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Design optimization of an automobile
torque arm using global and successive
surrogate modeling approaches
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Abstract
The design of lightweight automotive structures has become a prevalent practice in the automotive industry. This study
focuses on design optimization of an automobile torque arm subjected to cyclic loading. Starting from an available initial
design, the shape of the torque arm is optimized for minimum weight such that the fatigue life of the torque arm does
not fall below that of the initial design and the maximum von Mises stress developed in the torque arm does not exceed
that of the initial design. The stresses are computed using ANSYS finite element software, and the fatigue life is calcu-
lated using the Smith–Watson–Topper model. Surrogate-based optimization approach is used to reduce the computa-
tional cost. Optimization results based on global surrogate modeling and successive surrogate modeling approaches are
compared. It is found that the successive surrogate modeling approach results in 28.7% weight reduction for the torque
arm, whereas the global surrogate modeling approach results in 25.7% weight saving for the torque arm.
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Introduction

Structural performance evaluation of automobile struc-
tures is usually performed through finite element analy-
ses. Venkataraman and Haftka1 noted that despite the
remarkable growth of computer processing power,
capacity, and storage, the finite element models with
acceptable accuracy still require substantial central pro-
cessing unit (CPU) time. For instance, Fang et al.2

noted that it takes about 15–20 h of CPU time to run
one automobile crash simulation, even with a high level
of computational power. Therefore, the optimization
studies that require repeated analyses become computa-
tionally intractable. To alleviate the computational cost
of optimization, surrogate models that can approxi-
mate the results of simulation models can be used.
This approach is often called the surrogate-based
optimization.

The most popular surrogate modeling techniques in
practice include polynomial response surface approxi-
mations,3,4 kriging,5,6 radial basis functions,7,8 neural
networks,9,10 and support vector regression.11,12 As it is
difficult to know a priori the most accurate surrogate
model and as it is important to safeguard against choos-
ing a wrong surrogate model, combined use of multiple

surrogate models in the form of an ensemble has also
been pursued.13–15

Surrogate-based optimization strategies are twofold:
(1) a global surrogate model is constructed (for each
response of interest) over the entire design space, and
(2) a series of local surrogate models is constructed.
When a global surrogate model is used, first a suffi-
ciently accurate surrogate model is generated, which is
then used to perform optimization in a single step. This
strategy is often used in surrogate-based optimization
studies.16,17 On the contrary, when a series of local sur-
rogate models is used, optimization is performed in an
iterative (multi-step) procedure, and local surrogate
models are generated around the optimum found in the
previous step. An example of this strategy is the succes-
sive response surface method used in Roux et al.18 and
Stander and Craig.19
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Surrogate-based optimization of automobile struc-
tures has been investigated by many researchers. Most
of these studies are based on the use of global surrogate
models. Sobieszczanski-Sobieski et al.20 used global
response surface approximations in design optimization
of a car body structure for minimum weight under the
constraints of noise, vibration, harshness, and a crash
event. Youn et al.21 used global response surface mod-
els generated using stepwise regression to perform
reliability-based design optimization of an automobile
subject to a side impact. Zhang et al.22 used global
response surface models to conduct robust lightweight
design optimization of an automotive front side rail.
Lee and Kang23 used global kriging models to perform
structural optimization of an automotive door. Kim et
al.24 used global kriging models to perform structural
design optimization of an outer tie rod of a passenger
car. Liu et al.25 used global kriging models to perform
lightweight design of an automotive composite bumper
system. Kiani et al.26 used global radial basis function
surrogate models to optimize automotive structures
under multiple crash and vibration design criteria. Hu
et al.27 used global radial basis function surrogate mod-
els to optimize the aerodynamic shape parameters of
an automobile to minimize aerodynamic drag and
aerodynamic lift. Yildiz et al.28 as well as Karagöz and
Yildiz29 used global radial basis functions in structural
design optimization of automotive components to
minimize weight and maximize energy absorption,
respectively. Zhu et al.30 used support vector regression
surrogate models to optimize the roof crush resistance
force and to obtain lightweight design of vehicle front
end structure subject to frontal crash event. Fan et al.31

used global support vector regression surrogate models
to perform shape optimization of a green technology
automobile. Song et al.32 used artificial neural net-
works to conduct aerodynamic design optimization of
rear body shapes of a sedan automobile to minimize
the drag. Zhu et al.33 used back-propagation neural
networks to design a new automotive door sealing.

In addition to the surrogate-based optimization of
automobile structures based on the use of global surro-
gate models, there also exist studies based on the use of
a series of local surrogate models (successive surrogate
modeling, SSM). Kurtaran et al.34 used the SSM
approach to optimize a simplified vehicle crashing into
a rigid pole and optimized the New Jersey concrete bar-
rier. Craig et al.35 used SSM to optimize an automotive
structure under frontal impact. Thiele et al.36 used
SSM to optimize an adaptive restraint system. Liang
and Le37 used SSM to optimize the energy absorption
ability of bus frame components. The SSM approach
has also been used in design optimization studies other
than automotive structural design. Gustafsson and
Strömberg38 used SSM to perform shape optimization
of castings. Zhang et al.39 used SSM for identification
of material parameters of high-strength steel under
impact loading. Pajunen and Heinonen40 used SSM to
perform design optimization of marine structures. The

common finding of these studies is that the SSM
approach converges at reasonable number of iterations
(e.g. eight iterations in Craig et al.35 and seven itera-
tions in Liang and Le37); hence, SSM is a competitive
alternative to the global surrogate modeling approach.
Inspired from these findings, global surrogate modeling
and SSM approaches are used, and their results are
compared in this study.

The objective of this paper is to perform design opti-
mization of an automobile torque arm subjected to cyc-
lic loading using SSM. The rest of the paper is
organized as follows. The definition of the optimization
of the torque arm for minimum weight is presented in
section ‘‘Problem definition.’’ Section ‘‘Fatigue tests’’
provides details of the fatigue life estimation of the tor-
que arm by the use of finite element analysis. Global
surrogate modeling and SSM strategies followed in this
study are detailed in section ‘‘Finite element modeling.’’
The results and the concluding remarks are given in sec-
tions ‘‘Successive surrogate modeling’’ and ‘‘Results,’’
respectively.

Problem definition

In this study, weight optimization of an automobile
torque arm subjected to cyclic loading is conducted.
The torque arm is a component of an automobile sus-
pension system mounted on the rear-drive axle and
allows the automobile to accelerate in a straight line
without rotation of the rear axle. The torque arm
design optimization problem considered in this study
was first studied by Botkin41 and then used in many
optimization studies, including Wang et al.,42 Kim et
al.,43 and Picheny et al.44 Botkin41 and Wang et al.42

performed shape optimization of the torque arm under
static loading by using stress as well as displacement
constraints. Kim et al.43 and Picheny et al.44 conducted
similar studies but used stress constraint only. Instead
of static loading, this paper takes cyclic loading on the
torque arm into account (which is more representative
of the actual loading conditions), along with the static
failure criteria, and performs shape optimization of the
torque arm under fatigue life and stress constraints.
Note that the use of fatigue life in design optimization
of automotive parts is considered in many studies,
including Karen et al.45 and Yildiz and Lekesiz.46

The initial geometry of the torque arm, along with
the loading and boundary conditions corresponding to
the actual working conditions, is shown in Figure 1.
The torque arm is fixed to the chassis at the left end,
and the cyclic loads FX and FY transferred from the
rear wheels are applied at the right end. The nominal
values of FX and FY used are 695.25 and 1266.50N
based on earlier studies.43,44 The cyclic loads FX and FY

are assumed to vary between –0.79 and 1.10 times of
their corresponding nominal values (i.e. the stress ratio
is 20.718), according to the multi-axial fatigue loading
standard for car wheel suspensions, CARLOS-multi.47
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The thickness of the torque arm is 3mm, and it is made
of AISI 1040 carbon steel, the properties of which are
given in Table 1.

As noted earlier, according to the actual working
conditions, the torque arm is fixed to the chassis at the
left end; hence, fixed-end boundary conditions are used.
However, in our fatigue tests (see section ‘‘Fatigue
tests’’), we could not satisfy the fixed-end boundary
conditions. Therefore, we first generated a finite ele-
ment model with boundary conditions similar to the
test conditions and then compared the FE model fati-
gue life prediction with the fatigue life observed in the
tests. This allowed us to make sure that the correct fati-
gue failure criterion was used, three-dimensional (3D)
analysis rather than two-dimensional (2D) analysis was
required, and proper finite element meshing is applied.
After this step, we changed the boundary conditions at
the left end and performed optimization using the
revised finite element model.

Figure 2 shows the five geometric properties (d1, d2,
h1, h2, and v1) used as design variables in optimization.
The variables d1 and d2 are the diameters at the left and
right of the slit in the torque arm, h1 and h2 are the hor-
izontal distances of the centers of the left and right cir-
cles of the slit, and v1 is the shape variable that defines
the outer shape of the torque arm. Earlier studies41–44

have confirmed that the selection of these design vari-
ables leads to substantial weight savings from the tor-
que arm without jeopardizing the safety. Therefore,
these particular geometric properties and the design
variables are also used in this study.

The objective function of the optimization problem
is the mass of the torque arm. The fatigue life and the

maximum von Mises stress developed in the torque
arm are constrained to the corresponding values of the
initial design. Thus, the static and the fatigue perfor-
mances of the torque arm are taken into account. The
optimization problem can be formulated as follows

Find d1, d2, h1, h2, v1

Min m d1, d2, h1, h2, v1ð Þ
S:t: sVM d1, d2, h1, h2, v1ð Þ4 sVMð Þini

Nf d1, d2, h1, h2, v1ð Þ5 Nf

� �
ini

ð1Þ

where m() represents the mass, sVM() represents the
maximum von Mises stress developed in the torque
arm, (sVM)ini is the maximum von Mises stress corre-
sponding to the initial design, Nf() represents the fati-
gue life (number of cycles) of the torque arm, and
(Nf)ini is the fatigue life of the initial design. The maxi-
mum von Mises stress and fatigue life are computed
through finite element analyses.

Fatigue tests

To provide a baseline for comparison of the fatigue
lives computed by finite element analyses, fatigue tests
are conducted at the Technology Center of the TOBB
University of Economics and Technology. Labiotech
HH300K-OC fatigue test machine with the following
features is used: 300kN loading capacity, 15Hz maxi-
mum frequency, and 0.05N load cell sensitivity. The
fatigue tests are conducted at a frequency of 10Hz. The
fatigue testing machine and one of the torque arm test
specimens used in the tests are shown in Figure 3.

The loading conditions for the fatigue tests are
described below. As shown in Figure 3, the torque arm
is fixed to the test frame at the left lower end. As a uni-
axial testing machine is used, the test specimen is
oriented at an angle of 28.8� to provide the multi-axial
cyclic loads FX and FY (see Figure 1). The resultant cyc-
lic load applied at the upper right hole alternates
between 1589.3 and 21141.4N with a stress ratio of
20.718. The technical drawings of the right and the left
grips are provided in Appendix 1. The grips are made
of AISI 4140 steel.

Fatigue lives obtained after the testing of three dif-
ferent specimens are presented in Table 2. The average
value of the fatigue life is 17,597 cycles, and the

Table 1. Properties of the torque arm material (AISI 1040
carbon steel).

Property Value

Young’s modulus (E) 201.6 GPa
Poisson’s ratio (v) 0.26
Bulk modulus (k) 140 GPa
Yield strength (sY) 415 MPa
Ultimate strength (sU) 620 MPa
Fatigue strength coefficient (s0f ) 1543 MPa
Fatigue strength exponent (b) 20.14
Fatigue ductility coefficient (e0f ) 0.61
Fatigue ductility exponent (c) 20.57

Figure 1. Loading and boundary conditions on the torque arm
corresponding to the actual working conditions (dimensions in
mm).

Figure 2. Design variables of the torque arm.
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standard deviation is 5625 cycles (32% of the average
value). All specimens are observed to fail at the same
location. To save space, only one of the specimens (spe-
cimen S1) is shown in Figure 4. In the tests conducted,
crack is initiated on the surface at the contact interface
between the torque arm and the grips.

Finite element modeling

In this section, the solid modeling of the torque arm is
explained first. Then, the boundary conditions realized
in the fatigue tests are discussed. Finally, determination
of the proper mesh size and frictional contact modeling
are discussed. Finite element modeling is performed
using ANSYS Workbench 15 in a single-processor HP
Z400 Workstation with Intel Xeon 2.67GHz processor
and 6.00 GB RAM.

Solid modeling

To model the torque arm under fatigue test conditions,
the solid models of the torque arm and the grips are
generated first (see Figure 5). In the tests, the torque
arm is placed in between the right and left grips.
Instead of modeling the whole grips, only the parts of
the grips that are satisfactory to model are modeled
(see Figure 6). This procedure reduced the number of
finite elements, thereby reducing the total analysis time.
The final solid model is composed of nine different
parts (see Figure 6); this ensures that smoother mesh
can be generated in round sections and mesh density
can be increased in critical sections.

Boundary conditions

Realistic modeling of the boundary conditions is impor-
tant in structural analysis. A pictorial representation of
the boundary conditions of the torque arm at fatigue
testing conditions is shown in Figure 7. The torque arm
is placed in the slot at the left grip; therefore, its displa-
cements are constrained. The boundary condition BC1
constrains the displacements of the torque arm in all
directions at the locations shown in Figure 7. The tor-
que arm is constrained by a shaft passing through the
left hole of the arm. The boundary condition BC2
allows the displacement of the center of the hole in the
x-direction only while constraining the displacement in
other directions. The boundary condition BC3 fixes the
parts of the grip in all directions. The boundary condi-
tion BC4 models the friction between the torque arm
and grip surfaces. The effect of the friction coefficient
on the results is investigated later (see section ‘‘Finite
element modeling at working conditions’’). The last
boundary condition includes the applied loads, which
act as cyclic bearing loads.

Table 2. Fatigue testing machine and one torque arm test
specimen.

Specimen Number of cycles

S1 23,638
S2 12,508
S3 16,645
Average 17,597
Standard deviation 5626

Figure 3. Fatigue testing machine and one torque arm test
specimen.

Figure 4. Specimen S1 after the fatigue test.

Figure 5. Solid models of (a) the torque arm, (b) the right grip, and (c) the left grip.
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Fatigue life estimation

The fatigue life of the torque arm is estimated by
using the Smith–Watson–Topper relationship given
in equation (2)

smax
De
2

=
s0f
� �2

E
2Nf

� �2b
+s0fe

0
f 2Nf

� �b+ c ð2Þ

where smax is the maximum stress of the given cycle, De
is the total strain range, E is the modulus of elasticity,
s0f is the fatigue strength coefficient, b is the fatigue
strength exponent, e0f is the fatigue ductility coefficient,
and c is the fatigue ductility exponent. A low-cycle fati-
gue criterion is used so that the effects of the elastic
and plastic strain ranges are taken into account. The
material properties are given in Table 1.

Meshing and frictional contact modeling

In this study, ANSYS Workbench Solid 185 elements
(eight-noded hexahedral elements) are used in the finite
element model. The global mesh density and the mesh
density at the critical location are shown in Figure 8.
The finite element mesh size and the friction coefficient
used in the analysis have significant effects on the stress
and fatigue life predictions. First, the variation of the
maximum von Mises stress with the finite element mesh
size and the friction coefficient is explored. Table 3

shows that using a frictionless contact or a large value
of friction coefficient (m=0.7) results in unrealistically
large stress estimations. Therefore, the friction coeffi-
cient values of m=0.3 and m=0.5 are used. Fatigue
life estimation for various element sizes and two differ-
ent friction coefficient values are given in Table 4. It is
found that the use of friction coefficient of m=0.3
yields fatigue life predictions closer to the average fati-
gue life observed in the tests (17,597 cycles). It is also
found that the use of 0.50mm element size yields the
best fatigue life prediction compared with the test
results, along with corresponding CPU time as seen in
Table 5.

Finite element modeling at working conditions

The actual working conditions of the torque arm are dif-
ferent from the fatigue test conditions due to our

Figure 6. The final solid model used in fatigue analyses (a) for
the actual working conditions and (b) test conditions.

Figure 7. Pictorial representation of the boundary conditions corresponding to test conditions: (a) BC1, (b) BC2, (c) BC3, and (d) BC4.

Table 3. Maximum von Mises stress (MPa) estimations for
various element sizes and friction coefficient values
corresponding to test conditions.

Friction
coefficient

Element size

1 mm 0.75 mm 0.50 mm 0.40 mm 0.30 mm

No friction 1329.7 1215.0 1415.5 1677.0 1733.5
m = 0.3 526.0 536.0 521.4 494.1 484.2
m = 0.5 503.6 511.2 495.8 469.8 460.1
m = 0.7 1143.0 1045.0 1205.0 1421.5 1505.4

Table 4. Fatigue life estimations for various element sizes and
friction coefficient values corresponding to test conditions.

Friction
coefficient

Element size

1 mm 0.75 mm 0.50 mm 0.40 mm 0.30 mm

m = 0.3 16,745 15,504 17,361 21,868 23,788
m = 0.5 20,000 18,807 21,258 27,043 29,575
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inability to replicate the working conditions at the tests.
At the working conditions, the torque arm is fixed to
the chassis at the left end and the cyclic loads FX and FY

transferred from the rear wheels are applied at the right
end. Therefore, the boundary conditions for the work-
ing conditions are relatively simple to model in the finite
element study. The displacements in all directions are
set to zero at the surface of the left hole, while the cyclic
loads at the right hole are applied as bearing loads.

The maximum von Mises stress developed and the
fatigue life of the initial design of the torque arm are
computed as 319.1MPa and 78,068 cycles, respectively.
Therefore, the two constraint parameters appearing in
equation (1) are set to (sVM)ini=319:1MPa and
(Nf)ini =78, 068 cycles, respectively. The mass of the
initial design is 0.1966kg.

SSM

It is well known in surrogate modeling studies that as
the size of the design space reduces, the accuracy of the
surrogate model increases.48 SSM is based on generat-
ing a small subregion in the design space, constructing
surrogate model in this subregion, performing optimi-
zation in this subregion, using the optimum found as

the initial point for a successive subregion, and repeat-
ing this procedure until convergence. Figure 9 depicts
the SSM scheme for the first two iterations. Subregion
1 is constructed around the initial design of the torque
arm. A surrogate model is constructed within subregion
1, and the optimum in this subregion (x

(1)
opt) is obtained.

The successive subregion (that is, subregion 2) is gener-
ated around x

(1)
opt, and the optimum in this new subre-

gion (x
(2)
opt) is obtained. This procedure continues till

convergence. In this study, the convergence criterion is
reduction in the relative change of the objective func-
tion below 1% in subsequent steps. It is noted that the
ANSYS Workbench Design Exploration toolbox is
used to conduct optimization in each subregion.

Various heuristic schemes have been proposed to
tune the size of the subregion.18,19 The rule of thumb is
to reduce the size of the subregion if the surrogate
model is not accurate enough. However, if the surro-
gate model is accurate enough, the size of the subregion
is usually unchanged. In this study, we kept the size of
the subregions small enough to guarantee an acceptable
accuracy. Therefore, the lower and upper bounds of
the design variables in each subregion are selected as
80% and 120% of the starting point (or the initial
point) of the subregion.

Results

The optimization of the torque arm is performed using
two different approaches. First, the global surrogate
modeling approach is used. Quadratic response surface
models are generated over the entire design space and
optimization is performed. Second, the SSM approach
is used. Again, quadratic response surface models are
generated over each successive subregion. The reason
for using global surrogate modeling approach in addi-
tion to successive response surface approach is to pro-
vide a baseline for comparison.

Table 5. Approximate CPU times (in minutes) for various
element sizes corresponding to test conditions.

Element size

1 mm 0.75 mm 0.50 mm 0.40 mm 0.30 mm

5.5 13.9 67.9 174.6 272.7

Figure 9. Successive surrogate modeling scheme.

Figure 8. (a) Global mesh density and (b) mesh density at the
critical location corresponding to test conditions.
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Quadratic response surfaces are in the form of a
second-degree algebraic polynomial function that can
be expressed as

f̂(x)= b0 +
XL

i=1

bixi +
XL

i=1

biix
2
i +

XL�1

i=1

XL

j= i+1

bijxixj

ð3Þ

where f̂ is the response surface approximation of the
actual response function, f; L is the number of vari-
ables in the input vector x; and b0, bi, bii, and bij are the
unknown coefficients to be determined by the least-
squares technique.

Optimization results based on global surrogate
modeling

In global surrogate modeling, the training points are
generated over the entire design space. The number of
training points is chosen as 10 times the number of
design variables, following the suggestion of Jones et
al.49 The bounds of the design variables are determined
based on earlier studies43,44 and are given in Table 6.

As we have five design variables, 50 training points
are used in surrogate model generation and the optimi-
zation is performed. The optimum values of the design
variables are given in the fifth column of Table 6. For
the optimum design found, the surrogate model predic-
tions are compared with the finite element results as
shown in Table 7. It can be seen that surrogate model
predictions are conservative, but inaccurate.

The number of training points is then increased from
50 to 100 in order to increase the accuracy of the surro-
gate models. The optimum values of the design

variables are given in the last column of Table 6. For
the optimum design found, the surrogate model predic-
tions are compared with the finite element analysis
results as presented in Table 7. It is again noticed that
surrogate model predictions are conservative, but inac-
curate. Table 7 also shows that increasing the number
of training points from 50 to 100 neither increases the
accuracy of the surrogate model nor improves the opti-
mization results significantly, so no further increase in
the number of training points beyond 100 is pursued.

Table 7 shows that the optimization results based on
global surrogate modeling correspond to a reduced
mass of the torque arm, from 0.1966 to 0.1460 kg
(25.7% reduction). The fatigue life and the maximum
von Mises stress constraints are overly satisfied, indi-
cating that the material distribution in the design
domain is not optimal.

Optimization results based on SSM

In SSM, a smaller subregion is constructed in the
design space and the training points are generated over
this subregion. The lower and upper bounds of the
design variables in the subregion are selected as 80%
and 120% of the initial design of the torque arm. Fifty
training points are generated in this subregion and
quadratic response surface models are generated.
Optimization is performed within this subregion using
the constructed surrogate models. For the optimum
design found, the surrogate model predictions are com-
pared with the finite element analysis results, and it is
found that the surrogate model predictions are quite
accurate (see Table 8). The subsequent subregion is
constructed around the optimum found in the previous
step, 50 training points are generated in this subregion,

Table 6. Lower and upper bounds of the design variables and optimum values of the design variables.

Design variable Initial value
(mm)

Lower limit
(mm)

Upper limit
(mm)

Optimum obtained
with 50
simulations (mm)

Optimum
obtained with
100 simulations (mm)

d1 5 3 10 10 10
d2 5 3 10 4.7 4.5
h1 60 40 80 40 40
h2 135 108 162 113.6 115.5
v1 10 7 18 18 18

Table 7. Performance of the optimum design obtained using global surrogate modeling corresponding to actual working conditions.

50 samples 100 samples

Surrogate model
prediction

FEA result Error (%) Surrogate model
prediction

FEA result Error (%)

Mass (kg) 0.1465 0.1464 0.1 0.1462 0.1460 0.1
Maximum von Mises stress (MPa) 319.1 277.3 15.1 318.0 278.0 14.3
Fatigue life (cycles) 90,271 162,150 44.3 78,069 160,540 51.4

FEA: finite element analysis.
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and optimization is performed within this subregion.
This procedure is continued until the change of the
objective function in the subsequent steps is reduced
below 1%. Table 8 shows that the convergence is
achieved in five iterations. Table 8 also shows that
SSM-based optimization reduces the mass of the tor-
que arm from 0.1966 to 0.1401kg (28.7% reduction).
The fatigue life and maximum von Mises stress values
are very close to those of the initial design. Variations
in the design variables, mass, maximum von Mises
stress, and fatigue life through SSM are depicted in
Figure 10.

Finally, the optimization results obtained through
the global surrogate modeling approach are compared
with the ones obtained with the SSM approach (see
Table 9). The masses of the optimum designs obtained
through global surrogate modeling and SSM are found

to be 0.1460 and 0.1401kg, respectively. That is, the
optimum design found through SSM is 4% lighter than
the one found through global surrogate modeling. For
the optimum design obtained through global surrogate
modeling, the maximum von Mises stress developed in
the torque arm is 278MPa (12.9% smaller than that of
the initial design), and the fatigue life of the torque arm
is 160,540 cycles (105.6% larger than that of the initial
design). As the fatigue life and stress constraints are
overly satisfied, this means that the material distribu-
tion in the design domain is not optimal. For the opti-
mum design obtained through SSM, on the contrary,
the maximum von Mises stress developed in the torque
arm is 319.0MPa and the fatigue life of the torque arm
is 78,194 cycles. These fatigue life and stress values are
very close to those of the initial design. The distribution
of the von Mises stress and fatigue life for the initial

Table 8. Optimization results obtained using successive surrogate modeling corresponding to actual working conditions.

Subregion 1 Subregion 2 Subregion 3 Subregion 4 Subregion 5

Lower and upper limits of the design variables
d1 (mm) [4, 6] [4, 8] [6, 10] [9, 11] [11, 11]
d2 (mm) [4, 6] [4, 6] [5, 6] [4.5, 5.5] [4, 5.5]
h1 (mm) [48, 72] [43, 57] [41, 45] [38, 44] [38, 38]
h2 (mm) [122, 148] [108, 132] [110, 120] [110, 120] [115, 125]
v1 (mm) [8, 12] [9, 15] [13.5, 16.5] [15, 18] [18, 18]

Optimization results
d1 (mm) 6.0 8.0 10.0 11.0 11.0
d2 (mm) 5.4 5.3 5.0 4.9 4.54
h1 (mm) 49.6 43.0 41.0 38.0 38.0
h2 (mm) 122.0 115.5 118.8 120.0 123.0
v1 (mm) 12.0 15.0 16.5 18.0 18.0

Performance of optimum designs
Predicted mass (kg) 0.1846 0.1658 0.1515 0.1404 0.1401
FEA mass (kg) 0.1836 0.1650 0.1515 0.1405 0.1401
Predicted maximum von Mises stress (MPa) 319.1 319.0 319.1 319.1 319.1
FEA maximum von Mises stress (MPa) 318.2 316.8 320.0 315.2 319.0
Predicted fatigue life (cycles) 78,068 81,180 82,320 80,280 78,074
FEA fatigue life (cycles) 79,228 80,988 77,088 83,081 78,194

FEA: finite element analysis.

Table 9. Comparison of optimization results (corresponding to actual working conditions) obtained using global surrogate modeling
and successive surrogate modeling.

Initial design Global surrogate modeling optimum Successive surrogate modeling optimum

Values of design variables
d1 (mm) 5 10.0 11.0
d2 (mm) 5 4.54 4.54
h1 (mm) 60 40.0 38.0
h2 (mm) 135 115.5 123.0
v1 (mm) 10 18.0 18.0

Performances of the designs
evaluated through FEA

Mass (kg) 0.1966 0.1460 0.1401
Maximum von Mises stress (MPa) 319.1 278.0 319.0
Fatigue life (cycles) 78,068 160,540 78,194

FEA: finite element analysis.
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Figure 10. Variation of the (a–e) design variables, (f) mass, (g–h) maximum von Mises stress, and (i–j) fatigue life through successive
surrogate modeling corresponding to actual working conditions: (a) design variable d1, (b) design variable d2, (c) design variable h1,
(d) design variable h2, (e) design variable v1, (f) mass, (g) finite element analysis (FEA) maximum von Mises stress, (h) predicted
maximum von Mises stress, (i) FEA fatigue life and (j) predicted fatigue life.
SSM: successive surrogate modeling.
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design and the optimum design is shown in Figures 11
and 12, respectively.

Concluding remarks

In this study, design optimization of an automobile tor-
que arm subjected to cyclic loading was performed.
Starting from an available initial design, the shape of
the torque arm was optimized for minimum weight
such that the fatigue life of the torque arm did not fall
below that of the initial design and the maximum von

Mises stress developed in the torque arm did not exceed
that of the initial design. Surrogate-based optimization
approach was used to reduce the computational cost.
Global surrogate modeling and SSM approaches were
compared. From the results obtained, the following
observations were made:

� In global surrogate modeling, when the number of
training points was 10 times the number of vari-
ables (a widely used practice), the constructed sur-
rogate models were not accurate enough. Increasing

Figure 11. Distribution of von Mises stress (MPa) for (a) initial and (b) optimum designs (corresponding to actual working
conditions).

Figure 12. Distribution of fatigue life (cycles) for (a) initial and (b) optimum designs (corresponding to actual working conditions).
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the number of training points to 20 times the num-
ber of variables did not increase the accuracy and
optimization results significantly.

� Global surrogate modeling–based optimization
reduced the mass of the torque arm from 0.1966 to
0.1460kg (25.7% reduction). The fatigue life and
the maximum von Mises stress constraints were
overly satisfied, indicating that the material distri-
bution was not optimal.

� In SSM, when the number of training points was 10
times the number of variables, the constructed sur-
rogate models were sufficiently accurate.

� SSM-based optimization reduced the mass of the
torque arm from 0.1966 to 0.1401kg (28.7% reduc-
tion). The fatigue life and the maximum von Mises
stress values were very close to those of the initial
design.

� The optimum design found through SSM is 4%
lighter than the one found through global surrogate
modeling.
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Appendix 1
Technical drawings of the right and the left grips

Figure 13. Technical drawing of the left grip (dimensions in mm).
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Figure 14. Technical drawing of the right grip (dimensions in mm).
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