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Probabilistic structural design tends to apply higher safety factors to inexpensive or lightweight components,
because it is a more efficient way to achieve a desired level of safety. We show that even with limited knowledge about
stress probability distributions, we can increase the safety of an airplane by following this paradigm. We find that a
small perturbation of the deterministic design is sufficient to maximize safety for the same weight. The structural
optimization for safety of a representative system composed of a wing, a horizontal tail, and a vertical tail is used to
demonstrate the paradigm. We find that moving a small amount of material from the wing to the tails leads to
substantially increased structural safety. Because aircraft companies often apply additional safety factors beyond
those mandated by the Federal Aviation Administration, this opens the door to obtaining probabilistic designs that
also satisfy the Federal Aviation Administration code-based rules for deterministic design. We also find that the ratio
of probabilities of failure of the probabilistic design and the deterministic design is insensitive to even very large
errors in the stress probability distribution or probability-of-failure estimate of the deterministic design. Finally, we
find that for independent components subject to the same failure mode, the probabilities of failure at the probabilistic
optimum are approximately proportional to the weight. So a component that is 10 times lighter than another should
be designed to be about 10 times safer. This phenomenon is proved for normal distributions of stress and failure

stress, but was found in an example to approximately hold also for the lognormally distributed stress.

Nomenclature

b = reliability index

F() = cumulative distribution function of the failure stress

fO = probability density function of the failure stress

k = proportionality constant for the relative changes in
stress and relative change in characteristic stress

P = actual probability-of-failure probabilistic design

Py = approximate probability-of-failure of probabilistic
design

Py = probability-of-failure of deterministic design

s() = probability density function of the stress

W, = weight of deterministic design

w = weight of probabilistic design

A = relative change in stress

A* = relative change in characteristic-stress o™
corresponding to a relative change of A in stress o

My = mean value of the failure stress

Mo = mean value of the stress

o = stress

oy = failure stress

o* = characteristic stress

Subscripts

d = deterministic

Wand 7T = wing and tail, respectively
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I. Introduction

EROSPACE structures have traditionally been designed using

a deterministic (or code-based) approach based on the Federal
Aviation Administration (FAA) regulations. Structural safety has
been achieved by combining safety factors with tests of material and
structural components. In design of transport aircraft, the FAA
requires the use of a safety factor of 1.5 for loads and conservative
material properties (A-basis value or B-basis value, depending on the
failure path) to maintain a high level of safety for the aircraft. In
addition, companies add conservative design measures to insure that
they do not fail certification. Acar et al. [1,2] analyzed the safety
measures and found that the load safety factor of 1.5 complemented
with conservative material properties, redundancy, and certification
testing raises the actual safety factor to about 2.

The FAA design code is based on uniform safety factors (that is,
the same safety factor is used for all components). Probabilistic
design derives an important part of its advantage over deterministic
design by allowing the use of substantially nonuniform safety
factors; hence, there is growing interest in replacing safety factors by
probabilistic design (e.g., Lincoln [3], Wirsching [4], a Society of
Automotive Engineers report [3], and Long and Narciso [6]).
However, with only partial information on statistical distributions of
variabilities, and guesswork on reasonable distributions for errors,
engineers are reluctant to pursue probabilistic design. It has also been
shown that insufficient information may lead to large errors in
probability calculations (e.g., Ben-Haim and Elishakoff [7] and Neal,
et al. [8]). The main objective of this paper is to show that we can
increase the safety of an airplane without increasing its weight even
with the limited data available today following the design paradigm
mentioned (higher safety factors for lightweight components). Our
approach uses two statistical data that are well understood. The firstis
the statistical distribution of failure stress, which is required by the
FAA for choosing A-basis or B-basis allowables. The second is a
special property of the normal distribution: when a large number of
uncertainties contributes to a distribution, it tends to become similar
to a normal distribution. This applies to the stress estimation because
it is influenced by a large number of error and variability sources.
Finally, we show that even though the limited statistical data may
substantially affect the probabilities of failure of both the
probabilistic design and the code-based deterministic design, the
ratio of probabilities of failure of the probabilistic design and the
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deterministic design is insensitive to even large errors, due to limited
data.

The paper is structured as follows. Reliability-based design
optimization (RBDO) of a representative wing and tail system with
perfect and limited statistical data is given in Sec. II. Section III
discusses the effects of errors in statistical information for the
deterministic design. Section IV proposes an approximate method
that allows probabilistic design based only on probability
distribution of failure stresses. The application of the method to the
wing and tail system, discussed earlier in Sec. II, is presented in
Sec. V. Finally, the paper culminates with Sec. VI, in which the
concluding remarks are listed.

II. Demonstration of Gains from RBDO
of a Representative Wing and Tail System
A. Problem Formulation and Simplifying Assumptions

Calculating the probability of stress failure in a structure can be
done by generating the probability distribution functions (PDF) s(o)
of the stress and the PDF f (o) of the failure stress (see the solid lines
in Fig. 1). Once these distributions are available, calculating the
probability of failure can be accomplished by simple integration, as
discussed later in the paper. The distribution of failure stress is
typically available from experiments and so it does not require much
computation. For materials used in aircraft design, the FAA
regulations mean that statistical information on failure stresses is
often available quite accurately. On the other hand, the PDF for the
stress requires data such as analysis error distributions that are
difficult to estimate, and it also requires expensive finite element
computations. Fortunately, though, the PDF of the stress contains
contributions from large number of parameters such as variabilities
and errors in material properties and geometry and loading, and so it
is likely to be well-represented by a normal distribution. However,
estimating well the mean and standard deviation of that normal
distribution is difficult due to limited data. In Sec. ILB, we
momentarily disregard this difficulty to demonstrate the advantage of
probabilistic design deriving from the use of higher safety factors for
lighter structural components. In Sec. III, the effects of limited
statistical data will be addressed.

We consider a representative wing and tail system. In general, to
perform reliability-based design, we need to recalculate the stress
PDF as we change the design. For the sake of simplicity, we assume
that structural redesign changes the entire stress distribution, as
shown in Fig. 1, by a simple scaling of o to o(1 4+ A). This
assumption will be accurate when the uncertainties are in the loading
and the relative errors in stress calculation are not sensitive to the
redesign.

We denote the failure probabilities of wing and tail obtained from
deterministic design by (P ), and (P7) 4, respectively. If failure of
the two components is uncorrelated, the probability that at least one
of them will fail is

Pry=1—[1—(Prw)alll = (Psr)d] (D

s©  SIOU+M1 (g

before structural
redesign

-- after redesign

G,Gf

Fig. 1 Stress distribution s(c) before and after redesign in relation to
failure-stress distribution f(0y). We assume that redesign scales the
entire stress distribution.

If the two failure probabilities are correlated, the calculation is still
simple for a given correlation coefficient. For the purpose of
demonstration, we make a simplifying assumption that the critical
stress in each component is inversely proportional to weight. The
term critical stress denotes the stress measure in the component that is
associated with failure when it exceeds the failure limit. To simplify
terminology, we omit the “critical” in the rest of the paper, so that we
discuss stress versus failure stress.

The preceding assumption allows us to perform the demonstration
without resorting to finite element modeling and analysis of these
two components. That is, denoting the stresses in the wing and the tail
by oy and o, respectively, we use

_ Waw _ Wur
Ow = — Oaw> Or = W Oar ()
T

where Wy, and W, are the wing and the tail structural weights,
respectively, and the subscript d denotes the values of stresses and
structural weights for the deterministic design. Given the
distributions of o,y and o, and the distribution of failure stresses
Eq. (2) allows us to calculate the probability of failure of the wing for
agiven Wy, and the probability of the failure of the tail for a given Wy.
We can now formulate the following probabilistic design problem to
minimize the probability of failure for constant weight

W Wr 3)
such that Wy, + Wy = Wyy + Wyr

The optimization problem stated in Eq. (3) is solved using the
fmincon function of MATLAB that uses sequential quadratic
programming. In the following subsection, we first perform
probabilistic optimization for safety of the wing and tail system.
Next, the effect of adding a vertical tail to the wing and horizontal tail
system on the overall safety enhancement will be explored.

B. Probabilistic Optimization with Correct Statistical Data

For a typical transport aircraft, the structural weight of the
horizontal tail is about 20% of that of the wing. So the weights of the
wing and the tail before probabilistic optimization are taken as 100
and 20 units, respectively. We assume that the wing and tail are built
from the same material and that the failure stress of the material
follows lognormal distribution with a mean value 1, of 100 and a
coefficient of variation (COV) ¢, of 10%. The COV of the stresses in
the wing and the tail, ¢, is assumed to be 20%. This may appear large
in that stress calculation is quite accurate. However, there is
substantial uncertainty in loading and geometry changes due to
damage. For illustrative purpose, we assume that the historical record
showed that the wing had a lifetime probability of failure of 1 x 1077,
Because the deterministic design uses uniform safety factors (that is,
the same safety factor is used for all components), and we assume that
the wing and tail are made from the same material and have the same
failure mode (point stress failure here), it is reasonable to assume that
the probability of failure for the deterministic design of the tail is also
1 x 1077, As indicated earlier, we assume that the stresses follow
normal distribution, which is characterized by only two parameters,
mean and standard deviation. Therefore, given full information on
the failure-stress distribution (lognormal with u, =100 and
¢ = 10%), the probability of failure (P; = 1077), and the COV of
the stress (c,=20%), the mean stresses in the wing and the tail are
calculated as 39.77.% The reader is referred to Appendix A for details
of calculation of the unknown mean stresses in the wing and the tail
for the given probability of failure and COV of the stresses.

*For verification, we calculated the failure probability using conditional
cumulative distribution function (CDF) Monte Carlo simulations of 10
million sample size for ten different times. The mean and standard deviation
of these ten P, calculations were 1.002x 1077 and 0.043 x 1077,
respectively, showing that the probability-of-failure calculation explained in
Appendix A is accurate.
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Table 1 Probabilistic structural design optimization for safety of a representative wing and tail system. In the optimization, only the mean stresses are
changed; the COV of the stresses are fixed at a COV of 0.20. Probability of failure of the wing and the tail for deterministic design are both 1 x 107,

W, w P; ratio? Mean stress before optim Mean stress after optim
Wing 100 99.25 1.309 39.77 40.07
Hor tail 20 20.75 0.257 39.77 38.32
System 120 120 0.783

P, ratio is the ratio of the probabilities of failure of the probabilistic design and deterministic design.

Table 2 Probabilistic structural optimization of wing, horizontal tail, and vertical tail system. In optimization, only the mean stresses are changed; the
COV of the stresses are fixed at a COV of 0.20. Probability of failure of the wing and the tails for deterministic design are all 1 x 10~7.

Wo w P ratio? Mean stress before optim Mean stress after optim
Wing 100 98.80 1.531 39.77 40.25
Hor tail 20 20.67 0.300 39.77 38.48
Ver tail 10 10.53 0.149 39.77 37.78
System 130 130 0.660

Py ratio is the ratio of the probabilities of failure of the probabilistic design and deterministic design.

With the simple relation of stress to weight, Eq. (2), and the
assumptions on the distributions of stresses and failure stresses, the
probability of failure can be easily calculated by a variety of methods.
One of these methods will be discussed later. Then the probabilistic
design optimization is solved, assuming a zero correlation coefficient
between the probabilities of failure of wing and tail. We see from
Table ] that the probabilistic design and deterministic design are very
close in that probabilistic design is achieved by a small perturbation
of deterministic design (moving 0.75% of wing weight to tail, see
columns 2 and 3). Table 1 shows that by moving 0.75% of the wing
material to the tail, the probability of failure of the wing is increased
by 31% of its original value. On the other hand, the weight of the tail
is increased by 3.77% and thereby its probability of failure is reduced
by 74%. The overall probability of failure of the wing and tail system
is reduced by 22%.

The mean stresses and the COV of the stresses in the wing and the
tail before and after probabilistic optimization are also listed in
Table 1. We note that the mean stress in the wing is increased (by
0.76%), whereas the mean stress in the tail is reduced (by 3.6%). That
is, a higher safety factor is used for the tail than the wing, but the
difference is not large. For example, if the safety factor for both
structures was 1.5 for the deterministic design, it would be 1.49 for
the wing and 1.55 for the tail. Because aircraft companies often use
additional safety factors on top of those required by the FAA code,
they can slightly reduce the additional safety factor for the wing, to
achieve the probabilistic design that satisfies all the FAA
requirements for a deterministic design.

A striking result in Table ] is that the ratio of probabilities of
failure of the tail and the wing is about 1:5. Recall that the ratio of the
tail weight and the wing weight is also 1:5. That is, at optimum, the
ratio of the probabilities of failure of the components is almost equal
to the ratio of their weights. This optimum probability ratio depends
on the following parameters: the target probability of failure, mean
and COV of the stress, and COV of the failure stress. We checked and
found that the ratio of probabilities falls between 4.5 and 6.5 for a
wide range of these parameters. Appendix B provides analytical
proof that the ratios of the weights and probabilities are indeed
approximately the same.

Recall that for deterministic design, we assumed that the
probabilities of failure of the wing and tail are the same, because the
components are designed with the same safety factor. So it is
worthwhile to check the historical record. We researched the
historical record from the National Transportation Safety Board
(NTSB) [9] and found that 18 out of 717 aircraft accidents between
1973 and 2003 were due to wing structural failure, whereas 9 of the
accidents were due to tail structural failure (see Appendix C). Even
though wing and tail are designed with the same nominal safety
factors, the large weight differential may lead to different actual
safety factors. Designers may intuitively attempt to reduce the
structural weight of the heavier wing by squeezing out the weight

down to the limit, whereas they may be laxer with the tail. This may
happen, for example, if more approximate methods with higher
safety margins of safety are used for the tail. The probabilistic design
supports this incentive and indicates that the design paradigm of
using higher safety factors for inexpensive components can further
be exploited to increase the structural safety of aircraft.

Next, we added a vertical tail to the wing and horizontal tail
system. For a typical transport aircraft, the structural weight of the
vertical tail is about 10% of that of the wing. The weights of the wing,
the horizontal tail, and the vertical tail of our representative system
before probabilistic optimization are taken as 100, 20, and 10 units,
respectively. The probability of failure of the deterministic designs of
the wing and tails are taken as 1 x 1077. each. The results of
structural optimization for safety are listed in Table 2. By moving
material from the wing to the tails, the probability of failure of the
wing is increased by 53%, but the probabilities of failure of the
horizontal tail and the vertical tail are reduced by 70% and 85%,
respectively. Table 2 demonstrates that by including the vertical tail
in the system, the system probability of failure is reduced by 34%,
compared with 22% with two-component (Table 1). An increase in
the number of components may thus increase the safety improvement
of the system.

Table 2 shows a finding similar to Table 1 in that at optimum, the
ratio of the probabilities of failure of the components are nearly
10:2:1, which is the same ratio of the weights of the components.
This optimum probability ratio is obtained by using different safety
factors for the different components. The mean stresses and the COV
of the stresses in the wing, the horizontal tail, and the vertical tail
before and after probabilistic optimization are also listed in Table 2.
The mean stress in the wing is increased by 1.2%, whereas the mean
stress in the horizontal tail and the mean stress in the vertical tail are
reduced by 3.2% and 5.0%, respectively. Again, the substantial
reduction in probability of failure is accomplished with a small
perturbation of the safety factor. So a company that employs an
additional safety factor of just a few percent would be able to reduce it
for the wing and fully comply with the FAA regulations while
achieving superior safety.

III. Effect of Errors in Information About
Deterministic Design

The demonstration of the payoff from probability-based design in
the previous section was based on assumptions on the stress
distribution and probability of failure. It is known that the calculation
of probability of failure can be very sensitive to errors in distribution
[7,8]. So here we seek to demonstrate that because we merely seek to
obtain a design with the same weight as the deterministic design, and
because the probabilistic design is close to the deterministic design,
the effect of errors on the ratio of the probabilities of failure of the
probabilistic design and the deterministic design is minimal. In
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27.66
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27.42
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—19.0
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0.317
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Table 3 Errors in the ratios of failure probabilities of the wing and tail system when the COV of the stresses is underestimated by 50 %. The estimated values of the COV of the stresses for wing and tail are both 20 %,
Optimized weight*  Estimated® P; ratio ~ ActualP P ratio

whereas their actual values are both 40%. Note that the underestimate of the COV corresponds to an overestimate of the mean stress, so that its actual value is 31% percent lower than the value given in Table |L.

"Note that the P given here is the actual P of the assumed optimum (obtained via an erroneous COV of the stress), which is different from the true optimum corresponding to the use of the true COV of the stress.
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measuring the effects of error in the statistical data, we distinguish
between loss of accuracy and loss of opportunity. That is, we report
on the accuracy of our estimate of the improvement in the probability
of failure compared with the deterministic design. We also report on
the missed opportunity to make the design even safer, if we had the
correct statistical data.

A. Errors in Coefficient of Variation of Stresses

We first assume that we underestimated the COV of the stresses in
the wing and the tail by 50% and performed the optimization using
the wrong COV of stresses. That is, even though the true values of the
COV of the stresses for the wing and the tail are both 40%, we
performed the optimization based on 20% COV and obtained the
design shown in Table 1. With the overall probability of failure of the
deterministic design being fixed, an underestimate of the COV must
go with an overestimate of the mean. Following the procedure in
Appendix A, we find that the mean is overestimated by about 45%
(actual mean is 31% lower than the value used in Table 1). Table 3
shows both the error in the estimation of the probability gain and the
loss of opportunity to make the design safer. For the wing, we
overestimate the P, ratio (ratio of Py, of the probabilistic and the
deterministic designs) by 4.2% and underestimate the P ratio for the
tail by 19%. However, the system probability of failure is
underestimated by only —0.5%, because the two errors canceled each
other out (see Fig. 2). We also see from the table that the probability
of failure of the true optimum is very close to our estimate of the
probability of failure for the optimum obtained based on the
erroneous data. This is a well-known result for the effect of a
parameter on the optimum of an unconstrained problem (e.g., Haftka
and Giirdal [10], Sec. 5.4). That is, the loss of accuracy is
approximately equal to the opportunity loss for small changes in the
design.

The variation of the component and system probability-of-failure
ratios with the error in the COV of the stresses in the wing and the tail
are shown in Fig. 2. We see that for negative errors (underestimated
COV of stress), the P/ ratio of the wing is overestimated, whereas the
P ratio of the tail is underestimated. The two errors mostly cancel
each other out and error in the system P, ratio (and hence the
opportunity loss) is very small. Similarly, for positive errors
(overestimated COV of stress), even though the P, ratio of the wing
is underestimated and the P, ratio of the tail is overestimated, the
estimate of system P ratio is quite accurate over a wide range of error
magnitude. As important is that we lose very little in terms of the
potential improvement in the probability of failure due to the error.
The smallness of the opportunity loss is a manifestation of the fact
that the optimum ratio of the probabilities of failure is insensitive to
the coefficient of variation of the stress.

We have this remarkable insensitivity of ratio of probabilities of
failure to errors, because the probabilistic design is close to the

v —a—Wing F" ratio
——Tail F" ratio
'| —#— System P, ratio b

p f/(Pf)dU'R

06F--- O

0.4
G
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%o w0 = @ a0 0 w0 2 B @0
% error in COV (o) estimate

Fig. 2 The change of the ratios of probabilities of failure of the

probabilistic design of Table 1 versus the error in COV (o). Negative

errors indicate an underestimate, whereas positive errors indicate an

overestimate.
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Fig. 3 Two different stress distributions at the wing leading to the same
probability of failure of 1 x 10~7.

deterministic design. For a given probability of failure of the
deterministic design, errors in the mean lead to compensating errors
in the standard deviation, as shown in Fig. 3, which shows two
different possible distributions of the stresses in the wing (one with a
COV of 20% and the other with a COV of 40%) leading to the same
probability of failure, 1 x 10~7. We observe in Fig. 3 that when the
COV is 20%, the mean stress is 39.77, whereas the mean stress is
lower (27.42) for a higher COV of 40%, so that they both lead to the
same probability of failure. Of course, these errors can greatly affect
the probability of failure. Had we performed a probabilistic design
for a given probability of failure, these errors could have caused us to
get a design that was much less safe than the deterministic design. To
complete the investigation, Sec. III.C covers the effect of erroneous
estimates of probability of failure of deterministic design.

B. Erroneous Mean Stresses

Instead of erroneous estimates for the COV of stresses, we now
check the effect of errors in estimates of the mean stresses in the wing
and the tail. We first assume that we underestimated the mean stresses
in the wing and the tail by 20% for the wing and the tail system of
Table 1. That is, even though the true values of mean stresses in the
wing and the tail are both 49.71, we underestimated them as 39.77 to
obtain the design of Table 1. Because the overall probability of
failure of the deterministic design is fixed, an underestimate of the
mean stress must go with an overestimate of the coefficient of
variation. Following the procedure in Appendix A, we find that the
COV is overestimated by about 193% (the actual COV is 48% lower
than the value used in Table 1). Table 4 shows that underestimation
of mean stresses leads to underestimating the wing P ratio by 4.9%,
and overestimating the tail P ratio by 27.6%. On the other hand, the
system probability-of-failure ratio is estimated with a very small
error, because the two errors mostly cancel each other out.
Comparing Tables 1 and 4, we see that an underestimate of the mean
stresses led to an overestimate of the COV of the stresses and thus
compensated for the errors in probability-of-failure estimations.

Figure 4 shows that negative errors (underestimated mean stress)
lead to overestimated probability-of-failure ratio of the wing and
underestimated probability-of-failure ratio of the tail. However, the
two errors are mostly cancelled and the error in the system-failure-
probability ratio estimation is very small. Positive errors have the
opposite effect.

C. Errors in Probability-of-Failure Estimates of Deterministic Design

Mansour [11] showed that there can be a significant variation in
the failure probabilities of designs constructed using the same
deterministic code. Supposedly, this reflects the effect of errors in
predicting structural failure that may be different between designers,

Table 4 Errors in the ratios of failure probabilities of the wing and tail system when the mean stresses are underestimated by 20 %. The estimated values of the mean and the COV of the stresses for wing and tail are

both (39.77,20 % ). Note that the underestimate of the mean stress corresponds to an overestimate of the coefficient of variation, so that its actual value is 48 % percent lower than the value given in Table[l (COV=0.1038).

True optimum

Optimization based on erroneous data

Mean stress after optim
(true)

True optimal P, ratio

(assumed)

Mean stress before optim  Mean stress after optim  True optimal weights

% error in P estimate

Actual® P; ratio

Optimized weight* Estimated" P, ratio

50.03
48.18

1.309
0.257

99.36

50.09
4791

49.71

—4.9

1.377
0.198
0.788

1.309
0.257

99.25

Wing

20.64

49.71

29.4
—0.6

20.75
120

Hor tail

0.783

0.783

System

"Note that the P '+ given here is the actual P of the assumed optimum (obtained via an erroneous COV of the stress), which is different from the true optimum corresponding to the use of the true COV of the stress.

“From Table |l
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Table 5 Errors in the ratios of failure probabilities of the wing and tail system when the probability of failure of the deterministic design is
underpredicted. The actual P is 10-5, whereas it is predicted as 10~7. Note that the COV of the stress is 20%.

Optimized  Estimated = actual* P, Mean stress

Mean stress after ~ True optimal ~ True optimal P,

% safety loss  Mean stress after

weight ratio before optim  optim (assumed) weights ratio optim (true)
Wing 99.25 1.240 4591 46.26 99.05 1.310 —54 46.35
Hor tail 20.75 0.336 4591 44.24 20.95 0.253 329 43.83
System 120 0.788 0.782 0.8

“Estimated and actual probabilities of failure of the assumed optimum are the same, because the mean and the COV of the stress do not involve any error.

Table 6 Errors in the ratios of failure probabilities of the wing and tail system when the probability of failure of the deterministic design is
underpredicted. The actual P; is 10~°, whereas it is predicted as 107,

Optimized Estimated = actual? P, Mean stress before  Mean stress after  True optimal ~ True optimal P, % safety loss Mean stress after

weight ratio optim optim (assumed) weights ratio optim (true)
Wing 99.25 1.374 35.33 99.36 1.306 5.1 35.56
Hor tail 20.75 0.202 35.33 20.64 0.261 —22.4 34.24
System 120 0.788 0.783 0.6

“Estimated and actual probabilities of failure of the assumed optimum are the same, because the mean and the COV of the stress do not involve any error.

companies, or materials. This means that the probability-of-failure
estimate of the deterministic design that we used in previous
calculations may be inaccurate. To address this issue, we explore the
sensitivity of the ratio of the probabilities of failure of the
probabilistic design and the deterministic design to erroneous
estimates of probability of failure of the deterministic design. Note,
however, that we still assume that the several structural components
are made from the same material and are designed for the same failure
mode, so that they have approximately the same probability of failure
in the deterministic design.

We consider an underestimate of the probability of failure of
deterministic design by two orders of magnitude. That is, we assume
that we performed probabilistic design by taking the probability of
failure of deterministic design as 10~ instead of using the true value
of 1075. Table 5 shows that underestimated P, of deterministic
design leads to transferring a lower amount of material (0.75%,
column 6) than optimum (0.95%, column 5) from the wing to the tail.
However, even though the wing is designed to be 5.4% safer than the
true optimum and the tail is designed to be 32.9% less safe, the actual
system probability-of-failure ratio is only 0.8% larger than its
estimated value (columns 2—4).

Similarly, we checked what happens when we overestimate the
probability of failure of the deterministic design by two orders of
magnitude. Table 6 shows results similar to Table 5, but this time a
larger amount of material is transferred from the wing to the tail,
compared wth the true optimum (columns 5 and 6). This time, the
wing is designed to be 5.1% less safe, the tail is designed to be 22%

14 ; : . : . : :

e g

—a—Wing P1 ratio
—g— Tail F'f ratio
—&— System P, ratio
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% error in mean stress estimate

Fig. 4 The change of the ratios of probabilities of failure with respect to

the error in mean stress. The negative errors indicate an underestimate,

whereas the positive errors indicate an overestimate.

safer than their optimum values, and the probability-of-failure ratio is
only 0.6% greater than its estimated value (columns 2—4).

D. Effect of Using Wrong Probability Distribution Type
for the Stress

Apart from the parameters we investigated (COV of the stresses,
the mean stresses, and the probability-of-failure deterministic
design), the distribution type of the stress also affects the results of
probabilistic design. Here, we explore the sensitivity of the
probabilistic design to using the wrong distribution type for the
stress. We assume that even though the stress follows the lognormal
distribution, the optimization is performed using a normal
probability distribution to obtain the results in Table 1.

Table 7 shows that if the true stress probability distribution is
lognormal, the P ratio of the wing is overestimated and the P, ratio
of the tail is underestimated, so that a smaller amount of material is
moved from the wing to the tail, compared with the true optimum
design. The error in the total system P, ratio estimate is only 2.3%.
Also, as in Tables 30, the loss of accuracy is approximately equal to
the opportunity loss, because the changes in the design are small. The
loss of optimality reflects the fact that with lognormal distribution of
the stress, it is advantageous to transfer more material from the wing
to the tail than with the normal distribution. Of course, the true
distribution may be different from lognormal, however, the
insensitivity is still encouraging. Itis also interesting to note that even
with the lognormal distribution, the optimal probabilities of failure
are still proportional to the weight of the two components.
Analytically, we have obtained a proof of this phenomenon only for
the normal distribution (see Appendix B).

IV. Approximate Probabilistic Design Based
on Failure Stress Distributions

One of the main barriers to the application of probabilistic
structural optimization is computational expense. Probabilistic
structural optimization is expensive, because repeated stress
calculations [typically, finite element analysis (FEA)] are required
for updating probability calculation as the structure is being changed.
That is, the simplified approach that we used in Eq. (2) is replaced by
costly FEAs.

Traditionally, RBDO is performed based on a double-loop
optimization scheme, in which the outer loop is used for design
optimization, whereas the inner loop performs a suboptimization for
reliability analysis using methods such as first-order reliability
method (FORM). Because this traditional approach is computation-
ally expensive, even prohibitive for problems that require complex
FEA, alternative methods have been proposed by many researchers
(e.g., Lee and Kwak [12], Kiureghian et al. [13], Tu et al. [14], Lee
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30.36

optim (true)
32.39

optim
32.04
32.04

1.307
0.265
0.786

Optimization using the correct distribution type: lognormal
ratio

weights
98.90
21.10

(assumed)
32.28
30.87

32.04
32.04

9.0
—36.1

probability of failure of the deterministic design is 10~7. The COV of the stress is 20%.
-2.3

Optimization assuming stress is normal

1.201
0.402
0.801

1.309
0.257
0.783

20.75
120

Optimized weight" Estimated® Py ratio ActualP P s ratio % error in P, estimate Mean stress before optim  Mean stress after optim  True optimal ~ True optimal P, Mean stress before ~Mean stress after
99.25

Table 7 Errors in the ratios of failure probabilities of the wing and tail system if the optimization is performed using the wrong probability distribution type for the stress (assumed is normal, true is lognormal). The

The actual P r of the optimum obtained via an erroneous stress distribution type.

Wing

Hor tail
System
aFrom Table [I.

et al. [15], Qu and Haftka [16], and Du and Chen [17]). These
methods replace the probabilistic optimization with sequential
deterministic optimization using inverse reliability measures to
reduce the computational expense. The downside of these
approaches is that they do not necessarily converge to the optimum
design. We note, however, that most of the computational expense is
associated with repeated stress calculation and we have just
demonstrated insensitivity to the details of the stress distribution.
This allows us to propose an approximate probabilistic design
approach that might lead to a design nearer the optimum (depending,
of course, on the accuracy of the approximation).

Structural failure, using most failure criteria, occurs when a stress
o atapoint exceeds a failure stress 0. For a given deterministic stress
o, the probability of failure is

P;=prob(o > o;) = F(0) 4

For random stress, the probability of failure is calculated by
integrating Eq. (4) for all possible values of the stress o

Py = /F(a)s(a) do 5)

For the calculations of the probability of failure in the preceding
section, numerical integration of Eq. (3) was performed. It is clear
from Eq. (5) that accurate estimation of probability of failure requires
accurate assessments of the probability distributions of the stress and
the failure stress. For the failure stress, the FAA requires aircraft
builders to perform characterization tests, use them to construct a
statistical model, and then select failure allowables (A-basis or B-
basis values) based on this model. Hence, the statistical
characterization of the failure stress is solid. On the other hand, the
probability density function of the stress, s(o), is poorly known,
because it depends on the accuracy of structural and aerodynamic
calculations, the knowledge of the state of the structure, damage
progression, and pilot actions. As we discussed earlier, it is
reasonable to assume that stress is normally distributed, because a
large number of sources contribute to the uncertainty in stress, such
as errors in load and stress calculations, variabilities in geometry,
loads, and material properties. The reader is referred to Acar et al. [2]
for a more detailed discussion on the sources of uncertainty in stress.
By using the mean value theorem, Eq. (3) can be rewritten as

P, =F(c*) /s(c) do = F(o*) ©6)

where the second equality is obtained by using the fact that the
integral of s(0) is 1. Equation (6) basically states that the effect of the
poorly characterized probability of the stress can be boiled down to a
single characteristic-stress value o*. This value can be obtained by
estimating s(o) and integrating as specified in Eq. (6). However, it is
equally possible to use historical data on probabilities of failure of
aircraft structural components to do the reverse. That is, given an
estimate of the probability of failure, we can obtain the characteristic
stress o* that corresponds to this historical aircraft accident data

e
Fig. 5 Calculation of characteristic stress ¢* from probability of
failure.
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Fig. 6 Evaluating the accuracy of approximation for the characteristic
stress: a) comparison of approximate and exact A and A* and b) the
resulting probabilities of failure for lognormal failure stress (with a mean
0of 100 and a COV of 10 % ) and normal stress (with a mean of 39.77 and a
COV of 20%).

when airplanes are designed using the deterministic FAA process
(see Fig. 5).

Recall that in probabilistic design of the wing and tail system, we
deviate from the deterministic process by reducing the structural
margin on the wing and increase the margin on the tail, assuming that
the structural redesign changes the stress distribution by simple
scaling of o to a(1 + A). Under this simple stress scaling, the
characteristic stress will change from o* to o*(1 + A*) to allow
probabilistic design with a minimum number of stress analyses. We
assume here that the relative change in the characteristic stress is
proportional to the relative change in the stress, that is,

A* = kA ©)

The value of k depends on the mean and COV of the stress and the
failure stress. For lognormally distributed failure stress with a mean
of 100 and a COV of 10%, and normally distributed stress with a
mean of 39.77 and a COV of 20% (the values from our representative
example), Fig. 6a shows the relation of A and A*. Notice that the
variation is almost linear. Figure 6b shows the effect of the A*
approximation on the probability of failure. We see that the linearity
assumption is quite accurate over the range —10% < A < 10%.
Figure 6a that shows the variation of the change in characteristic
stress with the change in stress is generated as follows. Given a
failure-stress distribution (lognormal with 100 mean and 10% COV)

and a stress distribution (normal with 39.77 mean and 20% COV), we
have a probability of failure P/, that corresponds to a characteristic
stress of o} value [Eq. (6)]. When the stress distribution is shifted by
A [that is, o is changed to o(1 + A)], the probability of failure
changes to P ,, which changes the characteristic stress to o3, then the
ratio 05 /of is equal to 1 + A*. The stress change A is varied
between —10 and 10%, and the corresponding characteristic-stress
change is plotted.

V. Application of Characteristic-Stress Method to
Wing and Tail Problem

In this section, we apply the probability-of-failure estimation to
the wing and tail problem. As in Sec. IL.B, the weights of the wing and
the tail before probabilistic optimization are taken as 100 and 20
units, respectively. The probability of failure of the wing and the tail
are both taken as 1 x 1077, The failure stress of the wing and tail
materials is assumed to follow lognormal distribution with a mean
value of 100 and 10% COV. The coefficients of variations of the
stresses in the wing and the tail are assumed to be 20%. The
correlation coefficient for probabilities of failure of wing and tail is
assumed to be zero.

As we discussed in Sec. II, some material is taken from the wing
and added to the tail so that stresses in the wing and the tail are scaled
by 1 + Ay and 1 4+ A, respectively. Similarly, the characteristic
stresses in the wing and the tail, o}, and 07, are scaled by 1 4+ Ay, and
1 + A, respectively. The probabilistic design optimization problem
stated earlier in Eq. (3) can now be reformulated as

WI},},%TP}(WW’ Wr)=[1- P’frw("vw)][1 - P}T(WT)] ®
such that Wy, + Wy = Wy, + Wy

The weights of the components and characteristic stresses are related
via

oy =1+ kyAy)osy, or =+ krAp)oi, )

where the relative changes in the stresses are calculated from

War
Ay = W 1, Ar= W, 10)

The probabilistic optimization problem stated in Eq. (8) is solved,
and the probabilities of failure are computed. Table 8 shows that the
P ratios of the wing and the tail are estimated as 1.307 and 0.263,
instead of their actual values of 1.305 and 0.261. So the
characteristic-stress method estimates the system P, ratio as 0.785,
whereas the actual P, ratio corresponding to the redesign is 0.783,
which is the same system P, ratio in Table 1.

Table 8 shows that the error associated with the approximation of
the characteristic stress in Eq. (7) is small. This is expected, based on
Fig. 6, which shows that the approximation of A* is very good.
However, the main issue here is to show what happens if we commit
errors in evaluating the k value in Eq. (7) due to errors in the
distribution parameters in the stresses and the failure stresses. We
investigated the effects of overestimating and underestimating k with
20% error. Table 9 shows that a 20% underestimate of k leads to
designing the wing for a higher P, ratio (1.392 instead of 1.306) and
designing the tail for a lower P ratio (0.187 instead of 0.269). The

Table 8 Probabilistic design optimization for safety of the represen-
tative wing and tail system using the characteristic-stress method. The
COV of the stresses in the wing and tail are both 20%.

Table 1 Proposed method
AW P, ratio AW? P} ratio Actual P, ratio
Wing -0.75 1.309 -0.75 1.307 1.305
Hor tail 3.77 0.257 3.73 0.263 0.261
System 0.0 0.783 0.0 0.785 0.783

%% AW is percent changes in weight.
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Table 9 Effect of 20% underestimate of k on the ratios of probability-of-failure estimate

k Table 1 Characteristic-stress method with erroneous k
Correct  With 20% underestimate ~ AW P, ratio AW? P} ratio Actual P, ratio
Wing 0.664 0.532 —0.75 1.309 —0.93 1.306 1.392
Hor tail  0.664 0.532 377  0.257 4.64 0.269 0.187
System 0.0 0.783 0.0 0.787 0.790

% AW is percent changes in weight

overall system P, ratio, however, is increased by only 0.4%. The
variation of P ratio of the wing, the tail, and the system with the error
in k is depicted in Fig. 7. It is seen that the effect is small for a wide
range of errors.

For a more complicated problem, when the stresses are calculated
via FEA, the application of the proposed method is as follows. After
calculating the stresses from FEA, the relative changes in the stresses
(i.e., the A values) are calculated. Then the characteristic stresses are
updated by using Egs. (7) and (9). Finally, the probabilities of failure
of the components are updated using Eq. (6). The computational
expenses with probability calculations are reduced greatly, and the
probabilistic optimization problem is reduced to a semideterministic
optimization problem.

VI. Conclusions

Probabilistic structural design achieves better performance than
deterministic design by applying higher safety factors to lower-
weight components. This was demonstrated on a design problem of
distributing structural material between the wing, horizontal tail, and
vertical tail of a typical airliner. Although deterministic design leads
to similar probabilities of failure for the three components, the
probabilistic design led to probabilities of failure that were
approximately proportional to the structural weight of the
component. This result was shown to be a property of the normal
distribution. Remarkably, even though the ratios of weights and
probability-of-failure ratios of the three components were 10:2:1,
this was accomplished by reducing the safety factor on the wing by
only about 1% and using the material to increase the safety factor on
the horizontal and vertical tails by 3 and 5%, respectively. This
redistribution led to a reduction of 34% in the probability of failure
for the same total weight. The small perturbation of the safety factor
can probably be accommodated by the additional safety factors that
aircraft companies often use on top of those required by the FAA
code. So the aircraft companies can slightly reduce these additional
safety factors for the wing, to achieve the probabilistic design that
satisfies all of the FAA requirements for a deterministic design!

We used estimates of the probability of failure of the deterministic
design (obtained from historical record) as the starting point of the
probabilistic optimization. Because the exact values of the

1.4 T T T T T

—a—Wing F'f ratio
| —8—Tail F'f ratio
—&— System F‘f ratio

0 i i i i H i i

20 5 10 5 0 5 10 15 20
% error in k estimate

Fig. 7 The variation of the ratios of probabilities of failure with respect

to the error in k. The negative errors indicate an underestimate, whereas

the positive errors indicate an overestimate.

probability of failure of the deterministic design and the parameters
of the probability distribution of structural response are rarely
known, we checked the sensitivity of the ratio of probabilities of the
probabilistic design and the deterministic design to large
inaccuracies in the parameters of the stress distribution, type of
distribution, and probability-of-failure estimate of the deterministic
design. In particular, 50% errors in the standard deviation of the
stress or 20% error in the mean stress led to less than 1% difference in
the probability-of-failure ratios (i.e., ratio of Ps of the probabilistic
and the deterministic designs). We also found that two orders of
magnitude of error in the probability-of-failure estimate of the
deterministic design led to less than 1% difference in the system
probability-of-failure ratio.

Finally, these results inspired us to offer an approximate
characteristic-stress method that dispenses with most of the
expensive structural response calculations (typically done via finite
element analysis). We showed that this approximation still leads to
similar redistribution of material between structural components and
similar system probability of failure.

Appendix A: Calculating the Mean and COYV of Stress
Distribution Using Failure Probability Information

The probability of failure is defined in terms of the probability
distribution functions of the stress and the failure stress in Eq. (5).

Py= /F(U)S(U) do

We assume that the stress follows normal distribution. The
parameters of the normally distributed stress are the mean p, and
standard deviation (or coefficient of variation ¢, can also be used
instead of standard deviation). We assume that material character-
ization tests provide us with an accurate failure-stress distribution. If
the failure stress also follows normal distribution with a mean value
of u, and coefficient of variation of ¢, then Eq. (5) can be reduced to

P, =1-®(B) (Al)

where ® is the cumulative distribution function of the standard
normal distribution and S is the reliability index, which is calculated
as

KL — Mo
VHicE + macs

Now consider the reverse situation. Given the estimate of the
probability of failure P 4., and the coefficient of variation of the
stress ¢,, we can compute the mean value of the stress p,, from

IB(/‘LJ’ Ca) = (A2)

—B £ /B> —4AC
Ko =" (A3)

where A= f3 .co—1, B=2u; C=pui(fy.ec;—1), and
ﬂgiven = q)_l(l - Pfgiven)-
Similarly, if the mean value of the stress is known, then the
coefficient of variation of the stress can be calculated from Eq. (Al).
When the failure stress follows lognormal distribution, then the
probability of failure is calculated via the integral given in Eq. (5).
Hence, given the distribution parameters of lognormally distributed

failure stresses A, and {;, probability of failure is a function of the
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mean and coefficient of variation of the stress, as given in Eq. (A4):
Pyl = [ FO15. 00500 crn)ds (A

Given the estimate of the probability of failure P 4;,.,, the mean and
coefficient of variation of the stress distribution can be calculated
from

Pf(/‘LU’ C(T) - Pfgiven =0 (AS)

Equation (AS) is nonlinear in terms of u, and c¢,. When ¢, is
known, then p, can be calculated using the bisection method or
Newton’s method. Alternatively, if the mean value of the stress is
known, then the coefficient of variation of the stress can be
calculated.

The computations are performed using MATLAB, which has the
following built-in functions for numerical computations.
Equation (A5) can be solved for the mean or coefficient of variation
of the stress using the function £zero, which uses a combination of
bisection, secant, and inverse quadratic interpolation methods. The
integral given in Eq. (A4) can be computed using the function
quadl, which numerically evaluates the integral using an adaptive
Lobatto quadrature technique. The integrand of Eq. (A4) can be
easily calculated using MATLAB. For normally distributed stress,
the function normpdf can be used to compute the probability
density function s(o), and for lognormally distributed failure stress,
the function logncdf can be used to compute the cumulative
distribution function F(0).

Appendix B: Relation of Component Weights and
Optimum Component Failure Probabilities

In Sec. II.B, we found that the ratio of probabilities of failure of the
wing and the tail are very close to the ratio of their weights. Here, we
aim to provide an analytical proof by using some approximations.

The probability of failure of the wing and tail system is defined as

Let w be the weight transferred from the wing to the tail as a result
of probabilistic optimization. The optimality condition of
optimization for safety is

P, _

OPr Py _ OPsr N
ow -

oP;
—+(1-P =~ AL
Jw +( s7) ow ow ow

(B2)

0

(1= Ppy)

Noting that P sy = F(o7) and Py = F(03,) and using the chain rule,
the partial derivatives in Eq. (B2) can be written as

anT _ anT@ _ doy 3wa _ Bwaaai _ doyy,
aw_aa;aw_Taw’ ow  dof, w7V ow
(B3)

where and f7 and f, are the values of probability density function of
the failure stress evaluated at o7 and oy, respectively. That is,
fr=f(o3) and fy = f(o},). Now, combining (B2) and (B3), we
get

doy doy, fr doy, /0w

et v =% R T e BY

Recall that we assumed the stresses and weights are inversely
proportional, that is,

c Waw o W
Y Wy T T W —w T B350

a
v War War

Then the ratio of partial derivatives doj, /0w and doj/dw can be

approximated as

Waw *
. f
903 /9w Way—w? Taw War

doi/ow = W (B3b)

__War *
Wag+wy? Odr

where the second equality holds true (because the moved material w
is much smaller than both component weights W, and Wy,) and the
deterministic characteristic stresses are equal (because they are made
of the same material and designed for the same probability of failure).
Then Eqgs. (B4) and (B5) can be combined to yield

Jr ~ War
fw — Waw
Now we need to relate the ratio of PDFs to the ratio of probabilities

of failure. The probability of failure is defined in terms of the PDF of
the failure stress as

(B6)

P, = / " f)dx (B7)

If we assume that the failure stress is normally distributed, then the
probability of failure can be written as

P;= / ce™ /2 dx (BS)

where c is a constant and s* is the characteristic stress scaled with the
mean and standard deviation of the failure stress, as given in
Eq. (BY):

1 . 0"y
-, o =
N2 std N
where , and std, are the mean and standard deviation of the failure

stress. Because the normal distribution is symmetric, the probability
of failure, Eq. (B8), can be rewritten as

5" b3 © 2
P, = / ce™2dx = / ce /2 dx (B10)
—o0

—s*

(B9)

The probability of failure can be reformulated by using the
equality, Eq. (B11), given in [18] (p. 298, Eq. 7.1.14):

e 11/213/22
261/ e—* dx__L_L_(Eﬁz>O) (B]])

Tz 24z 2+
where

11/213/22

o+ 2+ 2+ o i+

is a continued fraction [denoted as CF(z)] that can also be written as

11/213/22 1

CF(z)z—L—L—m:il/z (B12)

Z+ 2+ 2+ 2+ 2+ z-}-ﬁ

—1
: !+:/J22ﬁ
Then Eq. (B12) is rewritten as
F

/ e g = @ Z(Z) e (B13)

or

00 1 z
"‘Z/zdx=—CF(—) -2/ Bl4
e e
/ V2T \V2 B

Then the probability of failure, Eq. (B10), is reduced to

c —s5* 2
P, =—CF|—=]e /2 B15
NG (ﬁ) B

Because the probabilities of failure of aircraft structures are on the
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Table C1 Aircraft accidents and probability of failure of aircraft structures. Examples of first-generation airplanes are Comet 4, 707, 720, and DC-8.
Boeing 727, Trident, VC-10, and 737-100/-200 are examples of second-generation airplanes. Early widebody airplanes are 747-100/-200/-300/SP, DC-10,
L-1011, and A300. Examples of current-generation airplanes are MD-80/-90, 767, 757, A310, A300-600, 737-300/-400/-500, F-70, F-100, and A320/319/

321.

Aircraft generation® Accident rate per Total number of accidents?

million departures?

Accidents due to structural failure? Structural failure rate per departure

A B c AxC/B
First 27.2 49 0 0
Second 2.8 130 2 431 x 1078
Early widebody 5.3 53 2 2.00 x 1077
Current 1.5 161 2 1.86 x 1078
Total e 393 6 —_—

“These columns are taken from the Boeing accident report ,

orders of 1077, the scaled characteristic stress is negative and its
absolute value is much smaller than one. That is,

[s*] > 1, s* <0 (B16)
Based on Eq. (B16), the continued fraction in Eq. (B12) can be
approximated as CF(z) l Then the probability of failure,

Eq. (B15), becomes

*
P~ —si*e*@'*)Z/Z - —% (B17)
Thus, from Eq. (B17), the probabilities of failure of the wing and the
tail are

b Sy _ 6w
T = s* - or—pyy W= . - o~
’ Ca, ) oW std, )
(B18)

which leads to

Prw ~ fw

O — Ky
Note that the stresses at the deterministic design are close to the
stresses at probabilistic design, and so o}, /05 = 1. Then Eq. (B19)
can be simplified to

Pre _ fr
P w " fw
Finally, combining Egs. (B6) and (B20), we find that the ratio of

failure probabilities is approximately equal to the ratio of weights,
that is,

(B20)

Prr ,._Vf_T,._V War
PfW Sw Waw

(B21)

Appendix C: Historical Record for Aircraft Probability
of Failure

Because aircraft structural design still relies on deterministic
optimization, we first look at the historical record on the probability
of failure of traditionally (i.e., via deterministic design) designed
aircraft structures. Tong [19] performed a thorough literature review
on aircraft structural risk and reliability analysis. Tong refers to the
paper by Lincoln [20] that reports that the overall failure rate for all
systems due to structural faults is one aircraft lost in more than ten
million flight hours (i.e., Py = 1077 per flight hours). The Boeing
Company publishes the “Statistical Summary of Commercial Jet
Aviation Accidents” each year and provides data back to 1959 [21] to
indicate trends. The number of accidents that occurred between 1959
and 2001 due to structural failure, the total number of accidents, and
the accident rate corresponding to different aircraft generations are
listed in Table C1. Table C1 shows that failure probability per

departure of second-generation airplanesis 4.31 x 1078, whereas the
failure probabilities of early widebody airplanes and current-
generation airplanes are 2.0 x 1077 and 1.86 x 1078, respectively.

We researched the historical record using NTSB data on aircraft
operated by U.S. carriers between 1983 and 2003. We found that the
number of accidents that resulted in wing failure and tail failure were
18 and 9, respectively. This indicates that the probability of failure of
the tail is about half of that of the wing.
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