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Draft tube is the part of Francis turbines which is used to both discharge water and recover

kinetic energy at the exit of the runner. A design optimization study of an elbow type draft

tube based on the combined use of Computational Fluid Dynamics (CFD), design of ex-

periments, surrogate models and multi-objective optimization is presented in this study.

The geometric variables that specify the shape of the draft tube are chosen as input var-

iables for surrogate models and the pressure recovery factor and the head loss are selected

as output responses. It is determined that, pressure recovery factor, which is the main

performance parameter, can be increased by 4.3%, and head loss can be reduced by %20

compared to the initial CFD aided design. Pressure recovery factor, is represented with a

second order polynomial regression model in terms of the geometrical parameters based

on the optimization results. The verification of the model is also provided by comparison

with CFD results for different draft tubes other than that are used in the development of

the model. The model is verified using 30 different design points and it can predict the

pressure recovery factor with an error of less than 8%. This model allows the fast and

correct design and optimization of elbow type draft tubes, without the need for further CFD

simulations.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Hydro energy is one of the most sustainable, reliable, and

cost-effective form of energy. The advantages of hydro energy

over other renewable energy sources are that it emits limited

amounts of greenhouse gases, is very cost-effective, and the

amount produced can be tailored to meet consumer demands

[1]. Francis, Kaplan and Pelton are the most commonly used

water turbines, and amongst these types the Francis turbine is
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the most preferred one due to its larger range of flow rate and

head values.

A Francis type turbine consists of three main parts. These

are the runner, where energy is produced, the spiral case, stay

vanes and guide vanes that transfer water from the turbine

inlet to runner, and the draft tube which discharges water

from runner to tail water. Draft tube is used to both discharge

water and recover kinetic energy at the exit of the runner

producing vacuum. Pressure recovery and head loss from inlet
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to outlet of a draft tube are generally used to determine the

effectiveness of this component [2,3].

An elbow type draft tube comprises threemain parts: cone,

elbow and diffuser. Cross-sectional area is increased to reduce

the velocity and kinetic energy of water along the draft tube

cone and diffuser. However, the area of the elbow part is

usually kept constant to reduce frictional losses. Although

conventional hydro turbine design practice is based on expe-

rience, use of modern optimization techniques can result in

better solutions.

Computational Fluid Dynamics (CFD) became a powerful

tool in the design and analysis of turbomachinery recently.

Modeling of hydroturbines proved to be useful in design [4].

Especially, the reasons of loss of performance can be deter-

mined more easily compared to model tests [5]. Although

turbulent, three dimensional NaviereStokes simulations are

time consuming, even one dimensional CFD analysis for draft

tubes can be useful to determine the effects of design pa-

rameters on performance [6].

Different optimization techniques have been used in

design and rehabilitation of hydraulic turbines for the last

decades [7]. Discrete algorithms, evolutionary algorithms and

algorithms based on the direction of search (gradient based

local search or global search) that are incorporated with CFD,

have widely been used to determine optimum shapes for

turbine components. However, the fact that which algorithm

is better for what kind of application is still not clear [8e10].

The optimization process also requires a large amount of

computational time and effort.

Design of experiments step is an important part of

surrogate-based optimization where the design points that

directly affect the accuracy of the surrogate models are deter-

mined. For simulation based studies, Latin hypercube sam-

pling, optimal spacefilling, sparcegrid initializationaresomeof

themethodsused in literature [11]. Forexperimental studies,on

the other hand, factorial experimental designs are preferred

[12,13]. If time-variant design variables exist, then design of

dynamic experiments technique can also be used [14].

After the design points (i.e., training points) are deter-

mined, response values are computed at the design points and

the surrogate models are constructed to relate responses to

the design variables. The standard second order polynomial

response surface, Kriging, nonparametric regression and

neural network are amongst the most commonly used sur-

rogate model types in literature [11].

An automated optimization methodology is necessary for

draft tubes inorder toobtainaquickoptimizeddesign.Ayancik

et al. [11] used several of thesemethods for the optimization of

the runner of a Francis turbine, since it is not known a priori

which of the methods would provide better results. Acar et al.

[15] found out that the optimum that is determined using a

method which provides the most accurate result does not

guarantee an optimum design with best performance.

In this article, firstly, design optimization study of an elbow

type draft tube, based on the combined use of design of
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Fig. 1 e Optimizati
experiments, surrogate models and multi-objective optimiza-

tion is presented. The use of this surrogate based approach al-

leviates the computational cost. Computational fluid dynamics

(CFD) is also integrated to the optimization process. Pressure

recovery factor, which is the main performance parameter, is

represented with a regression equation in terms of the

geometrical parameters based on the optimization results.

Such a model allows the fast and correct design and optimiza-

tion of elbow type draft tubes, without the need for CFD simu-

lations.Theverificationof theregressionmodel isalsoprovided

by comparison with CFD results for different draft tubes other

than that are used in the development of themodel.
CFD-Driven Surrogate-Based Design
Optimization methodology

The design geometry can be automatically generated and

modified with an optimization system. In any optimization

process, design variables, objective and constraints should be

specified and written in a standard form as in Equation (1)

[16,17].

Find x ¼ fx1; x2;/; xng
Min fðxÞ
S:t: hjðxÞ ¼ 0; j ¼ 1;/;ne

gkðxÞ � 0; k ¼ 1;/;ng

xL � x � xU

(1)

where x is a vector representing the design variables, f is the

objective function, h and g are the equality and inequality

constraints, xL and xU are the lower and upper bounds of the

design variables.

The flowchart used for the design and optimization of the

draft tube is tabulated in Fig. 1. It starts with the parameteri-

zation of the tube. The shape is represented by a number of

parameters. Initial simulation should be prepared by the user

for parameter selection. After the manual initiation, auto-

matic optimization process starts. After selecting the shape

parameters and upper and lower limits of these parameters,

CFD simulations are performed in the range of limits based on

Design of Experiment (DoE) method. Response surfacemodels

(i.e., surrogate models, metamodels) are used to estimate an

approximate model for output parameters in terms of design

parameters. Finally, the multi-objective optimization algo-

rithms are used to find the optimum solution by using the

response surface models [18].
Parameterization

Parameterization makes it easy to regenerate the design,

mesh, perform CFD analysis and post-processing. Five inde-

pendent geometrical parameters are selected as design vari-

ables: cone angle (q1), cone height (H1), elbow radius (R),

diffuser angle (q2) and diffuser length (H2) (Fig. 2), in order to

define the geometry. Pressure recovery factor (Cp) and head
Simulate All 
Generated 

Samples

Create 
Response
Surface

Multi-
Objective

Optimization

on flow chart.
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Fig. 2 e Draft tube shape parameters.

Table 1 e Properties of the baseline design.

Geometrical
parameter

Value Variable type

D1 530 mm Independent

D2 698,1 mm Dependent

D2 ¼ D1þ 2*H1*tan

�
q1
2

�
D3 698,1 mm Dependent [D2]

D3 ¼ D2

D4 698,1 mm Dependent [D2]

D4 ¼ D2

D5 698,1 mm Dependent [D2]

D5 ¼ D2

D6 698,1 mm Dependent [D2]

D6 ¼ D2

D7 698,1 mm Dependent [D2]

D7 ¼ D2

D8 1117,7 mm Dependent

D8 ¼ D2þ 2*H2*tan

�
q2
2

�
H1 800 mm Independent

H2 3000 mm Independent

R1 1100 mm Independent

q1 12� Independent

q2 8� Independent
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loss (DH), are used as output parameters of the optimization

system as given in Equation (2) and Equation (3) to measure

the effectiveness. These output responses are obtained from

the CFD analysis.

Cp ¼ Pout;s � Pin;s

1=2rV2
in

(2)

DH ¼ Pout;t � Pin;t

rg
(3)

where Pout,s is the static pressure at the draft tube exit, Pin,s is

the static pressure at the draft tube inlet, Pout,t is the total

pressure at the draft tube exit, Pin,t is the total pressure at the

draft tube inlet, r is the density of water and Vin is the velocity

at the draft tube inlet [9].

The multi-objective design optimization of the draft tube

can be formulated as given in Equation (4). Since a typical

acceptable design for the draft tube has a pressure recovery

factor between 0.8 and 0.85, the pressure recovery factor is

defined as greater than 0.8 as a constraint for the optimiza-

tion. The geometric limits used for the process are also shown

in the equation.

Find q1; q2;H1;H2;R
Min � Cp;DH
S:t: 0:8� Cp � 0

5 � q1 � 15
720 � H1 � 1000
990 � R � 1400
5 � q2 � 15
2700 � H2 � 3500

(4)

The properties of the baseline design used for optimization

is presented in Table 1. It is determined with CFD analysis.

Several researchers in the field of design and optimization of

hydraulic turbines performed their studies with the help of

CFD techniques. In this work, the methodology used and

developed by our group [19,20] is utilized for the CFD analysis.

Flow simulations are carried out per this methodology by

using the commercial software ANSYS 16.0 [21] based on
steady state Reynolds-Averaged NaviereStokes equations

using k-ε turbulence model (medium intensity).

CFD analysis and computational details

Three dimensional turbulent Reynolds Averaged Naviere-

Stokes (RANS) equations are solved in the CFD analysis for

incompressible flow using k-ε turbulence model, where k is

the turbulent kinetic energy and ε is turbulent kinetic energy

dissipation. The number of grid points are 3.5million to satisfy

mesh independence. The domain is meshed with unstruc-

tured grids using triangular and tetrahedral elements. The

computations are performed using an HP Z-840 workstation

utilizing parallel computations of 30 processors. The

http://dx.doi.org/10.1016/j.ijhydene.2017.03.082
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computation time for one draft tube simulation is three hours

with 30 processors.

The geometry is imported and geometric parameters are

selected as input parameters. At the design point, runner

outflow swirl is nearly zero to increase power output; there-

fore, fluid enters the tube vertically (normal to the boundary)

andmassflow inlet (2m3/s) boundary condition is selected. For

outlet boundary condition, pressure outlet is given as atmo-

sphericpressure (1 atm).Nobackflowisallowed.All otherparts

are considered as wall with no slip condition. The analysis is

performed using CFX module [21] and grid topology and flow

properties are kept unchanged for all the analyses. Informa-

tion in Ayli et al. [20] is used to obtain a mesh independent

solution.

Design of Experiment (DoE)

The optimization process starts with generating the sampling

space within the lower and upper limits. Locations of the

sample points in design space affect the accuracy of the

response surface, so choosing an effective DoE method be-

comes significant. In order to determine the distribution of

sampling points, two DoE methods are selected: Custom

Sampling (CS) and Latin Hypercube Sampling (LHS). The

advantage of these methods is that the number of sample

points can be selected manually which affects both quality of

prediction and randomness of the response surface. In this

study, 50 data points (i.e., training points), are generated for

each DoE type. The number of data points is chosen to be ten

times the number of design variables.

Surrogate modeling

Once the DoE is generated and results are obtained, an

approximate model (i.e., a surrogate model) is constructed for

each output variable in terms of the input design variables.

There is a gap in literature about selection of the most accu-

rate type of surrogate model to be used for elbow type draft

tube optimization, so several different surrogate models are

constructed: namely, the standard second order polynomial

response surface, Kriging, nonparametric regression and

neural network. In order to assess the accuracy of these sur-

rogate models, 10 test points are generated. The results are

shown in Table 2. It is observed that the constructed surrogate

models have acceptable accuracy (relative Root Mean Square

Error, RMSE values are smaller than 5%), and the standard

second order polynomialmodel is themost accuratewhen the

error metric of our interest is the relative RMSE.
Table 2eAccuracies of the constructed surrogatemodels.

Surrogate model Relative RMSE (%)

Cp DH

Standard second order polynomial

response surface

0.07 0.45

Kriging 0.06 0.50

Nonparametric regression 0.56 4.86

Neural network 0.11 0.75
Multi-objective optimization

Two different search algorithms are used in optimization;

screening and multi-objective genetic algorithm (MOGA)

which can handle multiple objective functions. The working

principle of the screening method is direct sampling by a

quasi-random number generator based on the Hammersley

algorithm and then sorting the samples based on objectives

and constraints. The other method, MOGA, provides a more

refined approach than the screening method with an iterative

approach.

In optimization, maximization of recovery factor and

minimization of head loss are selected as objective functions

and one constraint function is set to the recovery factor values

that should be greater than or equal to 0.8. After the optimi-

zation problem is solved by using surrogate models, the final

step is to verify the optimization results by conducting CFD

analysis of the optimum design.
Results and discussion

In this section, firstly, the results of CFD-Driven Surrogate-

Based Design Optimization will be presented and discussed in

detail in Section CFD-Driven Surrogate-Based Design

Optimization Results. Then, the pressure recovery factor is

represented with a regression equation in terms of the

geometrical parameters based on the optimization results.

The results of this part are summarized in section

Development of a Regression Equation for draft tube

performance prediction with the help of the results of the

optimization study. Finally, the verification of the regression

model is provided by comparison with CFD results for

different draft tubes other than that are used in the develop-

ment of the model. These results are presented and discussed

in section Verification of the developed regression equations.

CFD-Driven Surrogate-Based Design Optimization results

Draft tube designs are performed in Ansys Workbench by

using CFX (Fluid Flow), and Response Surface Optimization

modules [21]. Input and output variables are defined in the

parameter set. Optimization process includes geometry opti-

mization to reach maximum pressure recovery factor with

minimum head loss. Since four different surrogate models

and two different optimizers are used, eight candidate opti-

mum designs are generated (Table 3). It is seen that the opti-

mum candidate design achieved by using standard second

order polynomial response surface surrogate model and

MOGA optimization algorithm displays the best performance,

so it is taken as the optimum design.

An existing draft tube is taken from an actual power plant

which has % 92.8 overall turbine efficiency. The recovery

factor of the baseline draft tube design is 0.813 which is

assumed to be very efficient according to the literature [3]. The

properties of the initial and the optimized designs are shown

in Table 4. It is seen that the optimum design has 0.848 pres-

sure recovery factor (increased by 4.3% compared to the initial

design) and 0.448 m head loss (reduced by 20% compared to

the initial design).

http://dx.doi.org/10.1016/j.ijhydene.2017.03.082
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Table 3 e Eight candidate optimum designs.

# Surrogate model Optimizer q1 [�] q2 [�] H1 [mm] H2 [mm] R [mm] Cp DH [m]

1 KRa MOGA 10.86 7.37 954 3277 1377 0.841 0.451

2 KR Screening 11.27 7.52 998 3324 1340 0.839 0.481

3 NPRa MOGA 11.36 7.81 931 3144 1326 0.840 0.473

4 NPR Screening 11.26 7.92 928 3173 1233 0.838 0.480

5 NNa MOGA 10.97 7.24 980 3176 1361 0.841 0.479

6 NN Screening 11.27 7.52 998 3324 1340 0.832 0.485

7 RSa MOGA 10.80 7.27 994 3455 1399 0.848 0.448

8 RS Screening 10.80 8.81 983 3300 1397 0.844 0.450

Bold values indicate the selected optimum design.
a KR: Kriging, NPR: Non-parametric regression, NN: neural network, RS: response surface.

Table 4 e Comparison of initial and optimized designs.

Initial Design Optimized Design

Cone Angle [�] 12.00 10.80

Cone Height [mm] 800 994

Elbow Radius [mm] 1100 1399

Diffuser Angle [�] 8.00 7.27

Diffuser Length [mm] 3000 3455

Pressure Recovery Factor [-] 0.813 0.848

Head Loss [m] 0.560 0.448
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Fig. 3 shows the pressure distribution on the midplane of

the initial and optimized draft tubes. Fig. 4 shows the

streamlines for the optimized case. The CFD results for the

optimum design show that the static pressure increases up to

the atmospheric pressure along the draft tube because of the

reduction of velocity (nearly zero) and kinetic energy which

are acceptable per Bernoulli equation if the potential energy

change is ignored. The flow attaches to the draft tube walls

that makes boundary layer detachment and occurrence of

backflow harder and reduces the losses caused by friction.

To examine the effects of the elbow part on the flow, ve-

locity vectors in the mid plane and velocity streamlines along

the draft tube are examined where the flow slowed down and

where flow separation takes place. Both tangential velocity

component of the fluid at inlet and the elbow of the draft tube

cause flow separation and backflow which cause vortices in

and after the elbow part of the draft tube. Flow separation and

formation of vortices can be prevented by adjusting the

inclination of the draft tube cone. If the angle is increased too

much, reverse pressure gradients occur. However, if the

inclination is not enough, velocity of the fluid will not

decrease and flow will enter the elbow part with high
Fig. 3 e Pressure distribution on the (a) Init
velocities increasing the friction losses. Figs. 3b and 4b show

that no separation occurs along the draft tube. However,

sudden velocity reduction at the elbow part corners cause the

pressure increase and friction losses. So, increase in cross

sectional areas should be distributed carefully considering the

cone and diffuser angles and the transition between them

should be smooth.

A sensitivity analysis is also performed to investigate the

impact of the design variables on the output responses. For

each output, the weights of different design parameters are

presented in Table 5. It is seen that angles of cone (Q1) and

diffuser (Q2) are the most significant design variables that

affect the pressure recovery factor and the head loss.

It is possible to change the cone and diffuser angles to

prevent hydraulic losses arising from vortices and separation.

Reverse pressure gradients occur if the cone angle increases

more than enough. If it is smaller than necessary, the velocity

of the flow does not decrease enough, causing the fluid to

enter the elbow with high velocities, which increases friction

losses. The optimum cone angle is computed to be 11� to

maximize the pressure recovery factor and 9� to minimize the

losses. The effects of diffuser angle on the results is such that

both pressure recovery factor and head loss increase up to 11�,
pressure factor decreases sharply after this angle whereas the

losses continue increasing.

Cone height (H1), elbow radius (R), and diffuser length (H2)

are also other factors that cause an increase in pressure re-

covery factor, per the computational results. The head loss

also increaseswith diffuser length, whereas an increase in the

other two parameters helps to decrease the head losses. Head

loss remains the same after a certain cone height and diffuser

length. (For this case, they are 930mmand 3200mm, resulting

in a head loss of 0.52.)
ial (b) optimized draft tube mid plane.

http://dx.doi.org/10.1016/j.ijhydene.2017.03.082
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Table 5 e Sensitivities of parameters for (a) pressure
recovery factor (b) head loss.

Effect on: Pressure recovery factor (%) Head loss (%)

Theta 1 45 40

Theta 2 25 45

H1 6 5

H2 11 4

R1 12 6
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Fig. 5 e Effect of diffuser

Fig. 4 e Streamlines on the draft tube midplane of the

optimized design.
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Horhersall [22] increases the length of the diffuser to in-

crease the surface area for water to leave the draft tube and to

decrease the kinetic energy losses. However, increasing this

length causes separation in the flow, resulting in more losses

as seen in Fig. 5.

Fig. 6 presents the Pareto front that shows the relation

between the objective functions: pressure recovery factor and

head loss. As pressure recovery factor increases, head loss

also increases.

Development of a regression equation for draft tube
performance prediction with the help of the results of the
optimization study

It is important to show the performance of a draft tube in the

optimization process with a function instead of using

computational fluid dynamics as a part of the optimization

process. Therefore, CFD is first used to generate data for a

regression analysis and once a regressionmodel is developed,

themodel is used to predict the pressure recovery factor in the

optimization process. Table 6 shows the parameters that

affect the pressure recovery factor of the draft tube.

Eleven different variables are used to define the system. As

a representative figure to show the dependance of Pressure

recovery factor on these parameters, Fig. 7 is presented.
3100 3200 3300 3400 3500

 length (mm)

length on head loss.

0.455 0.46 0.465 0.47

d loss (m)

e objective functions.
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Table 6 e Parameters that affect the pressure recovery factor.

Variable Symbol Definition Unit

Dependent DP Pressure difference [Nm2]

Independent D2 Draft tube inlet diameter [m]

H1 The length of the conical part [m]

q1 Cone angle [�]
H2 Diffuser length [m]

q2 Diffuser angle [�]
R Elbow radius [m]

V Velocity at the draft tube inlet [ms�1]

m Dynamic viscosity [Nm�2s]

r Density [Nm�4s2]

ε Surface roughness [m]

Fig. 7 e Dependance on pressure recovery factor on diffuser and cone angles.
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Using dimensional analysis and Buckingham-Pi theorem,

the pressure recovery factor is obtained as a function of non-

dimensional variables formed using the dependent and in-

dependent variables in Table 5.

Cp ¼ Pout � Pin
1
2 rV

2
¼ f

�
H1

D2
;
H2

D2
;
R
D2

; q1; q2; Re;
ε

D2

�

The limits for the determined non dimensional parame-

ters are determined based on the work by Gubin [18] are

shown in Table 7. CFD analyses are performed for seventy

different design points and the values of all the non-
Table 7 e Limits of the regression model.

Non-dimensional
parameter

Lower limit Upper limit

H1
D2

0,8 2,5
H2
D2

3 9,5
R
D2

1 3,5

q1 5 15

q2 5 15

Re 106 107

ε

D2
10e5 10e4
dimensional parameters for the data points are obtained

with the help of CFD.

Two different regression models are formed. The differ-

ence between these two,s the sixth and the seventh parame-

ters as shown in Table 8. In one of themodels, the logarithmof

the Reynolds number and non-dimensionalized surface

roughness are used, whereas these parameters are used

directly in the other regression model.

In this study, quadratic regressionmodels are used, and the

regressionmodel parameters are computed using themethod

of ordinary least squares [23]. Meta-heuristic methods such as

particle swarmoptimization [24]were also used in literature to

determine regression model parameters [25]. The regression

equations obtained for the pressure recovery factor from the

first and second regression models are shown in Annex.

Verification of the developed regression equations

It is necessary to validate the developed regressionmodels for

the design of different draft tubes. 30 random design points

are generated and simulated with CFD to be able to verify the

developed regression models. Fig. 8 shows the comparison of

http://dx.doi.org/10.1016/j.ijhydene.2017.03.082
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Table 8 e Regression models.

Xi X1 X2 X3 X4 X5 X6 X7

Non-dimensional parameter Regression model 1 H1
D2

H2
D2

R
D2

q1 q2 Re ε

D2

Regression model 2 H1
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Fig. 8 e Predicted pressure recovery factor versus CFD results (red: regression model 1, black: regression model 2). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the pressure recovery factors calculated using the CFD results

and the ones predicted using the regression models for the

test points.

Table 9 shows the errors associated with the regression

models. The error definitions are given by:

Maximum percentage absolute error ¼ max
i¼1;…;N

8<
:
���yi � byi

���
yi

*100

9=
;

(5)

RMSEn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

0
@yi � byi

yi

1
A2

vuuut ; i ¼ 1;…;N (6)

MAEn ¼ 1
N

XN
i¼1

������
yi � byi

yi

������; i ¼ 1;…;N (7)
Table 9 e Errors of the regression models.

Regression model
1

Regression model
2

At data
points

At test
points

At data
points

At test
points

Max absolute

error [%]

7,9 6,6 7,9 7,0

RMSE 0,025 0,039 0,025 0,038

MAE 0,019 0,044 0,019 0,044
Here N is the number of design points, yi is the CFD result

at point i and byi is the prediction of the regression model at

point i.

As shown both in Table 9 and Fig. 8, the errors of the

regression models are below 8 percent. Therefore, the models

can definitely be used in the optimization process of draft

tubes with geometrical parameters in the defined range,

instead of CFD simulations. This model allows the fast and

correct design and optimization of elbow type draft tubes,

without the need for CFD simulations.
Conclusions

An optimization design study of an elbow type draft tube

based on the combined use of Computational fluid dynamics

(CFD), design of experiments, surrogate models and multi-

objective optimization is presented in this study. The geo-

metric variables that specify the shape of the draft tube are

chosen as input variables for surrogate models and the pres-

sure recovery factor and the head loss are selected as output

responses. It is found that, pressure recovery factor, which is

the main performance parameter, can be increased by 4.3%,

and head loss can be reduced by %20 reduction compared to

the initial CFD aided design.

Pressure recovery factor, is represented with a second

order polynomial regression model in terms of the geomet-

rical parameters based on the optimization results. The veri-

fication of the model is also provided by comparison with CFD
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results for different draft tubes other than that are used in the

development of the model. The model is verified using 30

different design points and it can predict the pressure recov-

ery factor with an error of less than 8%. This model allows the

fast and correct design and optimization of elbow type draft

tubes, without the need for further CFD simulationswhere the

computation time for each draft tube analysis is three hours

per draft tube with 30 processors. However, using the regres-

sion model takes only a few seconds.
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