization problem are 
explained in the following sub-sections.

2.1 � Problem description

The original study of this paper stems from the occupant 
safety systems for busses. The existing safety regulation for 
frontal impact for trucks is ECE R-29, and it is adapted for 
safety of driver and co-driver of busses [53]. The pendulum 
test according to ECE R-29 regulation is shown in Fig. 1. 
A bumper system having honeycomb structures inside the 
bumper beam is analyzed in this study. The generic model 
of the bumper system is shown in Fig. 2.

All designs have the same bumper beam with length 
of 1112 mm, height of 129 mm, width of 65 mm and wall 
thickness of 1 mm. Two crashboxes in the model have the 
following dimensions, height of 120 mm, width of 80 mm, 
wall thickness of 1.6 mm and length of L (see Fig. 3).

Bumper beam is filled with two pieces of honeycomb 
structures in front of each crashbox with length of 200 mm, 
height of 128 mm, width of 64 mm, cell edge length of 20 
mm, angle of cell walls � and wall thickness of honeycomb 
t (see Fig. 4).

Examples of four different honeycomb structures with dif-
ferent cell wall angle used in FE models are shown in Fig. 5. 
In crash performance optimization for the bumper, three 
dimensions are chosen as design variables: (i) the length of 
the crashboxes L, (ii) the angle of cell walls � and (iii) the 
wall thickness of honeycomb t.

For the crash performance evaluation of the bumper 
system, the following design problem is considered. The 
bumper system is assembled at the front end of a generic 
heavy vehicle chassis, while the chassis is attached to a stiff 
fixture. Then, the whole assembly is placed in front of a rigid 
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pendulum. Bumper system is impacted with the 1500-kg 
pendulum that has initial kinetic energy of 45 kJ in accord-
ance with United Nations’ ECE R-29 safety requirements for 
heavy commercial vehicles [52].

2.2 � Crash performance metrics

Total energy ( Et ) absorbed by the structure is defined as 
work done by the crushing force P over the deformation dis-
tance d (the maximum deformation before elastic rebound).

Fig. 1   Pendulum test according 
to ECE R-29 regulation

Fig. 2   Bumper system

Fig. 3   Dimensions of the 
bumper system
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Mean crush force (MCF) for a deformation is defined as the 
total energy absorbed by the structure divided by the defor-
mation distance, d as:

Crush force efficiency (CFE) is defined as the ratio of the 
mean crush force (MCF) to the peak crush force (PCF) to 
evaluate the efficiency of an energy absorber.

where we used SAE-1000 filter in force–displacement curve 
while determining the PCF.

Specific energy absorption (SEA) is calculated as the 
total energy absorbed ( Et ) divided by the mass of the 
absorber structure (m), and it is calculated as:

(1)Et =

d

∫
0

Pdx

(2)MCF =
Et

d

(3)CFE =
MCF

PCF

2.3 � Formulation of the optimization problem

In this study, crashworthiness of the bumper system is evalu-
ated by using CFE and SEA, so that the bumper system is 
designed to maximize these two metrics. As noted earlier, 
three design variables are chosen: (1) length of the crash-
boxes, L, (2) wall angle of honeycomb cells, � and (3) wall 
thickness of honeycomb cells, t. Thus, the optimization 
problem can be stated as:

Here f is a composite objective function that can provide a 
compromise between SEA and CFE. The composite objec-
tive function can be defined as:

(4)SEA =
Et

m

(5)

Min −f

S.t. 80 mm ≤ L ≤ 160 mm

30◦ ≤ � ≤ 75◦

0.25 mm ≤ t ≤ 0.75 mm

Fig. 4   Dimensions of the hon-
eycomb structures

Fig. 5   Honeycomb with various 
design with different �
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where w is the weight factor to determine the importance 
of the metrics relative to each other. For this study weight 
factor is selected as 0.5 because both metrics are decided to 
be equally important. CFE0 and SEA0 are the normalization 
constants for CFE and SEA. Normalization constants are 
taken as maximum values of CFE and SEA at training points 
(see Sect. 5.2).

The optimization problem defined above is solved by 
using “ga” built-in function of MATLAB that uses genetic 
algorithm [54]. The population size is taken as 100, the elite 
count is taken 6, the crossover fraction is taken 80%, the 
maximum number of generations is taken 300, and remain-
ing algorithm parameters are taken the default values in 
MATLAB.

3 � Finite element modeling

Finite element method is used in this study to calculate crash 
behavior of the bumper system. In this section finite ele-
ment (FE) model and validation of the FE model will be 
explained.

3.1 � Validation of the FE Model of the Honeycomb 
Structure

The validation study is based on the experimental study by 
Zhang et al. [55], where a honeycomb structure is crushed 
with a rigid wall. The FE model prepared in this study is 
shown in Fig. 6 next to the experimental model of Zhang 
et al. [55].

Before the validation runs of the FE model, a mesh con-
vergence study is performed on the base model. Mesh con-
vergence decision is based on the mean crush force value. 
MCF, CFE and SEA comparison graphs of FE models 

(6)f = w
CFE

CFE0

+ (1 − w)
SEA

SEA0

having 0.5 mm, 1 mm, 1.5 mm, 1.75 mm, 2 mm and 2.5 
mm mesh sizes are shown in Fig. 7. It is seen that the MCF, 
CFE and SEA values settle as mesh size decreases. From 
Fig. 7, the mesh size is determined as 0.5 mm to be used for 
all validation runs.

In this study, 3 × 3 and 5 × 5 honeycomb cell configura-
tions are used for honeycombs as given in Zhang et al. [55]. 
For both 3 × 3 and 5 × 5 cell configurations, the height of 
honeycombs is taken as 100mm, honeycomb wall thickness 
is taken as 0.075 mm, and the central angle � is taken as 
120◦ . Wall thickness of the honeycombs is doubled where 
two metal sheets are glued together because of the produc-
tion method of honeycombs as shown in Fig. 8.

For the contact algorithm, ”AUTOMATIC_SINGLE_
SURFACE_CONTACT” is defined between the honeycomb 
and the fixed wall, ”AUTOMATIC_SURFACE _TO_SUR-
FACE_CONTACT” between the honeycomb structure and 
the moving wall as shown in Fig. 6. Static and dynamic 
friction coefficients are taken as 0.3 and 0.2, respectively. 
Belytschko–Tsay 4-noded shell element type is used as ele-
ment type. To simulate AA3003 H18 aluminum foil mate-
rial in the reference experimental study, ”MAT_24_PIECE-
WISE_LINEAR_PLASTIC” material definition is used. 
This material model is widely used in crash simulations 
related to automotive industry [13, 51].

As a result of this validation study, load–displacement 
graphs for 3 × 3 and 5 × 5 cell configurations shown in Fig. 9 
are obtained. Along with the load–displacement curves, 
energy absorption values of honeycomb structures are also 
calculated and compared with the reference experimental 
results. Note that Figure 7 of Zhang et al. [55] is digitized 
by using GetData Graph Digitizer, and the corresponding 
force and displacement values are extracted. Then, the area 
under force–displacement curve is obtained by using Orig-
inPro graphical software to calculate the energy absorp-
tion. Energy absorption of FE analyses and experimental 
results are tabulated in Table 1. Comparison of experimental 
and numerical collapsed models with 3 × 3 and 5 × 5 cell 

Fig. 6    Experimental setup of 
Zhang et al. [55] on the left, 
and FE validation model on the 
right



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:493

1 3

493  Page 6 of 17

configurations is shown in Fig. 10. It is seen that the FE 
results are in good agreement with the experimental results 
of Zhang et al. [55].

3.2 � Description of the FE model

The response of bumper systems under impact loading is 
predicted by using nonlinear, explicit finite element soft-
ware LS-DYNA [51]. The finite element model is pre-
pared as shown in Fig. 11. Bumper system is attached to a 
generic heavy vehicle chassis (see Sect. 2.1 for the detailed 
explanation of the bumper system). For the contact algo-
rithm ”TIED_SURFACE_TO_SURFACE_CONTACT” is 
defined between endplates of crashboxes and chassis. Then, 
this assembly is attached to a fixture that is designed to hold 
the position of attached test sample and withstand crush-
ing force of the pendulum. Again, ”TIED_SURFACE_TO_
SURFACE _CONTACT” is defined between endplates of 
chassis and the front surface of fixture. Next, the whole unit 
is placed in front of a 1500-kg pendulum modeled accord-
ing to ECE R-29 test standards [52]. Bottom surfaces of 
the fixture that touches the ground are fixed to maintain the 
position of the assembly during impact. All degrees of free-
dom of nodes that form the axis of pendulum are also fixed 
except rotation around y-axis, which allows pendulum to 
rotate (see Fig. 11). ”AUTOMATIC_SINGLE_SURFACE_
CONTACT” is defined as containing all surfaces forming 
bumper system to prevent interference between the surfaces. 
For the contact algorithm ”AUTOMATIC_SURFACE_TO_
SURFACE_CONTACT” is defined between pendulum and 
bumper system. Static and dynamic friction coefficients are 
taken as 0.3 and 0.2, respectively. The reader is referred 
to [56] for the details of the finite element analysis of the 
pendulum test setup.

Belytschko–Tsay 4-noded shell element type is used to 
generate elements. Materials of parts are determined as fol-
lows: ST44 steel for the fixture, DP1300 steel for the bumper 
beam, DP600 steel for the crashboxes, DP780 steel for the 
chassis and AA303 H18 aluminum for the honeycomb struc-
tures. To simulate these materials in FE model, ”MAT_24_
PIECEWISE_LINEAR_ PLASTIC” material definition is 
used. ”MAT_20_RIGID” material definition is used for the 
pendulum.

Crash energy of the pendulum is provided via defining 
an initial angular velocity and inertia around y-axis. Inertia 
of the pendulum around y-axis is taken as Iyy = 18.38 × 106 
t ×mm2 , and angular velocity around y-axis is taken as 
� = 2.21 rad/s to provide 45 kJ crash energy. These values 
are taken from a previous study performed by Guler et al. 
[56]. Note that the crash energy requirement of 45 kJ was 
increased to 55 kJ in the latest version of ECE R-29.

Two-step mesh convergence study is performed to deter-
mine the mesh sizes of the bumper system components. In 
the first step, FE models having 3, 4, 5 and 6 mm mesh size 
for the bumper beam and crashboxes are analyzed. Mean 
crush force comparison of FE models is shown in Fig. 12. 
It is seen that the mean crush force value settles as the mesh 

Fig. 7   Mesh convergence study for the FE model of the honeycomb 
structure
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size decreases. From Fig. 12, the mesh size is determined as 
4 mm for bumper beam and crashboxes.

In the second step, FE models having 2.5, 3.0, 3.5, 4.0 
and 5.0 mm mesh size for honeycomb structures are ana-
lyzed. Mean crush force comparison of FE models is shown 
in Fig. 13. Using the similar approach as before, the mesh 

size of honeycomb structures is determined as 3 mm (see 
Fig. 13).

After determination of bumper beam, crashbox and hon-
eycomb mesh sizes via a second mesh convergence study, 
the mesh sizes of the remaining parts are selected by intui-
tion as they are subjected to much less deformation than 
bumper system. As shown in Fig. 14, mesh size of the 
chassis and the fixture is determined as 4 mm and 10 mm, 
respectively. Therefore, a base FE model is fully constructed 
to simulate crash performance of designed bumper system.

As shown in Fig. 15, two different finite element (FE) 
models with different fidelities are used in this study. Pre-
viously constructed FE model is the complete model which 
consist of bumper system (that includes bumper beam, 
two crashboxes and two pieces of honeycomb structures), 

Fig. 8   Contacts and double-
layer surfaces of FE validation 
model

Table 1   Energy absorption comparison of FE analyses and experi-
mental results of Zhang et al. [55]

Cell FE results of Experimental Error
Configuration Validation study Results [55] (%)

3 × 3 40.11 J 39.46 J 1.6
5 × 5 104.0 J 99.12 J 4.7

Fig. 9    3 × 3 cell configuration (on the left), 5 × 5 cell configuration (on the right). Load–displacement graph comparisons of FE analyses and 
experimental results of Zhang et al. [55]
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vehicle front rails and fixture that places the structure in 
front of the rigid pendulum. This complete model is named 
as high-fidelity (HF) model. The surfaces of fixture that 
touch to the ground are fixed in this FE model. A low-
fidelity FE model is derived from the HF model. Fixture 
and heavy vehicle chassis are subtracted from the HF 
model to obtain low-fidelity (LF) model, which consist of 
only the bumper system. The bumper system is fixed from 
the end plates of the crashboxes. ”TIED_SURFACE_TO_ 

SURFACE_CONTACT” is deleted as corresponding parts 
do not exist, while all other FE model definitions remained 
identical to HF model. The comparison between the LF 
and HF models based on the force–displacement behavior 
for the baseline model is shown in Fig. 16. One FE simula-
tion takes approximately 14 h for the HF model and 2.5 h 
for the LF model, with two Intel Xenon 3.1 GHz proces-
sors and 64 GB RAM.

Fig. 10   Comparison of a 3 × 3 , 
and b 5 × 5 cell configuration 
experimental result of Zhang 
et al. [55] and numerical results

Fig. 11   Finite element setup
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4 � Multi‑fidelity optimization concept

High-fidelity models simulate a crash scenario closest to 
the physical case in a finite element analysis. However, they 
are computationally expensive models to run especially 
where many analyses must be done (e.g., for an optimiza-
tion study). Low-fidelity models decrease the computation 
time while sacrificing accuracy. To provide a remedy for this 
problem, multi-fidelity models can be used. Multi-fidelity 
optimization combines low-fidelity models with few high-
fidelity model results to obtain an accurate response predic-
tion while using computationally inexpensive low-fidelity 
models for optimization runs. In this paper, linear regression 
multi-fidelity surrogates are used for multi-fidelity optimiza-
tion as in Zhang et al. [44]. In linear regression multi-fidelity Fig. 12   Mean crush force comparison for different mesh sizes of 

bumper beam and crashboxes

Fig. 13   Mean crush force com-
parison for different mesh sizes 
of honeycomb structures

Fig. 14   Mesh sizes of the high-
fidelity finite element model



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:493

1 3

493  Page 10 of 17

surrogate approach, the low-fidelity finite element response 
is used as a base function with a scale factor as the regres-
sion coefficient. High-fidelity response behavior is expressed 
as a linear combination of low-fidelity response and a pol-
ynomial discrepancy function. Prediction of the response 
through multi-fidelity surrogate approach is expressed as:

where � is the low-fidelity scale factor, and �(x) is the dis-
crepancy function. Because of limited high-fidelity samples, 
discrepancy function often determined as a constant or a 
low-order polynomial function. In our study, we used a first-
order discrepancy function as

where xi represents the input variables, ci is the unknown 
coefficients of the variables, and p is the number of vari-
ables. In order to find the scale factor � and coefficients of 
discrepancy function �(x) , least square estimation is used. 
In order to apply least-square method, errors between multi-
fidelity surrogates and high-fidelity samples are calculated 
as

where yH represents the responses of the high-fidelity model 
computed at the high-fidelity sampling points xH . In vector 
form, these errors of high-fidelity samples can be written as

where

(7)f̂MF(x) = 𝜌fL(x) + 𝛿(x)

(8)�(x) = c0 +

p∑
i=1

cixi

(9)e(i) = yH
(i) − f̂MF(xH

(i))

(10)e = Y − XB

Fig. 15   a High-fidelity model, b 
low-fidelity model

Fig. 16   Comparison of the low-fidelity (LF) and high-fidelity (HF) 
models based on the force–displacement behavior for the baseline 
model
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where nH is the number of high-fidelity samples. Finally, the 
unknown coefficients of discrepancy function and the scale 
factor are obtained by minimizing the square sum of errors. 
Unknown coefficients can be expressed as

After the calculation of unknown coefficients, multi-fidel-
ity surrogate model for prediction of high-fidelity model 
response is generated as given in Eq. (7). In the process 
discrepancy function and scale factor are calculated using 
common datasets of high- and low-fidelity analyses, while 
low-fidelity surrogate model is constructed using whole 
dataset of low-fidelity analyses. The multi-fidelity model is 
generated using low-fidelity model data and high-fidelity 
samples in order to predict high-fidelity model response in 
design space.

5 � Construction of surrogate models

5.1 � Design of experiments

Selecting design of experiment (DoE) type is the first step 
to form a surrogate model. There are two main groups of 
DoE [13]: classic designs and space filling designs. Full fac-
torial design (FFD), central composite design (CCD) and 
Box–Behnken design are the most common classic DoE 
designs. Latin hypercube sampling (LHS) designs, maxi-
mum entropy designs, orthogonal arrays, minimax and max-
imin designs are the most commonly used space filling DoE 
designs. In this study LHS is used to generate the training 
points. Detailed explanation of latin hypercube sampling can 
be found in Acar et al. [13].

Using this DoE technique, 21 training points are gener-
ated within the bounds of variables (see Table 2). Generated 
points are listed in Table 3. Then, FE simulations of both FE 
models are performed to obtain CFE and SEA responses of 
FE models at the training points (see Table 4).

(11)

X =

⎡
⎢⎢⎣

fL(x
(1)

H
) c1x

(1)

H
⋯ cpx

(1)

H

⋮ ⋮ ⋱ ⋮

fL(x
(nH)

H
) c1x

(nH)

H
⋯ cpx

(nH)

H

⎤
⎥⎥⎦
,

Y =

⎡
⎢⎢⎣

yH
(1)

⋮

yH
(nH)

⎤
⎥⎥⎦
,

B =

⎡⎢⎢⎢⎣

�

L

�

t

⎤⎥⎥⎥⎦

(12)B = (XTX)
−1
XTY

After realization of the FE simulations at the training 
points, CFE and SEA responses of the high-fidelity model 
and the low-fidelity model are calculated. These CFE and 
SEA calculations are tabulated in Table 4. Using corre-
sponding CFE of SEA response of FE models, total of four 
surrogate models are constructed for HF and LF models.

5.2 � Accuracy of surrogate models

Response surface models are used to predict actual response 
of FE model at any point in the design space. Quadratic 
response surface models are used in this study. Quadratic 
response surface model can be expressed as [13]

(13)ŷ(x) = b0 +

L∑
i=1

bixi +

L∑
i=1

biixi
2 +

L−1∑
i=1

L∑
j=1

bijxixj

Table 2   Lower and upper bounds of the design variables

L (mm) � (deg) t (mm)

Lower bound 80 30 0.25
Upper bound 160 75 0.75

Table 3   Design of experiments

DOE# L (mm) � (deg) t (mm)

1 115.8 30.00 0.5000
2 109.5 39.47 0.5132
3 130.5 65.53 0.3026
4 147.4 72.63 0.4342
5 92.6 30.00 0.5921
6 105.3 63.16 0.5395
7 160.0 51.32 0.2763
8 134.7 70.26 0.6184
9 126.3 53.68 0.4605
10 96.8 75.00 0.3289
11 88.4 34.74 0.3553
12 101.1 48.95 0.6711
13 117.9 32.37 0.6974
14 138.9 37.11 0.3816
15 113.7 41.84 0.2500
16 151.6 46.58 0.4868
17 155.8 60.79 0.5658
18 84.2 58.42 0.4079
19 143.2 44.21 0.7237
20 122.1 56.05 0.7500
21 80.0 67.89 0.6447
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where ŷ(x) is the response prediction, L is the size of input 
vector x and b0 , bi , bii , bij are the response surface parameters 
to be determined using linear regression.

In order to construct multi-fidelity surrogate models, all 
data of LF model and data of HF model at randomly selected 
10 training points are used (training points number 1, 4, 5, 6, 
7, 10, 11, 13, 14, 18 given in Tables 3 and 4 ). After determina-
tion of low-fidelity scale factor ( � ) and the discrepancy func-
tion ( �(x)), multi-fidelity surrogate model is constructed as it 
is explained in Sect. 4. Therefore, along with the multi-fidelity 
surrogates, a total of six surrogate models are constructed in 
order to predict SEA and CFE responses.

Accuracy of surrogate models is evaluated using the root-
mean-square error, RMSE, which can be calculated from:

where yi is the actual response and ŷi is the surface model 
response at the ith training point. RMSE value can be nor-
malized with the mean value (see Eq. 15) or the range (see 
Eq. 16) of the actual responses at the training points as 
follows:

(14)RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)
2

where ymax and ymin are the maximum and minimum values 
of the responses evaluated at the training points, respectively.

Table 5 provides the RMSE and RMSEnor values for the 
surrogate models constructed for the CFE and SEA predic-
tion. For the surrogate models, it is seen that the RMSEnor1 
values range between 4.9 and 7.6%, RMSEnor2 values range 
between 12.7 and 17.6%, and these error values are accept-
able for response prediction of a crash as a highly nonlinear 
phenomenon. It is also noticed that the surrogate models 
constructed for SEA prediction are more accurate than the 
ones constructed for CFE prediction.

6 � Optimization results

The constructed surrogate models are used for optimiza-
tion of the bumper system to achieve the maximum value 
of composite objective function (f) in Eq. 6. Finite element 

(15)RMSEnor1 =
RMSE∑N

k=1
yk

(16)RMSEnor2 =
RMSE

ymax − ymin

Table 4   CFE and SEA 
responses of finite element 
models at training points

High fidelity Low fidelity

DOE# CFE SEA f CFE SEA f

(kJ/kg) (kJ/kg) f

1 0.7231 6.207 0.8712 0.7288 6.865 0.8996
2 0.7031 6.467 0.8756 0.6947 6.826 0.8766
3 0.5937 5.909 0.7690 0.5703 5.998 0.7440
4 0.6929 5.693 0.8180 0.6844 6.112 0.8234
5 0.6017 5.907 0.7739 0.6698 7.532 0.9050
6 0.7707 6.781 0.9395 0.7197 6.689 0.8826
7 0.5160 5.133 0.6681 0.5429 5.579 0.6999
8 0.7232 5.765 0.8421 0.7191 5.974 0.8365
9 0.6904 6.355 0.8601 0.6980 6.959 0.8862
10 0.6101 6.584 0.8240 0.6495 6.404 0.8200
11 0.5006 6.395 0.7416 0.5586 6.930 0.7962
12 0.6869 5.757 0.8184 0.6615 6.796 0.8527
13 0.7775 6.472 0.9234 0.7533 6.416 0.8864
14 0.6139 5.771 0.7727 0.6166 6.318 0.7937
15 0.5268 5.771 0.7172 0.5543 6.079 0.7391
16 0.6272 5.661 0.7740 0.6683 6.255 0.8224
17 0.7834 5.541 0.8657 0.7913 5.573 0.8565
18 0.6573 7.464 0.9122 0.5533 7.817 0.8496
19 0.7053 5.859 0.8369 0.6775 5.934 0.8077
20 0.6538 6.318 0.8343 0.6201 6.768 0.8247
21 0.6665 7.575 0.9254 0.5475 7.569 0.8301
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analyses are performed at these optimum points, and the 
predicted values of CFE and SEA are compared with the 
FEA results. The percent error between the predicted values 
and FEA responses is calculated from

6.1 � High‑fidelity optimization results

Using surrogate models for CFE and SEA response predic-
tion of high-fidelity model, optimum values of the design 
variables are found (Table 6, columns 2, 3 and 4). CFE and 
SEA responses of the optimum design are predicted using 
surrogate models (Table 6, columns 5 and 6). Predicted val-
ues of composite objective function f are calculated using 
predicted response values (Table 6, column 7). Then, the 
actual CFE and SEA response values are calculated using 
finite element simulations (Table 6, columns 8 and 9). Next, 
the actual value of f is calculated using actual response val-
ues (Table 6, column 10). Finally, the error in CFE and 
SEA predictions is calculated using Eqs. (17) and (18) (see 
Table 6, column 11 and 12).

High-fidelity optimization study yields an optimum 
design that has actual f value of 0.9399. Also CFE and SEA 

(17)ErrCFE =
|CFEpred − CFEfea|

CFEfea

× 100

(18)ErrSEA =
|SEApred − SEAfea|

SEAfea

× 100

responses of that design are predicted with an error of 2.4% 
and 3.3%. In order to obtain these results for high-fidelity 
model, 21 finite element analyses are performed at the train-
ing points and a verification run of the optimum point is 
performed. Therefore, considering that each high-fidelity 
analysis takes 14 h of computation time, the total cost of 
high-fidelity optimization is 22 × 14 = 308 h of computation 
time. Note that the computational cost of surrogate model 
construction and optimization is far smaller than that of a 
single FE run.

6.2 � Low‑fidelity optimization results

Optimization of low-fidelity model is performed similar to 
high-fidelity optimization. Optimum values of the design 
variables (columns 2, 3 and 4), predicted values of CFE, 
SEA and f (columns 5, 6 and 7), finite element response 
values of CFE, SEA and f (columns 8, 9 and 10) and errors 
of CFE and SEA are given in the first row of Table 7 for the 
low-fidelity model.

Low-fidelity optimization yields on optimum design that 
has f value of 0.9165, and prediction errors of CFE and SEA 
are 4.0% and 2.8%, respectively. The composite objective 
function values of the high-fidelity model and low-fidelity 
model are very close to each other. Even though these pre-
dicted values are very close to each other for different opti-
mum designs, this result is misleading because the actual 
performance of different designs should be evaluated by 
using the high-fidelity model.

Table 5   Accuracy of surrogate 
models

RMSE RMSE
nor1

(%) RMSE
nor2

(%)

Surrogate model for CFE prediction of HF 0.0499 7.6 17.6
Surrogate model for SEA prediction of HF 0.3538 5.7 14.5
Surrogate model for CFE prediction of LF 0.0417 6.4 16.8
Surrogate model for SEA prediction of LF 0.3214 4.9 14.3
Surrogate model for CFE prediction of MF 0.0413 6.4 14.6
Surrogate model for SEA prediction of MF 0.3105 5.0 12.7

Table 6   High-fidelity 
optimization results

L � t CFE SEA f CFE SEA f Error Error
mm deg mm pred. pred. pred. FEA FEA FEA CFE SEA

HF 80.00 75.0 0.52 0.6867 7.679 0.9451 0.7036 7.436 0.9399 2.4 3.3

Table 7   Low-fidelity 
optimization results

L � t CFE SEA f CFE SEA f Error Error
mm deg mm pred. pred. pred. FEA FEA FEA CFE SEA

LF 105.3 30.0 0.58 0.7170 7.015 0.9016 0.6894 7.219 0.9165 4.0 2.8
HF (LF) 105.3 30.0 0.58 0.7170 7.015 0.9016 0.7573 5.516 0.8475 5.3 27.2
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The second row of Table  7 shows the high-fidelity 
response values of optimum point obtained from low-fidelity 
optimization. The actual f value of the LF optimum is com-
puted to be 0.8475 (smaller than its LF model predicted 
value of 0.9165). Also, the errors in CFE and SEA predic-
tions are computed as 5.3% and 27.2%, respectively. Note 
that the LF and HF models present a good correlation in 
terms of the force–displacement behavior for the baseline 
model as shown earlier in Fig. 16. However, for the LF 
optimum design, the behavior of the low-fidelity and high-
fidelity models differed a lot in terms of SEA. As the design 
space of the optimization problem is wide, this inconsistency 
is probable.

Computational cost of low-fidelity optimization is 
much smaller than that of the high-fidelity optimization. 
In addition to 21 training, one low-fidelity verification is 
performed. Considering 2.5 h of computation time for LF 
run 22 × 2.5 = 55 h of computational time is spent for LF 
optimization.

6.3 � Multi‑fidelity optimization results

In the following, the multi-fidelity surrogate model for 
prediction of high-fidelity response generated using the 
linear regression multi-fidelity approach is discussed as 
explained in Sect. 4. Responses of LF model at 21 train-
ing points and response of HF model at randomly selected 
10 training points (number 1, 4, 5, 6, 7, 10, 11, 13, 14, 18 
shown in Table 3 and Table 4) are used. After generation of 
multi-fidelity model, the same process as high-fidelity opti-
mization is followed. Optimum values of design variables 
(columns 2, 3 and 4), predicted values of CFE, SEA and f 
(columns 5, 6 and 7), finite element response values of CFE, 
SEA and f (columns 8, 9 and 10) and errors of CFE and SEA 
are given in Table 8 for the multi-fidelity optimum.

The value of composite objective function f is calculated 
as 0.9238 for high-fidelity FE response of multi-fidelity opti-
mum design. CFE and SEA responses of that design are pre-
dicted with an error of 4.5% and 3.1%, respectively. Crash 
behavior of multi-fidelity optimum bumper design is shown 
in Fig. 17. Input data to generate multi-fidelity surrogate 
model required 21 LF model and 10 HF model analyses. In 
addition, verification of optimum design required an addi-
tional HF analysis. Therefore, 21 × 2.5 + 11 × 14 = 206.5 h 
of computation time is spent.

6.4 � Comparison of optimization results

Comparing the optimum designs obtained from all FE mod-
els, it is seen that the optimum design obtained by using 
different levels of fidelity is quite different. It is seen that 
the length of crashboxes (L) tends to take values close to 
the lower limit for the HF optimum and takes higher value 
for the LF optimum. The multi-fidelity optimum value of 
L is the same as that of the LF model. The wall angle of 
honeycombs ( � ) takes its upper limit value for HF and MF 
models, and for the LF model, it takes its lower limit. The 
wall thickness of honeycombs (t) takes values close to mid-
dle of design range for HF and LF optimum designs, but the 
value of t is close to upper limit for the MF optimum design.

Comparing the composite objective function values pre-
sented in Tables 6, 7 and 8, it is seen that optimization with 
HF model provides the optimum design with better perfor-
mance and smaller error compared to the optimum design 
obtained through multi-fidelity and low-fidelity models. The 
composite objective function value of the optimum design 
obtained through HF model (f=0.9399) is 11% larger than 
that of the optimum design obtained through LF model 
(f=0.8475), and only 2% larger than that of the optimum 
design obtained through MF model (f=0.9238).

Force–displacement responses of all three optimum 
points obtained through high-fidelity FEA model are shown 
in Fig. 18. It is seen that the force value of HF optimum 
design is higher than the LF optimum design at any displace-
ment. Therefore, difference between total energy absorption 
of HF optimum design and LF optimum design is easily 
observable at the graph. The behavior of the MF optimum 
design is different compared to the other two. Average force 
value of MF optimum design calculated from numerical data 
lies between the LF and HF optimum designs.

Finally, we provide a comparison in terms of computa-
tional cost. To complete 21 finite element simulations for 
training points and the verification run, 308 h of computa-
tion time is spent for high-fidelity optimization. Similarly, 
22 low-fidelity FE simulations are completed in 55 h for 
the optimization with LF model. Finally, for 21 LF model 
analyses and 11 HF model analyses including the verifica-
tion run required for multi-fidelity optimization, 206.5 h of 
computation time is spent.

Table 8   Multi-fidelity 
optimization results

L � t CFE SEA f CFE SEA f Error Error
mm deg mm pred. pred. pred. FEA FEA FEA CFE SEA

MF 105.3 75.0 0.72 0.7846 6.945 0.9592 0.7507 6.738 0.9238 4.5 3.1
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7 � Concluding remarks

In this study, surrogate-based multi-fidelity design optimiza-
tion of a honeycomb filled bumper system was performed to 
achieve maximum crash force efficiency and specific energy 
absorption. Two different fidelity finite element models (HF 
and LF) were considered. The length of the crashboxes, the 
wall angle of honeycomb structures and the wall thickness of 
honeycomb structures were taken as design variables. From 
the results obtained in this study, the following conclusions 
were drawn:

–	 Accuracy of response surfaces was evaluated using 
RMSE, normalized with the mean ( RMSEnor1 ) and also 
with the range ( RMSEnor2 ) of the responses evaluated at 
the training points. It was seen that RMSEnor1 changed 
between 4.9 and 7.6%, RMSEnor2 changed between 12.7 
and 17.6%, and these error values were found to be 
acceptable for crash (a nonlinear phenomenon).

Fig. 17   Crash behavior of the 
multi-fidelity optimum bumper 
system

Fig. 18   Force–displacement responses of the high-fidelity model at 
optimum points
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–	 It was also noticed that the surrogate models constructed 
for SEA prediction are more accurate than the ones con-
structed for CFE prediction.

–	 The optimum designs obtained by using different models 
were quite different. Length (L) of MF optimum model 
was the same as for the LF model, and cell wall angle 
( � ) value was the same as for the HF model. Honeycomb 
wall thickness (t) values of the HF and LF optimum 
designs were close to each other, whereas it was close to 
the upper limit for MF optimum design.

–	 Optimization with HF model provided the optimum 
design with better performance and smaller error com-
pared to the optimum design obtained with low-fidelity 
and multi-fidelity optimizations. The composite objective 
function value of the optimum design obtained through 
HF model was 2% larger than that of the optimum design 
obtained through multi-fidelity optimization and 11% 
larger than that of the optimum design obtained through 
LF model.

–	 Computational time spent to complete high-fidelity opti-
mization was 308 h, whereas it was 206.5 h for multi-
fidelity optimization (33% reduction) and 55 h for LF 
optimization (82% reduction). Multi-fidelity optimization 
provides a close result to high-fidelity optimization with 
33% saving from computation cost.

Lastly, some limitations of the current study can be listed 
as follows:

–	 In this study, the HF samples were selected from the pool 
of LF samples in a random manner. It should be noted 
that with different set of HF samples the results would 
be different, and finding a judicious selection procedure 
of the HF samples is subject of a future study.

–	 In this study, the peak force values were not penalized in 
optimization. It should be noted that a high peak force 
relates to high accelerations, which should be avoided in 
a crashworthy design. This exercise is subject of a future 
study.
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