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Tailmodeling is an efficientmethod used in reliability estimation of highly safe structures. Classical tail modeling is

basedonperforming limit-state function evaluations througha sampling scheme, selecting a threshold value to specify

the tail part of the cumulative distribution function, fitting a proper model to the tail part, and estimating the

reliability. In this approach, limit-state function calculations that do not belong to the tail part are mostly discarded,

and so majority of limit-state evaluations are wasted. In this paper, Markov chain Monte Carlo method with

Metropolis–Hastings algorithm is used to draw samples from the tail part only so that a more accurate reliability

index prediction is achieved. A commonly used proposal distribution formula is modified by using a scale parameter.

The optimal value of this scale parameter is obtained for various numerical example problemswith a varying number

of random variables, and an approximate relationship is obtained between the optimal value of the scale parameter

and the number of random variables. The approximate relationship is tested on the reliability prediction of a

horizontal axis wind turbine and observed to work well. It is also found that the proposed approach is more accurate

than the classical tail modeling when the number of variables is less than or equal to four. For a larger number of

random variables, none of the two approaches are found to be superior to another.

Nomenclature

Ft = threshold value of the cumulative distribution function of
the limit-state function to define the tail part

k = proposal distribution scale parameter
k� = optimal value of the proposal distribution scale parameter
N = number of samples in the tail part
Nt = total number of samples
yt = threshold value of the limit-state function to define the tail

part

I. Introduction

T HE limit-state function (LSF) of a structural system is usually
evaluated through performing computationally expensive finite

element analyses. The simulation techniques such as Monte Carlo
method [1] or its advanced variants (e.g., importance sampling [2],
adaptive importance sampling [3], directional simulation [4]) require a
large number of LSF evaluations compared with analytical methods;
hence, they are not suitable for reliability prediction of highly safe
structural systems. Alternatively, the analytical methods such as first-
order reliability method (FORM) or second-order reliability method
(SORM) are computationally efficient, but their accuracy diminishes
as the LSF becomes nonlinear. To overcome the drawbacks of these
traditional methods, the techniques based on tail modeling have been
successfully used for reliability estimation at high reliability levels
[5–8]. Boos [5] and Hasofer [6] showed that the order statistics can be
used to estimate small probabilities of failure associated with the
structural systems. Caers andMaes [7] proposed to use a finite sample
mean square error for estimating the tail characteristics. Ramu et al. [8]
proposed the multiple tail median technique that is based on the use of

the median value of five different tail model predictions and applied
this method for reliability prediction of a composite laminate that
operates in cryogenic temperatures.
Reliability estimation using tail modeling is based on approximating

the tail of the cumulative distribution function (CDF) of the LSF.
Classical tail modeling (CTM) methods are based on the following
procedure: First a set of LSF evaluations through a sampling scheme
(e.g., Monte Carlo simulations [MCS]) is performed. Then, a proper
threshold value of the CDF is selected that specifies the tail part
(e.g., 90% threshold). Finally, a proper tail model is fitted to the tail part
(i.e., the portion above the threshold value). In this procedure, only the
tail part of theLSFevaluations isused in finding theparameters of the tail
model,whereas the rest of thedata arediscarded.That is, the efforts spent
for performing LSF evaluations that do not belong to the tail part are
mostly wasted.
To reduce the amount of unused data,more efficient techniques based

on steering the sampling points toward the tail region by using surrogate
models [9,10] and convex hull [11] have beenproposed.Acar [9] guided
the limit-state evaluations through a procedure based on approximating
the LSF and calculating the statistical moments of the LSF using the
univariate dimension reduction method [12] along with distribution
fitting using extended generalized lambda distributions [13]. Support
vector machines are also used to guide the sampling points [10]. Ramu
and Krishna [11] used an adaptive convex hull strategy for efficient tail
modeling. They performed a relatively small number of limit-state
evaluations, identified the cluster of tail samples, and wrapped a convex
hull around it. The hull is progressively updated with limited additional
limit-state evaluations around the boundary of initial hull. Finally, tail
modeling is performed using the converged hull. It is found in those
studies that if the LSF is highly nonlinear and the problem dimension is
high, the construction of an accurate surrogate model or an accurate
and converged hull becomes difficult, and so the efficiency of these
techniques diminishes.
In this paper, Markov chain Monte Carlo (MCMC) method with

Metropolis–Hastings (MH) algorithm is blended with CTM to increase
the efficiency of the CTM. A commonly used proposal distribution
formula ismodified byusing a scale parameter. The optimal value of this
scale parameter is obtained for various numerical example problems
with a varying number of random variables, and an approximate
relationship is obtained between the optimal value of the scale parameter
and the number of random variables. The proposedmethod is applied to
numerical example problems as well as reliability prediction of a
horizontal axiswind turbine, and the accuracy of the proposedmethod is
compared with that of the CTM.
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This paper is organized as follows:Abrief overviewof theCTMand
MCMC methods is provided in Sec. II. The proposed method is
explained in Sec. III, and applied to numerical example problems as
well as reliability prediction of a horizontal axis wind turbine in
Sec. IV. The concluding remarks are provided in the last section of the
paper. Appendix A provides the descriptions of these problems.
Appendix B gives the evaluation of the dependency of the scale
parameter k on the nature of the LSF and the probability distribution of
the LSF. Appendix C provides an evaluation of the dependency of the
performance of the proposed method on the probability distribution
types of the input random variables.

II. Existing Methods

A. Classical Tail Modeling

Consider the LSF y�x�, where x is the vector of random variables.
For a given threshold value of Ft (see Fig. 1), the region above the
threshold (i.e., the tail portion) can be approximated by using a proper
tail model. Tail models are used to predict the probabilities at
unobserved levels by using the probabilities at observed levels
through extrapolation.
The tail models used in the literature include generalized Pareto

distribution [14], generalized extreme value distribution [15], and
polynomial approximation of the reliability index itself or the
logarithm of the reliability index [8]. For instance, generalized Pareto
distribution approximates the conditional excess distribution of
Fz�z�, where z � y − yt, by using the following equation:

Fz�z� �
8<
:
1 −

D
1� ξ

σ z
E−�1∕ξ�
�

if ξ ≠ 0

1 − exp
�
− z

σ

�
if ξ � 0

(1)

where hAi� � max�0; A�, z ≥ 0, and Fz�z� is the generalized Pareto
distribution with shape and scale parameters ξ and σ, respectively.
These tail model parameters are usually found through the maximum
likelihood method or the least square method [8]. Then, the CDF
value above the threshold (i.e., z ≥ 0) is expressed in terms of the
conditional excess distribution, Fz�z�, via

F�y� � Ft � �1 − Ft�Fz�y − yt� (2)

Once the CDF F�y� is obtained, the probability of failure Pf and
the generalized reliability index [16] β can be estimated from

Pf � 1 − F�y � 0�; β � Φ−1�1 − Pf� (3)

where Φ is the CDF of a standard normal random variable.
Similarly, if a polynomial approximation of the reliability index is

used, then the reliability index is related to the exceedance value z
through a suitable polynomial and the coefficients of this polynomial
are usually found through the least square method [8].

The CTMmethod is based on the following three-step procedure:
1)N samples of the LSF y�x� are generated throughMCS (or Latin

hypercube sampling). In structural mechanics problems, the samples
of the input random variables, x, are first generated from the given
distribution types, and then the samples of the random LSF are
calculated through structural analyses. Because structural analyses are
usually performed through computationally expensive simulations
(e.g., finite element analysis), the value of N is selected based on
allowable computational budget. In this paper, the number of samples
is limited to N � 500.
2) A threshold value, Ft, is selected and the tail samples are

identified. For instance, if the threshold value is chosen as Ft � 0.90,
the number samples in the tail region is Nt � �1 − Ft�N � 50. The
threshold valueFt is found to have a substantial effect on the reliability
predictions, and empirical values have been proposed [5–7]. Boos [5]
suggested usingNt∕N � 0.2 for 50 ≤ N ≤ 500 andNt∕N � 0.1 for
500 < N ≤ 5000. Hasofer [6] showed that using Nt ≈ 1.5

����
N

p
works

well for most distributions. Caers and Maes [7] proposed that the
optimal Nt value can be selected to minimize the mean square error,
which can be estimated using bootstrap technique. For N � 500
(as used in this paper), Boos’s empirical formula yields Nt � 100,
whereas Hasofer’s formula yields Nt � 34. In this paper, Nt � 50 is
used as a compromise between the two.
3) The parameters in the tail model are estimated. If generalized

Pareto distribution, generalized extreme value distribution, or another
proper distribution is used as a tail model, then the tail model
parameters can be found either by using the maximum likelihood
method or the least squaremethod [8]. If polynomial approximation of
the reliability index (or logarithm of the reliability index) is used, the
tail model parameters are usually found through the least square
method [8]. In this paper, polynomial approximations (both linear and
quadratic) of the reliability index and logarithm of the reliability index
are used.
Even though the CTMmethod is an efficient reliability prediction

method, the efficiency of tail modeling can further be increased. This
paper proposes that the MCMC method with MH algorithm can be
blended with CTM. The MCMC method with MH algorithm is
described in the next section.

B. Markov Chain Monte Carlo

MCMC method with MH algorithm can be used to generate a
sequence of sampling points from a target probability distribution for
which direct sampling is not trivial [17,18]. MCMC is widely used
in conjunction with importance sampling methods for reliability
calculation. The main role of MCMC is to construct asymptotically
optimal importance sampling density [19] and keep the subsequent
sampling within the region of interest (failure region for importance
sampling, tail region for tail modeling, etc.). The first step inMCMC is
finding a starting point (or a starting state) in the region of interest. The
starting point can be determined based on engineering judgment,
random sampling, or other means. Then, the subsequent sampling
within the region of interest can be performed based on the following
procedure, which is repeated until the allowable number of samples is
reached:
1) Assume that the current point (or current state) is xicur. Generate

a candidate point (or candidate state) xcan around the current point by
performing a randomwalk using a proposal distribution q�xcanjxicur�.
The proposal distribution is chosen to be symmetric. Gaussian
distribution is the most commonly used proposal distribution [19].
2) Determine whether the candidate point lies in the region of

interest. If not, nullify the joint PDF of the candidate point.
3) Compute the ratio of the joint PDF values at the candidate and

the current points, r � f�xcan�∕f�xcur�. If r ≥ 1, then the candidate
point is accepted as the next point (or next state). If r < 1, then the
candidate point is accepted as the next statewith probability r, and the
current state is accepted as the next state with probability (1 − r).
The effectiveness of MCMC is affected by the choice of proposal

distribution parameters that control the step size of random walks.
The use of a large step size allows large coverage of the sampling
space and may lead to identification of multiple disconnected or
weakly connected regions of interest, whereas the probability ofFig. 1 Tail modeling concept.
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getting repeated states is increased. On the other hand, the use of a
small step size reduces the probability of getting repeated states but it
may increase the correlation between successive states and retards the
robustness of the algorithm.
Proposal parameters are often chosen manually, through trial and

error, whereas this would be impractical formany problems considering
the numerical cost associated with that practice. There has been
significant progress for optimum choice of the proposal distribution
parameters in recent years and it is still an active research area.Rosenthal
[20] showed that if the target distribution is N�0;P� for an
nvar-dimensional covariance matrix

P
, and the proposal distribution is

N�0;Pp�, then the optimal covariance matrix can be found as

X
p

� 2.382

nvar

X
(4)

The above formula is suitable when the target distribution is normal
[20], whereas probability distribution of the tail part is not necessarily
normal. Therefore, in this paper the proposal distribution formula is
modified as explained in the next section.

III. Proposed Method

TheLSF evaluation budget is taken as 500 based on our earlierwork
[9,10] and others [8,11]. In this paper, this computational budget is
divided into two sets. The first set of LSF evaluations is used for
estimating the threshold value of the LSF as well as finding starting
point(s) for MCMC sampling. The second set is used to perform
subsequent sampling from tail part of the CDF throughMCMC. After
the tail samples are generated, polynomial approximations (both linear
and quadratic) of the reliability index and logarithm of the reliability
index are constructed, and reliability prediction is performed through
extrapolation.
In the first set, the number of LSF evaluations is limited to 100.

Therefore, 100 samples are generated in random variable space based
on the probability distributions of the random variables through
MCS, and LSF evaluations are performed. The LSF values are sorted
in ascending order.Ft quantile defines the threshold value of LSF, yt.
The last 10 samples are tail samples and these 10 samples are used as
starting points for MCMC sampling. It must be noted that the tail
region found using a small number of samples may not represent the
true tail region; therefore, someof these 10 samplesmay not belong to
the true tail region. The use of multiple starting points allows
sampling from multiple disconnected tail regions as shown in Fig. 2
for the tuned mass damper example problem (one of the numerical
example problems used in this paper).
In the second set, the number of LSF evaluations is limited to 400.

Corresponding to each starting point, 40 subsequent samples are
generated from the tail part of the CDF through MCMC with MH

algorithm.MCMC samples are generated from the tail region only by
nullifying the joint PDF in the nontail region and by generating
samples in the tail region according to the original joint PDF. In
MCMC, normal distribution with zero mean is used as the proposal
distribution. The proposal distribution formula suggested by
Rosenthal [20] is suitablewhen the target distribution is normal. For a
general case, probability distribution of the tail part is not necessarily
normal. Therefore, in this paper the proposal distribution formula
suggested by Rosenthal [20] is modified as follows to compute the
covariance matrix of the proposal distribution:X

p

� k2
2.382

nvar

X
(5)

where
P

is the covariance matrix of the random variables. In this
study, the value of k is varied and the optimal value of k is obtained for
various example problems with a varying number of variables, and an
approximate relationship is obtained for the optimal value of k in terms
of the number of random variables. Note that Eq. (5) represents an ad-
hoc correction for non-Gaussian application, without a mathematical
derivation.
According to the above procedure, overall 410 tail samples are

generated. After these tail samples are generated, polynomial
approximations (both linear and quadratic) of the reliability index
and logarithm of the reliability index are constructed, and reliability
prediction is performed through extrapolation. That is, the following
eight polynomial approximation types are constructed, and then the
reliability predictions are performed.
1) Linear approximation between the exceedance and the reliability

index: β1�z� � c0 � c1z. Once the approximation is constructed, the
reliability index is predicted through extrapolation. The reliability index
prediction is obtained from βLlin−lin � β1�z � −yt�.
2) Quadratic approximation between the exceedance and the

reliability index: β2�z� � c0 � c1z� c2z
2. The reliability index

prediction is obtained from βQlin−lin � β2�z � −yt�.
3) Linear approximation between the exceedance and the logarithm

of reliability index: ln β3�z� � c0 � c1z. The reliability index
prediction is obtained from βLlog−lin � exp�ln β3�z � −yt��.
4) Quadratic approximation between the exceedance and the

logarithm of reliability index: ln β4�z��c0�c1z�c2z
2. The reliability

index prediction is obtained from βQlog−lin � exp�ln β4�z � −yt��.
5) Linear approximation between the logarithm of the exceedance

and the reliability index: β5�z� � c0 � c1 ln z. The reliability index
prediction is obtained from βLlin−log � β5�z � −yt�.
6)Quadratic approximationbetween logarithmof the exceedanceand

the reliability index: β6�z� � c0 � c1 ln z� c2�ln z�2. The reliability
index prediction is obtained from βQlin−log � β6�z � −yt�.
7) Linear approximation between the logarithmof the exceedance and

the logarithm of reliability index: ln β7�z��c0�c1 ln z). The reliability
index prediction is obtained from βLlog−log�exp�ln β7�z�−yt��.

Fig. 2 Sampling from multiple disconnected tail regions by using multiple starting points.

BAYRAK AND ACAR 1213

D
ow

nl
oa

de
d 

by
 T

O
B

B
 E

K
O

N
O

M
I 

V
E

 T
E

K
N

O
L

O
JI

 o
n 

M
ar

ch
 2

9,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

59
47

 



8) Quadratic approximation between the logarithm of the exceedance
and the logarithmof reliability index: ln β8�z��c0�c1 ln z�c2�ln z�2).
The reliability index prediction is obtained from βQlog− log �
exp�ln β8�z � −yt��.

IV. Application to Example Problems

The accuracy of the proposed method is evaluated by using
numerical example problems as well as reliability prediction of a
horizontal axis wind turbine. Because the proposed method is a
sampling-based method, the reliability index predictions may differ
from a particular set of sampling points to another. To reduce the
effect of random sampling, the whole process is repeated for 10,000
times by using different sets of sampling points and the root mean
square error (RMSE) is evaluated. Reliability index predictions
obtained through classicalMCSwith 109 samples are used as basis in
comparison.

A. Application to Numerical Example Problems

Numerical example problems with a different number of variables
are used in this study as listed in Table 1. Descriptions of these
problems are provided in Appendix A. For all problems, three
different levels of reliability indices are used by adjusting the problem
parameters as explained in Appendix A.
Example problem 1 is a two-variable simple problem with a linear

LSF and is used to illustrate the proposed method. The LSF of this
example problem is given as

Y � R − C (6)

where R denotes the response (e.g., stress), C denotes the capacity
(e.g., strength), and both are random variables. Note that the positive
values of this LSF denote failure. The statistical properties of these
random variables are provided in Table 2. The mean value of the
response μR can be changed to obtain various levels of reliability
index values. For this problem, the actual reliability index can be
obtained easily from Eq. (7) as the LSF is linear and both random
variables follow normal distribution. In Eq. (7), μ and σ correspond to
the mean and standard deviation of the corresponding quantity,
respectively.

β � μC − μR������������������
σ2C � σ2R

p � 100 − μR����������������
82 � 62

p � 10 −
μR
10

(7)

First, the CTM is used to predict the reliability index by using eight
different polynomial approximation types (namely, βLlin−lin, β

Q
lin−lin,

βLlin−log, β
Q
lin−log, β

L
log−lin, β

Q
log−lin, β

L
log− log, and β

Q
log− log). The RMSEs

are calculated and reported in Table 3. The RMSE values shown in
bold fonts correspond to the smallest value in each row. It is found
that βLlin−lin approximation type provides the most accurate reliability
predictions. This is not surprising as the LSF is linear and the random
variables follow normal distribution.
Next, the proposed method (MCMC-based tail modeling [MCMC-

TM]) is used to predict the reliability index by using eight different
polynomial approximation types. In MCMC-TM, the proposal
distribution scale parameter k plays an important role in the reliability
index predictions. Eight different k values are used in the reliability

Table 1 Thenumerical exampleproblemsused in this study

ID Problem Number of variables

1 Simple example 2
2 Branin–Hoo 2
3 Camelback 2
4 Tuned mass damper 2
5 Central crack 4
6 Rotating disk 6
7 Rosenbrock (6 var.) 6
8 Dixon–Price (6 var.) 6
9 Rosenbrock (9 var.) 9
10 Dixon–Price (12 var.) 12

Table 2 Statistical properties of the random variables
in the illustrative example

Random variable Distribution Mean Standard deviation

R Normal μR 6
C Normal 100 8

Table 3 Root mean square errors of CTM predictions

μR βact βLlin−lin βQlin−lin βLlin−log βQlin−log βLlog−lin βQlog−lin βLlog− log βQlog− log

70 3.0 0.237 0.337 0.813 0.446 0.465 0.398 0.805 0.376
60 4.0 0.388 1.038 1.702 1.113 1.825 3.263 1.664 0.889
50 5.0 0.548 2.175 2.622 1.872 4.968 34.603 2.554 1.467

Boldface numbers show the minimum error values in each row.

Table 5 The impact of the proposal distribution scale parameter on
sampling point scatter in tail regiona

Proposal dist. scale parameter, k 0.1 0.25 0.5 0.75 1 1.25 1.5 2

Number of nonrepeated samples 321 229 141 94 68 51 41 29

The number of samples used to construct the tail model is 410.
aTo reduce the effect of random sampling, the whole procedure is repeated 10,000 times with
different samples, and the average values are reported in the table.

Table 4 Root mean square errors of MCMC-TM predictions (βLlin−lin is used as the
approximation type)

μR βact k � 0.1 k � 0.25 k � 0.5 k � 0.75 k � 1 k � 1.25 k � 1.5 k � 2

70 3.0 0.441 0.279 0.231 0.234 0.263 0.298 0.327 0.392
60 4.0 0.700 0.429 0.344 0.363 0.399 0.467 0.515 0.634
50 5.0 0.966 0.589 0.473 0.494 0.553 0.631 0.739 0.875

Boldface numbers show the minimum error values in each row.
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index predictions (see Table 4). For the eight different k values
considered, it is found that βLlin−lin approximation type provides the
most accurate reliability predictions as in the case of CTM. It must be
noted that the polynomial approximation type that provides the most
accurate reliability predictions in CTM does not necessarily provide
themost accurate reliability predictions inMCMC-TM.Table 4 shows
that the most accurate predictions are achieved when the proposal
distribution scale parameter is taken as k � 0.5.
The scatter of the sampling points in tail region has a direct influence

on the reliability prediction through tailmodeling. Therefore, the effect
of the proposal distribution scale parameter on the scatter of sampling
points in the tail region is also investigated. For this investigation,
μR � 70 is used. Table 5 and Fig. 3 show that as the proposal
distribution scale parameter increases, it is possible to sample from a
wide range of the random variable space, and this is an advantage. It is
also found, on the other hand, that as the proposal distribution scale
parameter increases, the number of repetitive samples increases, and
this is a drawback. Therefore, the value of the scale parameter needs to
be properly chosen for an accurate reliability estimation.
Then, the optimal value of the proposal distribution scale parameter is

determined.Basedon the results shown inTable 4, the optimal value ofk
is predicted to be in the [0.25, 0.75] range (for all reliability levels and for
this particular problemof interest). Thevalue of k is varied between 0.25
and 0.75 in 0.05 increments, and reliability index predictions are
performed. The RMSE values are provided in Table 6. Because a finite

number of sampling sets is used in RMSE calculations, the RMSE
values are subject to numerical noise. To eliminate this numerical noise,
response surface modeling is used to determine the optimal value of k.

Fig. 3 The effect of the proposal distribution scale parameter on sampling point scatter in tail region.

Table 6 Root mean square errors of MCMC-TM predictions in a reduced range of proposal distribution scale
parameter values

μR βact k � 0.25 k � 0.3 k � 0.35 k � 0.4 k � 0.45 k � 0.5 k � 0.55 k � 0.6 k � 0.65 k � 0.7 k � 0.75

70 3.0 0.279 0.255 0.242 0.233 0.231 0.231 0.225 0.226 0.230 0.235 0.234
60 4.0 0.429 0.393 0.373 0.360 0.348 0.344 0.345 0.349 0.350 0.354 0.363
50 5.0 0.589 0.534 0.507 0.486 0.476 0.473 0.475 0.476 0.484 0.491 0.494

Boldface numbers show the minimum error values in each row.

Fig. 4 Change of RMSE over different k values (for μR � 70) and the
response surface model fitted.
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A quadratic response surface is fitted to RMSE values in terms of the
proposal distribution scale parameter (see Fig. 4), and the constructed
response surface is used to determine the optimal value of k. For this

simple example problem with μR � 70, the optimal value of the
proposal distribution scale parameter is found to be k� � 0.5707.
Similarly, the optimal value of k is found as k� � 0.5662 for μR � 60,
and k� � 0.5613 for μR � 50.
The overall procedure outlined above for the Example Problem 1 is

repeated for all reliability levels of all example problems, and the
optimum k values obtained are given in Table 6. It is found that as the
number of random variables in the problem increases, the optimum k
value also increases. It is also observed that there is no clear correlation
between the reliability level of the problem and the optimum k value.
Therefore, the average values of the optimum k values are computed
over three different reliability levels for all example problems, and
these average values are used to generate an approximate relationship
between the optimum k value and the number of random variables.
The dependency of the scale parameter k on the nature of theLSFand

the statistical properties of the LSF is analyzed. The details of this
analysis are provided inAppendix B. The linearity and the roughness of
the LSF are used asmeasures of the nature of the LSF. The coefficient of
variation (c.o.v.), skewness, and kurtosis are used as key statistical
properties of the limit state function. It is found that there is no linear
relationship between these measures and the scale parameter k.
The variation of the optimum k value (the average value evaluated

over three different reliability levels) with respect to the number of
variables over all example problems is shown inFig. 5.A linear response
surface is constructed between the number of random variables (nvar)
and optimum k value (k�). It is found that an approximate relationship
k� � 0.4877� 0.0448nvar can be constructed. This approximate
relationshipwill be used in the next section, where the proposedmethod
is applied to the reliability prediction of a horizontal axis wind turbine.
The comparison of the accuracy of CTM and MCMC-TM

predictions over all example problems is provided inTable 8,where the
smaller RMSE value in each row is shown in bold fonts for ease of

Table 7 Optimum k values for all example problems

Problem ID nvar For βlow For βmed For βhigh Average

1 2 0.5707 0.5662 0.5613 0.5661
2 2 0.5051 0.7499 0.6458 0.6336
3 2 0.5368 0.5639 0.5036 0.5348
4 2 0.3722 0.4933 0.4925 0.4527
5 4 0.6669 0.6690 0.6737 0.6699
6 6 0.7255 0.7168 0.7030 0.7151
7 6 0.7922 0.5869 1.2685 0.8825
8 6 0.6373 0.9032 1.0320 0.8575
9 9 0.8521 0.5801 1.3150 0.9157
10 12 0.7988 0.9611 1.0366 0.9322

y = 0.0448x + 0.4877
R² = 0.7845

O
pt

im
um

 k

Number of Random Variables
Fig. 5 Variation of the optimum k value with respect to the number of

random variables.

Table 8 Comparison of the RMSE of CTM and MCMC-TM for all example problems

Problem ID nvar Rel. index, β RMSE for CTM Approach for CTM RMSE for MCMC-TM Approach for MCMC-TM

1 2 3.00 0.237 βLlin−lin 0.225 βLlin−lin
4.00 0.388 βLlin−lin 0.344 βLlin−lin
5.00 0.548 βLlin−lin 0.473 βLlin−lin

2 2 3.03 0.333 βQlog− log 0.265 βQlog− log

4.00 0.509 βQlog− log 0.480 βQlin−log
5.00 0.908 βQlin−log 0.630 βQlin−log

3 2 2.95 0.266 βQlin−log 0.211 βQlin−log
4.00 0.566 βQlin−log 0.395 βQlin−log
5.05 0.764 βQlin−log 0.532 βQlin−log

4 2 3.03 0.329 βQlog− log 0.191 βQlin−lin
3.42 0.434 βLlin−lin 0.376 βLlin−lin
4.46 1.179 βLlog−lin 1.010 βLlog−lin

5 4 3.01 0.241 βLlin−lin 0.241 βLlin−lin
4.01 0.396 βLlin−lin 0.369 βLlin−lin
5.01 0.546 βLlin−lin 0.512 βLlin−lin

6 6 3.06 0.241 βLlin−lin 0.247 βLlin−lin
4.05 0.431 βLlin−lin 0.374 βLlin−lin
5.08 0.650 βLlin−lin 0.540 βLlin−lin

7 6 3.03 0.284 βQlog− log 0.259 βQlin−log
4.03 0.510 βQlog− log 0.547 βQlog− log

5.03 0.827 βQlog− log 0.948 βQlin−log
8 6 3.00 0.267 βQlog− log 0.238 βQlin−log

4.02 0.533 βQlog− log 0.495 βQlin−log
5.04 1.100 βQlog− log 0.808 βQlin−log

9 9 3.02 0.289 βQlog− log 0.271 βQlin−log
4.04 0.526 βQlog− log 0.553 βQlog− log

5.09 0.829 βQlog− log 0.950 βQlin−log
10 12 3.05 0.284 βQlog− log 0.267 βQlin−log

4.02 0.521 βQlog− log 0.523 βQlin−log
5.07 1.072 βQlog− log 0.834 βQlin−log

Boldface numbers show the minimum error values in each row.
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comparison. It is found thatMCMC-TMpredictions aremore accurate
than CTM predictions at all reliability levels when the number of
variables is less than or equal to four. For the six-variable problems,
MCMC-TM predictions are more accurate than CTM predictions for
six cases out of nine. For the nine-variable problem, MCMC-TM
prediction ismore accurate thanCTMprediction at only one reliability
level. Finally, for the 12-variable problem,MCMC-TMpredictions are
more accurate than CTM predictions at two reliability levels.
Evaluation of the dependency of the performance of the proposed

method on the probability distribution types of the input random
variables is explored in Appendix C. It is found that the performance
of MCMC-TM is not dependent on the probability distribution types
of the input random variables, and this is in fact a good property
possessed by the tail modeling methods.

B. Application to Wind Turbine Reliability Prediction

The proposed method is also applied to reliability prediction of the
Risoe wind turbine, which is a 100 kW horizontal-axis wind turbine
developed by Denmark Technical University National Laboratory for
Sustainable Energy to be used for field testing purposes. Table 9
provides the geometrical characteristics of Risoe wind turbine (taken
from Ceyhan et al. [21]). Risoe wind turbine blades are twisted
and tapered (see Fig. 6), and use NACA 63-4xx series airfoils.

The reliability of the wind turbine is evaluated by its capability of
producing 100 kW power output at 13.5 m/s wind speed. The power
generated by the wind turbine is evaluated using WT_Perf software
(a free software developed by the U.S. National Renewable Energy
Laboratory), which uses blade element momentum theory (BEMT).
BEMT is one of the oldest and most commonly used methods for

evaluating the aerodynamic performance of wind turbines. BEMT is a
combination of the blade element theory and momentum theory [22].
Even though the theory is based onmany assumptions, it still provides
satisfactory results at low wind speed values [23]. In this theory,
the flow is assumed to be continuous, homogeneous, steady state,
incompressible, and axisymmetric and the turbulence effects are
ignored. In this study, the number of blade elements is taken as 10.
The LSF of this example problem is given as

Y � Pout�x� − Pcrit (8)

where Pout is the power output of the wind turbine, x is the random
variable vector, andPcrit is the critical value of the power output (taken
as 100 kW). For this problem, the random variables are the turbine
radius, the rotational speed, the blade set angle, and the root chord.
Table 10 gives the statistical properties of the random variables.
Two different cases of this problem are considered to obtain two

different reliability levels. For the first case RV1 through RV4 are all
taken as random variables, whereas for the second case RV1 through
RV3are takenas randomvariables.The reliability indices corresponding
to the first and the second cases are computed as β � 3.69 and
β � 4.92, respectively, through MCS with a sample size of 107.
The procedure followed for the numerical example problems is

repeated for the wind turbine problem. First, RMSE values of

Table 10 Random variables for Risoe wind turbine problem

ID Random variable Distribution Mean Standard deviation

RV1 Turbine radius Normal 9.5 m 0.01 m
RV2 Rotational speed Normal 47.5 rpm 0.03 rpm
RV3 Blade set angle Normal 1.8 deg 0.05 deg
RV4 Root chord Normal 1.09 m 0.01 m

Fig. 6 Twist and taper variation of Risoe wind turbine blades over the chord.

Table 9 General characteristics of Risoe
wind turbine

Number of blades 3

Turbine diameter 19 m
Rotational speed 47.5 rpm
Cut-in wind speed 4 m∕s
Control type Stall

Rated power 100 kW
Root extension 2.3 m
Blade set angle 1.8 deg
Maximum twist 15 deg
Root chord 1.09 m
Tip chord 0.45 m
Airfoil NACA 63-4xx series
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MCMC-TM predictions are computed for eight different k values
(i.e., k � 0.1, k � 0.25, k � 0.5, k � 0.75, k � 1, k � 1.25,
k � 1.5, andk � 2).The smallestRMSEvalue isobtained fork � 0.5
for the three-variable case, whereas the smallest RMSE value is
obtained for k � 0.75 for the four-variable case. Based on these
results, the optimal value ofk is predicted to be in the [0.25, 0.75] range
for the three-variable case, and in the [0.5, 1.0] range for the four-
variable case.Next, the value of k is varied between its lower and upper
bounds in 0.05 increments, and reliability index predictions are
performed. The RMSE values of MCMC-TM predictions in the
reduced k range are given in Table 11.
Then, quadratic response surfaces are fitted to RMSE values in terms

of the proposal distribution scale parameter for both cases, and the
constructed response surfaces are used to determine the optimal value
of k. Table 12 shows the optimum k values for two reliability levels as
well as the prediction of the optimal k value by using the approximate
relationship obtained earlier (k� � 0.4877� 0.0448nvar). It is seen that
the approximate value and the optimum value obtained are in good
agreement. Finally, the accuracies of CTMandMCMC-TMpredictions
for this problem are compared. Table 13 shows that MCMC-TM
predictions are more accurate than CTM predictions for both of the
reliability levels of this problem.

C. Confidence Intervals of the Reliability Estimations by Using
Bootstrap Method

The errors of the reliability index predictions are computed by
using the actual values of the reliability indices, which are unknown
for the practical problems. The confidence intervals of the reliability

estimations provide an estimation of the expected error. As noted
by Picheny et al. [24], derivation of an analytical formula for the
confidence intervals is a very challenging task. To overcome this
problem, bootstrap method is used to assess the confidence intervals
in this study.
Bootstrap method is an efficient numerical method to estimate the

distribution of a statistical parameter from a sample set of results [25].
The main idea of bootstrapping method is to generate a number of
bootstrap samples by re-samplingwith replacement from the original
samples, and then approximating the distribution of the statistical
parameter of interest (e.g., mean, standard deviation, probability
of failure, etc.) from the bootstrap samples. As the re-sampling
procedure is based on selecting data randomly with replacement, the
statistical properties of the bootstrap samples are different from
that of the original samples. Therefore, for any bootstrap samples, the
value of the statistical parameter of interest would take different
values, allowing estimation of the statistical distribution of the
statistical parameter of interest. It was suggested that the size of the
samples (N) should be larger than 100 to obtain reliable results [26].
In this study, we useN � 500 samples. It was recommended that the
number of bootstrap sample sets (p) should be large enough
(typically between 500 and 5000) so that the major source of
uncertainty would come from the original sample [24]. In this study,
we use p � 1000 set of bootstrap samples. The framework for the
bootstrapmethod is shown in Fig. 7. The reader may refer to [24 –26]
for details of bootstrap method.
The 95% confidence intervals for the MCMC-TM predictions and

the RMSE value calculated based on the actual reliability index value
are given in Table 14. Because the 95% confidence intervals
correspond to plus/minus two standard deviations away from the
mean (for a normal distribution), we compare the confidence interval
divided by four to the RMSE values. Note that for a non-Gaussian
response, plus/minus two standard deviations may not correspond
to 95% confidence. It is observed that the confidence intervals
computed through the bootstrap method have good agreement with
the RMSE values, which are unavailable for practical problems.

Table 13 Comparison of the RMSE of CTM and MCMC-TM for the wind turbine problem

nvar Rel. index, β RMSE for CTM Approach for CTM RMSE for MCMC-TM Approach for MCMC-TM

4 3.69 0.376 βLlin−lin 0.316 βLlin−lin
3 4.92 0.557 βLlin−lin 0.472 βLlin−lin

Boldface numbers show the minimum error values in each row.

Table 12 Optimum k values and

comparison to the approximate value

nvar βact k� k� � 0.4877� 0.0448nvar
4 3.69 0.689 0.667
3 4.92 0.603 0.622

Table 11 Rootmean square errors ofMCMC-TMpredictions in a reduced range of proposal distribution scale parameter values
(wind turbine problem)

nvar βact k � 0.5 k � 0.55 k � 0.6 k � 0.65 k � 0.7 k � 0.75 k � 0.8 k � 0.85 k � 0.9 k � 0.95 k � 1.00

4 3.69 0.338 0.336 0.326 0.330 0.316 0.320 0.338 0.328 0.349 0.362 0.351
nvar βact k � 0.25 k � 0.3 k � 0.35 k � 0.4 k � 0.45 k � 0.5 k � 0.55 k � 0.6 k � 0.65 k � 0.7 k � 0.75
3 4.92 0.632 0.561 0.543 0.522 0.491 0.480 0.475 0.472 0.491 0.474 0.489

Boldface numbers show the minimum error values in each row.

Fig. 7 The framework for the bootstrap method (see also Picheny et al. [24]).
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It must be noted that derivation of an analytical formula that could
provide the confidence for a given number of samples would be
appealing such that the number samples could be estimated for an
estimated reliability and desired confidence level. However, as noted
by Picheny et al. [24] it is not easy to derive such an analytical formula.

V. Conclusions

An efficient tail modelingmethod based on the use ofMarkov chain
Monte Carlo (MCMC) method with Metropolis–Hastings algorithm
was proposed in this paper. A commonly used proposal distribution
formulawasmodified by using a scale parameter. The optimal value of
this scale parameter was obtained for various numerical example
problems with a varying number of random variables, and an
approximate relationship was obtained between the optimal value of
the scale parameter and the number of random variables. From the
results obtained from these studies, the following were observed:
1) It is found that as the number of random variables in the problem

increases, the optimum k value also increases. It is also observed that
there is no clear correlation between the reliability level of the
problem and the optimum k value.
2) The approximate relationship obtained between the optimal

value of the proposal distribution scale parameter and the number of
randomvariables was found toworkwell for the reliability prediction
of a horizontal axis wind turbine.
In addition, the performance of the proposed method, named

MCMC-TM, was compared with that of the classical tail modeling
(CTM) for the numerical example problems as well as the reliability
prediction of a horizontal axis wind turbine. From the findings of
these investigations, the following were observed:
1) For the numerical example problems, MCMC-TM was more

accurate than CTMwhen the number of variables is less than or equal to
four. For six-variable problems, MCMC-TM was more accurate than
CTM for six cases out of nine. For a larger number of random variables,
it was observed that both approaches have similar accuracies.
2) For thewind turbine reliability estimation problem,MCMC-TM

predictions were more accurate than CTM predictions.

Moreover, bootstrap method is used to compute the confidence
intervals of the reliability estimations. It is observed that the
confidence intervals computed through the bootstrap method have
good agreement with the root mean square error values, which are
unavailable for practical problems.
Furthermore, the dependencyof the scale parameter k on the nature

of the limit-state function (LSF) and the statistical properties of the
LSF is analyzed. The linearity and the roughness of the LSF are used
as measures of the nature of the LSF. The c.o.v., skewness, and
kurtosis are used as key statistical properties of the limit state
function. It is found that there is no linear relationship between these
measures and the scale parameter k.
Finally, the dependency of the performance of the proposed method

on the probability distribution types of the input random variables was
explored. It is found that the performance of MCMC-TM is not
dependent on the probability distribution types of the input random
variables.

Appendix A: Definitions of the Numerical
Example Problems

In this study, the LSF of the example problems are formulated such
that the positive value of the LSF denotes failure, because the upper
tail of the probability distribution is modeled. It must be noted that
this formulation is opposed to the conventional LSF setting, where
the negative value of the LSF designates failure.
For all numerical example problems, three different reliability levels

are considered by changing a proper term in the LSF (see TableA1). For
instance, for the simple example problem, three different μR terms are
used (70, 60, and 50, respectively) to obtain three different reliability
index values (3.0, 4.0, and 5.0, respectively). Similarly, for the
Branin–Hoo example problem, three different ycrit terms are used
(190, 380, and 850, respectively) to obtain three different reliability
index values (3.03, 4.0, and 5.0, respectively). The reliability index
values reported in Table A1 are predicted using crude Monte Carlo
simulations with 109 samples.

Table 14 Comparison of the confidence interval for MCMC-TM and the RMSE of MCMC-TM for all problems

Problem ID nvar Rel. index, β
Mean, median predictions

for MCMC-TM 95% Confidence intervals
Confidence interval

divided by 4
RMSE for
MCMC-TM

1 2 3.00 3.189, 3.185 2.770–3.645 0.219 0.225
4.00 4.003, 3.993 3.409–4.673 0.316 0.344
5.00 5.094, 5.049 4.225–6.098 0.468 0.473

2 2 3.03 2.812, 2.716 2.375–3.690 0.329 0.265
4.00 4.221, 4.313 2.982–5.499 0.629 0.480
5.00 4.984, 5.025 3.195–7.695 1.125 0.630

3 2 2.95 2.799, 2.777 2.389–3.325 0.234 0.211
4.00 3.526, 3.470 3.058–4.320 0.316 0.395
5.05 4.125, 4.077 3.447–5.364 0.479 0.532

4 2 3.03 2.900, 2.896 2.654–3.179 0.131 0.191
3.42 3.534, 3.454 2.877–4.724 0.462 0.376
4.46 3.940, 3.802 3.061–5.826 0.691 1.010

5 4 3.01 3.202, 3.184 2.738–3.735 0.249 0.241
4.01 4.186, 4.162 3.446–5.038 0.398 0.369
5.01 5.216, 5.195 4.223–6.390 0.542 0.512

6 6 3.06 2.981, 2.970 2.545–3.498 0.238 0.247
4.05 3.918, 3.906 3.272–4.603 0.333 0.374
5.08 4.956, 4.918 4.094–6.059 0.491 0.540

7 6 3.03 2.849, 2.802 2.487–3.408 0.230 0.259
4.03 3.156, 3.029 2.470–4.521 0.513 0.547
5.03 4.146, 3.844 3.004–6.606 0.901 0.948

8 6 3.00 2.787, 2.737 2.431–3.365 0.234 0.238
4.02 3.610, 3.493 2.843–4.983 0.535 0.495
5.04 4.314, 4.004 3.236–6.559 0.831 0.808

9 9 3.02 3.096, 3.073 2.623–3.760 0.284 0.271
4.04 3.608, 3.387 2.746–5.778 0.758 0.553
5.09 4.151, 3.717 3.054–7.238 1.046 0.950

10 12 3.05 2.894, 2.857 2.464–3.470 0.252 0.267
4.02 3.538, 3.355 2.804–5.063 0.565 0.523
5.07 4.585, 4.277 3.272–7.285 1.003 0.834

Wind turbine 4 3.69 3.677, 3.649 3.132–4.409 0.319 0.316
3 4.92 4.837, 4.783 4.008–5.949 0.485 0.472
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A.1. Two-Variable Simple Example

This problem is a two-variable simple problem with a linear LSF
given as

Y � R − C (A1)

where R denotes the response (e.g., stress), C denotes the capacity
(e.g., strength), and both are random variables. The statistical properties
of these random variables are provided in Table A2. The mean value of
the response μR is changed to obtain various levels of reliability index
values. For this problem, the actual reliability index can be obtained
easily from Eq. (A2) as the LSF is linear and both random variables
follow normal distribution. In Eq. (A2), μ and σ correspond to the mean
and standard deviation of the corresponding quantity.

β � μC − μR������������������
σ2C � σ2R

p � 100 − μR����������������
82 � 62

p � 10 −
μR
10

(A2)

A.2. Branin–Hoo

Branin–Hoo function can be defined in terms of the random
variables x1 and x2 as

ybh�x1; x2� �
�
x2 −

5.1x21
4π2

� 5x1
π

− 6

�
2

� 10

�
1−

1

8π

�
cos�x1�� 10

(A3)

The LSF for this problem can be written as

Y � ybh�x1; x2� − ycrit (A4)

In this problem, the random variables x1 and x2 follow normal
distributions. The mean values of x1 and x2 are taken as 2.5 and 7.5,
respectively. The standard deviations of both x1 and x2 are taken as
2.5. Thevalue of ycrit in Eq. (A4) is varied to adjust the reliability level
(see Table A1). Branin–Hoo function is depicted in Fig. A1.

A.3. Camelback

Camelback function can be defined in terms of the random
variables x1 and x2 as

ycam�x1;x2��
�
4−2.1x21�

x41
3

�
x21�x1x2�

�
−4�4x22

�
x22 (A5)

The LSF for this problem can be written as

Y � ycam�x1; x2� − ycrit (A6)

In this problem, the random variables x1 and x2 follow standard
normal distributions. The value of ycrit in Eq. (A6) is varied to adjust
the reliability level of this problem (see Table A1). Camelback
function is depicted in Fig. A2.

A.4. Tuned Mass Damper

The tuned vibration absorber problem is a damped single–degree-
of-freedom system with dynamic vibration absorber shown in

Table A1 The reliability levels considered for the example problems

ID Problem Terma Valueb βc Valueb βc Valueb βc

1 Simple example μR 70 3.00 60 4.00 50 5.00
2 Branin–Hoo ycrit 190 3.03 380 4.00 850 5.00
3 Camelback ycrit 400 2.95 1400 4.00 5000 5.05
4 Tuned mass damper ycrit 48 3.03 53 3.42 54 4.46
5 Central crack �KIC 44 3.01 52 4.01 63 5.01
6 Rotating disk ycrit 0.38 3.06 0.36 4.05 0.34 5.08
7 Rosenbrock (6 var.) ycrit 1.7 × 106 3.03 3.4 × 106 4.03 6.3 × 106 5.03
8 Dixon–Price (6 var.) ycrit 3.5 × 103 3.00 8.4 × 103 4.02 18 × 103 5.04
9 Rosenbrock (9 var.) ycrit 2.0 × 106 3.02 3.8 × 106 4.04 7.0 × 106 5.09
10 Dixon–Price (12 var.) ycrit 9 × 103 3.05 19 × 103 4.02 40 × 103 5.07

aThe term in the LSF that is varied to change the reliability level.
bThe value of the term.
cCorresponding reliability index.

Table A2 Statistical properties of the random
variables in the simple example problem

Random variable Distribution Mean Standard deviation

R Normal μR 6
C Normal 100 8

Fig. A1 Branin–Hoo function.

Fig. A2 Camelback function.
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Fig. A3–1. The original system is externally excited by a harmonic
force and the vibration of the system is reduced by the absorber. The
amplitude of the vibration depends on the following system
parameters:
1) R � m∕M, the mass ratio of the absorber to the original system
2) ζ, the damping ratio of the original system
3) b1 � ωn1∕ω, the ratio of the natural frequency of the original

system to the excitation frequency
4)b2 � ωn2∕ω, the ratio of the natural frequency of the absorber to

the excitation frequency
The LSF for this problem can be expressed as

Y � ytmd�b1; b2� − ycrit (A7)

where ytmd�b1; b2� is the amplitude of the system normalized by the
amplitude of the quasi-static response of the system, and this
normalized amplitude can be calculated from

ytmd�b1; b2� �
j1 − �1∕b2�2j��������������������������������������������������������������������������������������������������������������������������������������������������������������

�1 − R�1∕b1�2 − �1∕b1�2 − �1∕b2�2 � �1∕b1b2�2�2 � 4ζ2��1∕b1� − �1∕b1b22��2
p (A8)

The randomvariables of the problemareb1 andb2, and they follow
normal distribution with a mean value of 1.0 and standard deviation
of 0.025. R and ζ are taken as deterministic variables possessing the
following values:R � 0.01 and ζ � 0.01. The normalized amplitude
of the original system is plotted in Fig. A3–2. The value of ycrit in
Eq. (A7) can be adjusted to obtain various values of reliability indices
given in Table A1.

A.5. Central Crack

In this example problem, a rectangular plate of finite width W
having a central through-thickness crack of length 2a loaded in
tension with a uniform stress, S, is considered (see Fig. A4). The LSF
for this problem can be written as

Y �
�������������������
sec

�
πa

W

�s
S

������
πa

p
− KIC (A9)

where a is the half crack length,W is the plate width, S is the applied
stress, KIC is the fracture toughness, and all these variables are taken
random. The probability distributions and the mean and the standard
deviations of the random variables are given in Table A3. The mean
value of the fracture toughness ( �KIC) is varied to adjust the reliability
level of the problem (see Table A1).

A.6. Rotating Disk

This example problem is taken from Penmetsa and Grandhi [27].
The burst margin (Mb) of a rotating disk (see Fig. A5) is defined as
the margin of safety before an overstress condition occurs due to the
stress on the part being too large for the material to withstand. The
LSF for this problem is defined such that the burst margin should not
be smaller than a critical value, ycrit.

Y�Mb−ycrit; Mb�
�����������������������������������������������������������
αmSU∕

�
ρ�2πω�2�R3

o−R3
i �

3�385.82��Ro−Ri�
�s

(A10)

where αm is the material utilization factor (a safety factor) to account
for uncertainties and unknownmaterial properties, SU is the ultimate
tensile strength, ρ is the density,ω is the rotational speed, andRo and
Ri are the outer and inner radii of the disk. The statistical properties of

Fig. A3–1 Tuned vibration absorber.

Fig. A3–2 The normalized amplitude of the vibration absorber.

Fig. A4 Central cracked plate with a finite width.

Table A3 Statistical properties of the
random variables

Random variable Distribution Mean Standard deviation

a, mm Normal 25 0.75
W, mm Normal 500 5
S, MPa Normal 100 100
KIC; MPa

����
m

p
Normal �KIC 0.1 �KIC
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the random variables in this problem are given in Table A4. The value
of ycrit in Eq. (A10) is changed to obtain various reliability index
values (see Table A1).

A.7. Rosenbrock: 6-Variable Case

Rosenbrock function can be defined in terms of the random
variable vector x as

yrb�x� �
Xm−1

i�1

��1 − xi�2 � 100�xi�1 − xi�2� (A11)

In the 6 variable case of this problem,m � 6 is used. The LSF for
this problem can be written as

Y � yrb�x1; x2� − ycrit (A12)

In this problem, all random variables follow normal distributions.
The mean values of the random variables are all taken as 2.5. The
standard deviations of the random variables are all taken as 2.5.
The value of ycrit in Eq. (A12) is varied to adjust the reliability level of
this problem (see Table A1).

A.8. Dixon–Price: 6-Variable Case

Dixon–Price function can be defined in terms of the random
variable vector x as

ydp�x� � �x1 − 1�2 �
Xm
i�2

m�2x2i − xi−1�2 (A13)

In the 6-variable case of this problem,m � 6 is used. The LSF for
this problem can be written as

Y � ydp�x1; x2� − ycrit (A14)

In this problem, all random variables follow standard normal
distributions. The value of ycrit in Eq. (A14) is varied to adjust the
reliability level of this problem (see Table A1).

A.9. Rosenbrock: 9-Variable Case

In the 9-variable case of the Rosenbrock problem, m � 9 is used.
The value of ycrit in Eq. (A12) is varied to adjust the reliability level of
the problem.

A.10. Dixon–Price: 12-Variable Case

In the 12-variable case of the Dixon–Price problem, m � 12 is
used. The value of ycrit in Eq. (A14) is varied to adjust the reliability
level of the problem.

Appendix B: Dependency of the Scale Parameter on
the Nature and the Statistical Properties of the

Limit State Function

In this section, the dependency of the scale parameter k on the
nature and the statistical properties of the LSF is investigated. The
linearity and the roughness of the LSF are used as measures of the
nature of the LSF. The linearity of the LSF is assessed by computing
the coefficient of determination (R2) of the linear response surface
constructed in the range of mean plus/minus three times the standard
deviation of the input random variables. The linear response surfaces
are constructed by generating 100,000 data points in the input
random variable range mentioned above. The roughness of the limit
state function is computed using Eq. (B1), which is derived from the
bending energy functional [28,29]

roughness �
Z
Ω

Xnvar
i�1

Xnvar
j�1

�
∂2y

∂xi∂xj

�
2

dx (B1)

where Ω is the domain of input random variables. This integral is
computed in the range of mean plus/minus three times the standard
deviation of the input randomvariables throughMonteCarlo integration
using 100,000 samples. In this study, we use a nondimensional measure
of roughness by normalizing the input variables (x) as well as the output
variable (y) to [0, 1].
The coefficient of variation (c.o.v.), skewness, and kurtosis are

used as key statistical properties of the limit state function. These
properties are computed by using crudeMCSwith sample size of 108.
Table B1 shows the variation of the scale parameter kwith respect

to the R2, roughness, coefficient of variation, skewness, and kurtosis

Fig. A5 The geometry of the rotating disk.

Table A4 Statistical properties of the random variables
in the rotating disk problem

Random variable Distribution Mean Standard deviation

αm Normal 0.9377 0.0459
SU ; 1b∕in2 Normal 220,000 5,000
ω, rpm Normal 21,000 1,000
ρ; 1b∕in3 Normal 0.29 0.0058
Ro, in Normal 24 0.5
Ri, in Normal 8 0.3

Table B1 Dependency of the scale parameter with respect to the nature and the
statistical properties of the limit state function

ID Problem k� R2 Roughness c.o.v. Skewness Kurtosis

1 Simple example 0.5661 1.0 0 0.250 0 3
2 Branin–Hoo 0.6336 0.145 1.07E� 06 0.084 1.853 9.901
3 Camelback 0.5348 2.7 × 10−4 1.95E� 09 0.028 13.99 526.2
4 Tuned mass damper 0.4527 0.004 93.9 0.108 4.074 27.49
5 Central crack 0.6699 0.999 8.91E − 02 0.249 0.002 3
6 Rotating disk 0.7151 0.993 1.03E − 07 0.286 −0.2473 3.129
7 Rosenbrock (6 var.) 0.8825 0.477 1.90E� 06 0.064 3.344 23.72
8 Dixon–Price (6 var.) 0.8575 0.051 1.37E� 05 0.047 4.984 55.13
9 Rosenbrock (9 var.) 0.9157 0.471 1.91E� 06 0.074 2.656 16.21
10 Dixon–Price (12 var.) 0.9322 0.052 1.45E� 05 0.058 3.566 29.51
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of the limit state function. Thesevariations are graphically depicted in
Fig. B1. It is observed that there is no linear relationship between
these measures and the scale parameter k (notice the small R2 values
given in the figures).

Appendix C: Dependency of the Performance of the
ProposedMethod on the ProbabilityDistributionTypes of

the Input Random Variables

In this section, the dependency of the performance of the proposed
method on the probability distribution types of the input random
variables is explored. From the 10 example problems considered, 3 of
them (namely, the 2-variable simple example problem, 6-variable
Dixon–Price problem, and 12-variable Dixon–Price problem) are
selected as representative problems for this investigation. The reasons
for selecting these particular example problems are twofold: 1) the
number of input random variables is represented well; 2) MCMC-TM
has good performance over CTM for these problems.
The investigation in Sec. IV considered normally distributed

input normal variables; however, the performances of tail modeling
techniques (CTM, MCMC-TM, or other tail modeling methods) are
not dependent on the distribution type of the input random variables.
Therefore, distribution types other than normal distribution are also
considered. Normal and lognormal distributions are used in the simple
example problem. Normal, lognormal, and uniform distributions are
used in the six-variable Dixon–Price problem. Normal, lognormal,
uniform, and Weibull distributions are used in the 12-variable Dixon–
Price problem. The modified statistical properties of the random
variables in these example problems are given inTablesC1–C3.As the
lognormal distribution does not allow negative values, we changed the
mean values of the input variables from 0 to 10.

The numerical procedure outlined in Sec. IV is applied, and the
optimal values of the scale parameter k aswell as the prediction errors
(RMSE) of the CTM and MCMC-TM are computed. Table C4
represents the optimum k values for the selected example problems.
Comparing the optimum k values in Table C4 to those in Table 7, it is
seen that the optimum k values in both tables are close.
Table C5 provides comparison of the RMSE of CTM andMCMC-

TM for the selected examples. It is observed that MCMC-TM has
smaller RMSE values than CTM for the three selected problems for

Table C1 Modified statistical properties of the
random variables in the simple example problem

Random variable Distribution Mean Standard deviation

R Normal μR 6
C Lognormal 100 8

Table C2 Modified statistical properties of the
random variables in the six-variable Dixon–Price problem

Random variable Distribution Mean Standard deviation

x1, x2 Normal 10 1
x3, x4 Lognormal 10 1
x5, x6 Uniform 10 1

Table C3 Modified statistical properties of the
random variables in the 12-variable Dixon–Price problem

Random variable Distribution Mean Standard deviation

x1, x2, x3 Normal 10 1
x4, x5, x6 Lognormal 10 1
x7, x8, x9 Uniform 10 1
x10, x11, x12 Weibull 10 1

Fig. B1 Variation of the scale parameter with respect to the nature and the statistical properties of the limit state function.

Table C4 Optimum k values for the selected example problems

ID Problem nvar For βlow For βmed For βhigh Average

1 Simple example 2 0.4977 0.5099 0.5569 0.5215
8 Dixon–Price (6 var.) 6 0.5501 0.8009 0.8351 0.7287
10 Dixon–Price (12 var.) 12 0.7501 0.8218 0.9110 0.8276
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all reliability levels. These results show that the performance of
MCMC-TM is not dependent on the probability distribution types of
the input random variables, a good property possessed by tail
modeling methods.
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Table C5 Comparison of the RMSE of CTM and MCMC-TM for the selected examples

Problem ID nvar LSF term Rel. index, β RMSE for CTM RMSE for MCMC-TM

1 2 μR � 71 3.06 0.245 0.220
μR � 62 4.07 0.403 0.321
μR � 54 5.02 0.581 0.439

8 6 ycrit � 1270 3.03 0.364 0.299
ycrit � 1500 4.01 0.719 0.595

ycrit � 1850 5.04 1.027 0.997
10 12 ycrit � 4.13 × 106 2.98 0.368 0.315

ycrit � 4.56 × 106 4.00 0.862 0.689
ycrit � 5.06 × 106 5.04 1.389 1.116

Boldface numbers show the minimum error values in each row.
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