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Abstract A drop test simulation of the mechanical structure
of a redesigned dishwasher is performed by using a detailed
finite element (FE) model. The nonlinear explicit FE code LS-
DYNA® is used for the drop impact simulations. The FE
model is validated through real tests of two drop scenarios
(vertical and inclined to the side). An optimization study is
performed in order to determine the optimum design variables
for better crash performance. The effects of geometric param-
eters and material properties on the weights of certain compo-
nents (ie, dogleg plate and bottom foam) are investigated. A
surrogate-based optimization approach is used to find opti-
mum values for the dogleg plate thickness, bottom foam den-
sity and increment of the bottom foam height to minimize the
weights of both components. Two different surrogate models
are used to predict optimization problem constraints that have
a crucial role in the crash performance of the dishwasher me-
chanical structure and packaging module: the polynomial re-
sponse surface and radial basis functions. The results showed
that the dogleg plate mass can be slightly reduced and the
bottom foam mass can be significantly reduced in order to
obtain the optimum dishwasher configuration and better
crashworthiness. The weights of the dogleg plate and bottom
foam could be lowered by as much as 5.95 and 24.8 %,

respectively. Finally, multi-objective optimization is per-
formed by minimizing a composite objective function that
provides a compromise between the weights of both compo-
nents. The results showed that weight reductions of 2.3 and
21.5 % could be obtained for the dogleg plate and bottom
foam, respectively.
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1 Introduction

For customers buying dishwashers, the appearance of the front
door and its functional requirements are crucial elements. The
durability of the door in every single open state and the weight
of the decorative wooden door are some important features for
ensuring customer satisfaction. To meet such quality de-
mands, engineers at ARÇELİKAŞ, a leading consumer goods
company in Turkey, have redesigned the mechanical structure
of a dishwasher. The new structure consists of an integrated
stainless steel inner tube with a plastic bottom housing. This
new mechanical structure and the packaging module need to
be analyzed to determine the critical points in terms of struc-
tural integrity.

In the appliance manufacturing industry, the mechanical
structure of a prototype is commonly assessed through phys-
ical tests such as the static loading, vibration, and drop tests.
The freefall/drop test is one such test and is widely used for
electronic products. Based on the test results, engineers mod-
ify the mechanical structure or packaging module while rely-
ing on their experience. This type of design methodology
needs many tests to be conducted and is very expensive and
time-consuming. Moreover, the quality of the end product is
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uncertain (Wang et al. 2005). In order to overcome these prob-
lems, finite element (FE) simulations need to be performed in
the design stage. The drop of a dishwasher can be analyzed by
using simulations to understand the physics of the impact. In
addition, FE simulations allow for direct modifications to the
design structure.

Explicit nonlinear simulation techniques are ideal for this
type of impact situation because the impact occurs within a
very short time, so small time steps are needed in order to
calculate the contact forces (Wu et al. 1998). However, an
explicit simulation with small time steps can be time-inten-
sive. In order to overcome this problem, setting up the simu-
lation properly is crucial; this is a challenging requirement.

There are no freefall or impact test standards for home
appliances. Because the usage and transportation of white
goods vary depending on the customer and carrier, manufac-
turers have developed their own standards or instructions
based on their experience on how these appliances are
transported to customers. Therefore, various drop scenarios
have to be carried out. Babu and Biswas (Babu and Biswas
2008) performed drop-and-impact simulations on a waste
transfer flask with different drop scenarios, such as dropping
on the edges, corners, and base. Other groups have focused on
impact simulations for consumer goods such as cookers (Dan
2006), refrigerators (Blanco et al. 2015), and televisions (Low
et al. 2004); these simulations also included the packaging
module and followed different instructions for the drop tests.

Excluding military standards (MIL-STD-810F 2000; MIL-
STD-883F 2004) JEDEC were the first to adopt a standard-
ized methodology (JEDEC Standard JESD22-B11 2003) for
board-level drop tests, which are used for handheld electronic
devices. Multiple groups have used this standard for drop
simulations of test boards (Yeh and Huang 2014), microelec-
tronic devices (Tee et al. 2004, 2005; Wong et al. 2002), and
mobile phones (Mattila et al. 2014). Other studies have fo-
cused on product-level drop tests and simulations for personal
electronic devices such as mobile phones (Wu et al. 1998;
Wang et al. 2004; Liu and Li 2011; Hwan et al. 2011) to
analyze stress and deformation distributions and generate a
mathematical or FE model of the impact.

In addition to such research on electronic products, studies
have focused on drop simulations of an airplane (Jackson and
Fasanella 2008) or section of an airplane (Jackson and
Fasanella 2001) to validate the model through test analysis
correlation. Other studies on drop impact analysis have con-
sidered different components such as fuel assemblies
(Petkevich et al. 2014; Kim et al. 2014) to analyze different
drop scenarios and check how the impact force influences the
component.

All of these above studies focused on drop impact analysis
with different drop situations and validation through real tests.
In addition to simulation and validation, the present study
aims to determine the optimum design variables for better

crash performance by following a surrogate-based optimiza-
tion approach.

Displacements to the sidewalls and frame of the dishwash-
er during impact are important variables that should be con-
sidered in the design of the mechanical structure. Deformation
of the sidewalls is the main reason for the return of many
products. Therefore, the maximum displacements to both
parts should not exceed the results of the baseline model in
the optimization process. Most of the impact energy is
absorbed by the packaging module, which should be con-
trolled after the modifications. The effective strain value is
inversely proportional to the absorbed energy. Therefore, it
should also be checked in order to control the response of
the foam during impact.

The main objective of this study is to minimize the weights
of certain components by investigating the effects of geomet-
ric parameters such as the thickness, and material properties
such as the density. Two different drop setups are considered:
the vertical drop test and inclined drop test to the side. After
the FE analysis (FEA)model was successfully validated based
on the experimental results, the critical regions of the mechan-
ical structure and the packaging module are determined for
each scenario. Finally, the improved design variables are de-
termined for the most critical setup.

The design of complex engineering systems relies heavily
on high-fidelity computer simulations (eg, FE analysis) to
predict the system performance. Even though the processing
power, memory, and storage capacities of computers have
drastically increased over the years, analysis models with ac-
ceptable accuracy still have significant computational costs
(Venkataraman and Haftka 2004). In this study, FEA of a drop
test takes around 20 h of CPU time with an Intel® Xeon®
CPU E5-2687W 0 3.10 GHz processors (two processors) and
32.0 GB RAM. Surrogate-based optimization methods are the
most popular approach to addressing problems with a high
computational cost (Queipo et al. 2005; Forrester et al.
2008). Commonly used surrogate models include polynomial
response surface approximation (Myers and Montgomery
2002), radial basis functions (Buhmann 2003), Kriging
(Sacks et al. 1989), neural networks (Smith 1993), and support
vector regression (Gunn 1997). Response surface approxima-
tion and radial basis functions are used in this study. In the
literature, response surface approximation has usually been
used to model slightly nonlinear responses, and radial basis
functions have usually been used to model fast-changing re-
sponses (Jin et al. 2001; Wang et al. 2006). After the surrogate
models are constructed, they can be used in a gradient-based
optimization algorithm (with multiple starting point) or a
global optimization algorithm (usually population based) to
solve single-objective or multi-objective optimization prob-
lems (Acar et al. 2011; Yildiz and Solanki 2012). In addition
to these studies, there are some design optimization examples
using reliability-based design optimization for household
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appliances such as smart watch (Huang et al. 2015) and smart
pad (Huang et al. 2016).

This paper is organized as follows. Section 2 describes the
drop test setup and optimization problem. Section 3 presents
details on the FE simulations of the dishwasher. Section 4
discusses the surrogate model construction. Section 5 com-
pares the drop test simulations and experimental results and
presents the results for the optimization problem. Finally,
Section 6 gives the concluding remarks.

2 Problem description

Figure 1 presents examples of accidental drops related to
transportation that were considered in this study. The drop
height was set to 300 mm for both scenarios. The drop test
inclined to the side had an inclination angle of 10° relative to
the bottom plate.

The dishwasher structure considered in this study consists
of a mechanical structure and packaging module. The bottom
foam of the packaging module and dogleg plates in the me-
chanical structure, which are shown in Fig. 2 (the right part of
the model is removed for visualization purposes), are expected
to be critical components in the event of an impact. The ex-
ploded view of the dishwasher assembly is shown in Fig. 3.

The dogleg plate is one of the critical parts that effect the
side wall dent in the event of a drop of a dishwasher. The side
wall dent causes most of the returns of the dishwashers pro-
duced by ARÇELİK A.Ş., and it is the most critical compo-
nent to align the door of the dishwasher where the design of
the whole assembly starts (F. Ercin, personal communication,
May 15, 2015). The foam absorbs 40 % of the total energy in
the event of a drop. Therefore, the thickness of the dogleg
plate t, the density of the foam ρ, and the increment in the
bottom foam height h (see Fig. 4) are selected as design var-
iables. These design variables are optimized to determine the
minimum weights of the dogleg plate (Wd) and bottom foam
(Wb). The following constraints are used in optimization: (1)
the maximum displacement to the side at the dogleg plate uy,

(2) the maximum displacement to the side at the sidewalls vy,
(3) absorbed energy at the bottom foam E_A, and (4) effective
strain at the bottom foam E_S. Thus, the optimization problem
for minimizing the weight of the dogleg plate or bottom foam
can be stated as

(a) (b)

Fig. 1 Experimental setup: (a) Vertical drop test and (b) 10° Inclined
drop test to the side

Fig. 2 Dishwasher mechanical structure and its packaging module:
dogleg plate (pid = 10) and bottom foam (pid= 28).

Fig. 3 Exploded view of the dishwasher mechanical structure and its
packaging module
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Find x ¼ t; p; hf g
Min Wd xð Þ or Wb xð Þð Þ

Such that

uy xð Þ≤uy−base ð1Þ
vy xð Þ ≤ vy−base
E A xð Þ ≥ E Abase

E S xð Þ ≤ E Sbase
1:5 mm ≤ t ≤ 2:5 mm
10 kg=m3≤ρ≤40 kg=m3

0 ≤ h ≤ 5 mm

Optimization problems can be solved by using the built-in
“fmincon” function of MATLAB ( 2009 MATLAB user s
guide and reference guide The MathWorks Inc 2009), which
finds a constrained minimum of a scalar function having sev-
eral variables by using sequential quadratic programming. To
increase the chance of finding the global optimum, optimiza-
tion runs were started from 100 different randomly generated
points.

3 Finite element simulations

There are two numerical solution algorithms for FE simula-
tions: implicit and explicit methods. In drop impact problems,
highly nonlinear behavior such as contact and material non-
linearities mean that small time steps are needed. The implicit
method is much more time-consuming than the explicit meth-
od because of the matrix integration and inversion when small
time steps are used (Wu et al. 1998). Therefore, the explicit
method is the ideal algorithm for achieving convergence in
simulations of drop impact problems. The FE drop simula-
tions in this study are performed by using the nonlinear FE
code LS-DYNA.

For efficient FE modeling, geometry cleanup and simplifi-
cations are needed for complex structures. Dishwasher struc-
tures consist of many different parts that have to be simplified,
particularly the geometry of the bottom housing (see Fig. 5).
Many small sections should be removed or simplified, such as

sharp tips of ribs, fillets on the edges with a small radius, and
supporters. Furthermore, parts with negligible effects on the
structural behavior such as catchers and small holes should
also be simplified.

During the construction of an FE model, some key points
affect the accuracy of the simulations. Choosing a proper
mesh size that is fine enough to obtain a response at small
regions while avoiding small elements is the first step of effi-
cient FE modeling. Because the explicit method is controlled
by the smallest element size, a minimummesh size of 2 mm is
used at expected high-stress regions in order to reduce the
CPU time for simulations. The FE mesh is generated by using
HYPERMESH (HYPERMESH 2009). The overall dishwash-
er FE model consists of 435,169 shell elements, 963,640 solid
elements, and 699 1D rigid and mass elements for a total of
1,399,508 elements. Figure 6 shows the FE model of the dish-
washer assembly. Because a fully integrated shell element
formulation decreases the analysis time compared to other
formulations, it is used for analysis with high computational
costs (Livermore Software Technology 2007). Packaging
module components are modeled by using hexagonal solid
elements. Fully integrated solid elements (S/R solid elements)
are selected to prevent excessive distortions that lead to neg-
ative Jacobian errors (Bielenberg and Reid 2004).

Fig. 4 Increment in the bottom
foam height

Fig. 5 Geometry of plastic bottom housing
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Choosing a suitable material model and using the correct
material properties are another challenge for FE modeling.
The elastoplastic material model “Material type 24” is used
for the steel parts of the dishwasher. For plastic components
such as bottom housing, the elastic–plastic material model
“Material type 124,” which considers different tensile and
compressive stresses versus strain values, is used. In this
study, the packaging material and foam has a crucial role in
energy absorption. Therefore, it has had to be modeled care-
fully. As presented in (Mulkoglu et al. 2015), the crushable
foam material model “Material type 63” in the LS-DYNA
material library was successfully used to model the packaging
module. In this study, the material model with the parameters
listed in Table 1 is validated (see Fig. 7). Specimens of ex-
panded polystyrene (EPS) crushable foam were compressed
into a rigid ball. An FEA simulation of the indentation test for
foam was performed, as shown in Fig. 8 (the rigid ball is
removed for visualization purposes). In order to minimize
the simulation time, a quarter model of the rigid ball and foam
block was analyzed. Finally, load–displacement curves were
obtained, as shown in Fig. 9. These results proved that the
crushable foam material model “Material type 63” with the
parameters listed in Table 1 could be used to successfully
model the packaging material for the dishwasher.

To define the contact, a single-surface contact algorithm is
utilized to consider the self-contact of each part. Contact be-
tween the rigid wall and dishwasher is defined with a surface-
to-surface contact card provided by LS-DYNA. For each con-
tact definition, the static and dynamic friction coefficients are

taken as 0.3 and 0.2, respectively (Acar et al. 2011). For the
components on the packaging module, the interface between
the support foam and bottom foam is assumed to be fully
connected and defined by the “Tied Nodes to Surface” contact
algorithm.

4 Constructing surrogate models

The extremely high computational costs of crash simulations
are the main challenge for simulation-based optimization. One
way to overcome this challenge is to construct surrogate
models (or meta-models). The basic concept of surrogate
models is constructing a model that can mimic the behavior
of the simulation as closely as possible while being computa-
tionally efficient. The first step to constructing a surrogate
model is to select a design of experiment (DoE) type, which
is the sampling plan in design variable space. In this study, a
Latin hypercube sampling (LHS) (Park 1994) DoE is used. In
the LHS method, the range of values for each variable is
divided into l segments. The whole design space consisting
of k variables is partitioned into lk cells, each having equal
probability. This study uses three design variables and thirty
segments, so 30 cells are chosen as design points, which can
be also named training points from the 303 cells. After the
DoE type is selected, numerical simulations are performed at
the training points with LS-DYNA. By computing the re-
sponses at the training points, a corresponding pool of re-
sponse values is generated. Then, the training points and cor-
responding response values are used to fit a surrogate model
that could estimate the response at any arbitrary point within

Fig. 6 Finite element model of dishwasher assembly

Table 1 Parameters of input card
for crushable foam material
model

Parameter Description Value Units

RO Density 2.2 × (10)−11 Tonne/mm3

E Young’s Modulus 78 MPa
PR Poisson’s ratio 0

TSC Tensile stress cut-off 0.1 MPa
DAMP Rate sensitivity via damping coefficient 0.5

Fig. 7 Material model validation for crushable foam

Optimization of a diswasher structure and its packaging module 1521



the bounds of the input variables. Polynomial response surface
(PRS) approximation and radial basis functions (RBFs) are
used as different types of surrogate models.

The most commonly used PRS approximation is a second-
order model in the form of a second-degree algebraic polyno-
mial function (Myers and Montgomery 2002):

ŷ xð Þ ¼ a0 þ
XN
i¼1

aixi þ
XN
i¼1

aiix2i þ
XN−1

i¼1

XN
j¼iþ1

ai jxix j; ð2Þ

where ŷ is the response surface approximation of the actual
response function y,N is the number of variables, x is the input

vector, and a0, ai, aii, aij are the unknown coefficients to be
determined by means of the least-squares method.

The RBF is another surrogate model that approximates
multivariate functions based on scattered data by using linear
combinations of a radially symmetric function based on the
Euclidean distance or other such metric (Buhmann 2003). The
RBF model for a dataset consisting of the values of input
variables and response values at N sampling points can be
expressed as

ŷ xð Þ ¼
XN
i¼1

λiϕ x−xik kð Þ; ð3Þ

where x is the vector of input variables, xi is the vector of input
variables at the ith sampling point, ϕ is an RBF of the

Euclidean norm x−xik k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
x−xið Þp

T x−xið Þ representing the
radial distance r from the design point x to the sampling point
or center xi, and λi, i=1,N are the unknown interpolation
coefficients. Among the RBF formulations, the multiquadratic

formulation ϕ rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
is used in this study. The pa-

rameter c is a constant, and the choice of c=1 has been found
to be suitable for most function approximations (Wang et al.
2006). The unknown interpolation coefficients (λi, i=1,N,)
can be found by minimizing the residual or the sum of the
squares of the deviations. This is expressed as

R ¼
XN
j¼1

y x j
� �

−
XN
i¼1

λiϕ x−xik kð Þ
" #

ð4Þ

t = 0 t = 20 ms

t = 40 ms t = 60 ms

Fig. 8 FEA results of indentation
test (z-displacement contour in
mm)

Fig. 9 Load–displacement curve obtained from indentation test
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Theminimization equation can be written in matrix form as

A½ � λf g ¼ yf g; ð5Þ
where [A] =ϕ(‖xj− xi‖), j= 1,N, i= 1,N; {λ1,λ2,…,λN}

T,
and {y}T{y(x1), y(x2),…, y(xN)}

T.
After the surrogate models are constructed, both are used for

optimization. Finally, the optimum designs from the surrogate
model predictions were validated by using LS-DYNA.
Figure 10 shows a flowchart for the surrogate-based optimiza-
tion approach followed in this study. The use of the most accu-
rate surrogate model in optimization does not necessarily lead
to the optimum solution (Acar et al. 2011). Therefore, the opti-
mization problems of this study are solved by using different
surrogate model types, and multiple optimum candidates are
obtained that correspond to each surrogate model type.
Finally, the candidate with the best performance (ie, the smallest
objective function) is declared to be the optimum configuration.

5 Results

This section presents the validation of the FEA simulations
with experimental tests, the determination of the more critical
test configuration, the accuracy of the surrogate models, and
the optimization results for the critical test setup. The optimum
results obtained with different surrogate models are compared.
Finally, FEA is performed on the optimum designs to check
the predictions of the surrogate models.

5.1 Validation of FEA simulations with experimental tests

Inclined to side and vertical drop tests were performed along
with their FE simulations, as detailed in (Livermore Software
Technology 2007). The critical regions especially included the
components that came into contact with the bottom foam in

the vertical drop test simulation. For the inclined drop test
simulation, the parts of the dishwasher assembly on the in-
clined side were the most affected by impact with the ground,
as expected. Experiments were also performed in the present
study and recorded with a high-speed camera at 500 fps. The
deformations were compared with the FEA simulation at cer-
tain time steps, as shown in Fig. 11. The packaging module
was more strongly affected than the other parts of the dish-
washer, so it was analyzed in detail. The FEA results were
verified by checking the deformations of the packaging mod-
ule during impact. Figures 12 and 13 shows that the numerical
results agreed well with the experimental results for both the
vertical and inclined drop tests, respectively.

5.2 Determination of the more critical test setup

As noted earlier, the deformation in the sidewalls is the main
reason for the return of many products. Therefore, themaximum
displacement to the side for the sidewalls in both the vertical and
inclined drop tests are compared, as shown in Fig. 14. A larger
region of the sidewall reached the critical displacement value in
the inclined drop test. Moreover, the effective strain at the bot-
tom foam is higher in the inclined drop test. This can also affect
the deflection of the sidewalls. Thus, the inclined drop test setup
is used to consider the optimization problem in this study.

5.3 Accuracy of the surrogate models

The dogleg plate thickness (t), foam density (ρ), and incre-
ment in the bottom foam height (h) are used as design vari-
ables, which served as the inputs for the surrogate models. The
lower and upper bounds of these input variables are set to 1.5
mm≤ t ≤ 2.5 mm, 10 kg/m3≤ ρ≤ 40 kg/m3, and 0≤ h≤ 5
mm. The baseline geometry has the following values for the
design variables: (1) t=2 mm, (2) ρ=22 kg/m3, and (3) h=0.

Fig. 10 Flowchart for
performing surrogate-based
optimization
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The LHS DoE is used to generate 30 training points. Then,
FEA simulations are performed to compute the following con-
straints: (1) the maximum displacement to the side at the dogleg
plate uy, (2) the maximum displacement to the side at the side-
walls vy, (3) the absorbed energy at the bottom foam E_A, and
(4) the effective strain at the bottom foam E_S. Table 2 provides
the baseline values of these constraints (columns 4–7).

Second-order PRS andRBFmodels are constructed to predict
the responses under constraints, as discussed above. To facilitate
graphical depiction, it is not possible to generate plots of surro-
gate models with more than two variables. Therefore, six differ-
ent two-variable combinations are considered for this three-
variable problem. Figures 15 and 16 plot the constructed surro-
gatemodels for displacements to the sides at the dogleg plate and

Fig. 11 Comparison of vertical
drop test with FEA results
(effective stress contour in MPa)

(a) (b) 

Fig. 12 Comparison of the
deformed geometry of the bottom
foam after vertical drop test: (a)
Experimental result (b)
Simulation result (effective stress
contour in MPa)
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sidewall, respectively. Each figure shows one design variable
fixed to its midpoint value, and the other two design variables
are varied within their lower and upper bounds. Appendix A
provides the plots of the constructed surrogate models for the
absorbed energy and effective strain at the bottom foam.

The accuracy of the PRS model at the training points is eval-
uated by using the root mean square error (RMSE)metric, which
is used tomeasure the difference between values predicted by the
surrogatemodel and the values observed in the simulations being
modeled. The RMSE of a model prediction at the training points
for PRS with respect to the input vector xi is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
yi−ŷ

� �2

n
;

vuut
ð6Þ

where n is the number of training points and ŷi is the response
surface approximation at the ith training point yi. RMSE values
are normalized with respect to the ranges of responses evaluated
at training points:

NRMSE ¼ RMSE
ymax−ymin

ð7Þ

Table 3 gives the normalized RMSE values for all of
the responses. For the PRS model, the RMSE values for
all responses are smaller than 4 %, which indicates very
good accuracy. Because an RBF model passes through
all of the training points, its accuracy can either be
evaluated by predicting the response at randomly select-
ed test points (requires additional response evaluations)
or using cross-validation errors. The latter option is
used in this study.

The accuracies of the constructed surrogate models
are also evaluated by using the leave-one-out general-
ized mean square cross-validation error metric GMSE. If
there are n training points, a surrogate model type is
constructed n times; each time, one of the training
points is left out. Then, the difference between the ac-
tual response yi at the omitted training point xi and the
predicted value of the response using the surrogate
model is calculated. Thus, GMSE is calculated from

GMSE ¼ 1

n

Xn

i¼1

yi−ŷ
ið Þ� �2

ð8Þ

(a) (b)

Fig. 13 Comparison of the
deformed geometry of the bottom
foam after inclined drop test: (a)
Experimental result (b)
Simulation result (effective stress
contour in MPa)

(a) (b)

Fig. 14 Deflection of the
sidewall at the point of contact
(t = 20 ms): (a) Vertical drop test
result (b) Inclined drop test result
(displacement contour in mm)
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GMSE values are normalized with respect to the ranges of
responses evaluated at training points:

NGMSE ¼ GMSE
ymax−ymin

ð9Þ

Table 4 compares the NGMSE of the surrogate
models. GMSE values are normalized with (9) and are
given in Table 4. The RBF model is more accurate than
PRS for the response of the first constraint (u_y),
whereas the PRS model is more accurate for the re-
sponses of the other constraints. All GMSE values in
Table 4 except for that of the RBF for E_S are less
than 10 %, which indicates good accuracy. The GMSE
of the RBF for E_S is 13.3 %, which is reasonable for
a nonlinear problem.

Table 2 Baseline values of design variables and constraints

Design variables (x) Constraints

t (mm) rho (kg/m3) h (mm) u_y (mm) v_y (mm) E_A (J) E_S (−)
2 22 0 2.239 11.17 27.90 2.096

(a) t = 2 mm (d) t = 2 mm

(b) rho = 25 kg/m3 (e) rho = 25 kg/m3

(c) h = 2.5 mm (f) h = 2.5 mm

Fig. 15 Surrogate models for
displacement to the side at the
dogleg plate: (a)-(c) PRS and (d)-
(f) RBF
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(a) t = 2 mm (d) t = 2 mm

(b) rho = 25 kg/m3 (e) rho = 25 kg/m3

(c) h = 2.5 mm (f) h = 2.5 mm

Fig. 16 Surrogate models for
displacement to the side at the
sidewall: (a)-(c) PRS and (d)-(f)
RBF

Table 3 Accuracies of surrogate
models at the training points Surrogate model u_y v_y E_A E_S

NRMSE (%) NRMSE (%) NRMSE (%) NRMSE (%)

PRS 3.40 0.71 2.09 3.96

RBF - - - -

Optimization of a diswasher structure and its packaging module 1527



5.4 Optimization results

5.4.1 Single objective optimization

Each surrogate model is used separately to minimize the
weight of the dogleg plate (Wd) and weight of the bottom foam
(Wb). Table 5 lists the optimum configurations (see columns
3–5). The optimum design variables for both objective func-
tions corresponding to the PRS are the same, while the RBF
results are not. The RBF model provides more weight reduc-
tions for both objective functions.

FEA simulations of the optimum configurations obtained
with surrogate-based optimization are performed to compute
the actual values of the constraints; the results are given in
Tables 6 and 7. In Table 6, positive errors indicate that the
predicted responses are conservative, whereas negative errors
indicate non-conservative predictions. Recall that the baseline
value of u_y was 2.239 mm and v_y was 11.17 mm. Table 6
indicates positive errors for the predicted u_y, so the optimum
configurations are conservative. Although the predicted v_y
values were slightly non-conservative, they are all smaller
than that of the baseline design. This indicates that the obtain-
ed optimum configurations are feasible in terms of v_y con-
straint. The RBF model provides more accurate predictions
for both constraints compared to the PRS model.

In Table 7, negative errors for E_A indicate that the predic-
tions are conservative, whereas positive errors indicate non-
conservative predictions. In contrast, negative errors for E_S
indicate non-conservative predictions, and positive errors in-
dicate conservative predictions. Recall that the baseline value
of E_Awas 27.90 J and that of E_S was 2.096. Table 7 indi-
cates that the E_Avalues predicted by both the PRS and RBF
models are slightly conservative. The PRS predictions of E_S
are slightly conservative, and the RBF predictions are slightly

non-conservative. However, the level of non-conservatism is
less than 0.1 %, so the obtained optimum configurations are
reasonable.

5.4.2 Multi-objective optimization

The optimum configurations obtained from the PRS
model for both objective functions yielded the same
result, while those from the RBF model did not. Thus,
in addition to optimizing the model for either the min-
imum Wd or minimum Wb with the RBF model, a com-
posite objective function providing a compromise be-
tween Wd and Wb is optimized. This composite objec-
tive function can be defined as

f ¼ w
Wd

Wd;0
þ 1−wð Þ Wb

Wb;0
; ð10Þ

where f is the composite objective function to be min-
imized and w is a weight factor used to adjust the
importance of Wd and Wb relative to each other. Wd,0

and Wb,0 are the normalization constants taken as the
minimum Wd and Wb values obtained at the training
points (232.7 g and 113.8 g, respectively). The case
where Wd and Wb are equally important is considered,
so the weight factor in (10) is set to w= 0.5. Table 8
lists the optimization results. The weight reduction of
the bottom foam is much greater than that of the dogleg
plate when Wd and Wb are equally important.

Tables 9 and 10 give the responses of the constraints cor-
responding to the optimum configurations. As noted for the
single-objective optimization, positive errors for u_y, v_y, and
E_S and a negative error for E_A indicate that the predictions
are conservative. Tables 9 and 10 indicate that the predicted

Table 5 Optimization results for single objective cases

Surrogate model Objective function Design variables (x) Objective function (mass) (g)

t (mm) rho (kg/m3) h (mm) Baseline via Surrogate via FEA Weight reduction (%)*

PRS min Wb 1.894 14.94 4.973 221.7 171.8 172.7 22.09

min Wd 1.894 14.94 4.973 307.6 291.4 292.2 5.00

RBF min Wb 2.125 14.88 3.953 221.7 166.7 166.7 24.81

min Wd 1.881 16.39 4.322 307.6 289.3 289.3 5.950

* Weight reduction %ð Þ ¼ Baseline−FEA
Baseline � 100:

Table 4 Accuracies of surrogate
models evaluated by GMSE Surrogate model u_y v_y E_A E_S

NGMSE (%) NGMSE (%) NGMSE (%) NGMSE (%)

PRS 5.55 5.79 3.20 7.39

RBF 4.45 8.62 4.81 13.3
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v_y and E_S values are slightly non-conservative, while the
predicted u_y and E_A values are conservative. The v_y and
E_s values were less than those of the baseline design, which
indicates that the obtained optimum configuration is feasible
in terms of both constraints.

Finally, the Pareto optimal set is obtained by solving
the multi-objective optimization problem for various
values of the weight factor w in (10) between 0 and
1. Figure 17 depicts the Pareto optimal front (POF)
obtained with the RBF model by showing the relation
between Wd and Wb. The POF is linear over a small
region. A small increase in the weight of the dogleg
plate considerably reduces the weight of the bottom
foam. Figure 16 also shows that the POF converges to
a utopia point when Wd and Wb are equally important
(w= 0.5).

6 Conclusion

This paper presents drop test simulations on the
redesigned mechanical structure of a dishwasher and
surrogate-based optimization of the dishwasher model
and its packaging module. Vertical and inclined drop
tests were considered as drop scenarios. The simulation
results were compared with the experimental drop test
results, and good agreement was observed.

Because the deformation in the sidewalls is the main reason
for the return of many products, the sidewalls were analyzed
in detail for both drop scenarios. The optimization problem
focused on the inclined drop test setup because this produced
the maximum displacements of the sidewalls to the side.

The thickness of the dogleg plate, density of the bottom
foam, and increment in the bottom foam height were selected

Table 6 Maximum displacement
to the side at the dogleg plate, u_y
and maximum displacement to
the side at the sidewall, v_y for
optimum configurations for single
objective cases

Surrogate
model

Objective
function

u_y (mm)* v_y (mm)**

via
Surrogate

via
FEA

Error ***

(%)
via
Surrogate

via
FEA

Error
(%)

PRS min Wb 2.239 2.129 +5.20 10.54 10.70 −1.47
min Wd 2.239 2.129 +5.20 10.54 10.70 −1.47

RBF min Wb 1.559 1.501 +0.52 10.68 10.73 −0.47
min Wd 2.239 2.212 +1.23 10.74 10.76 −0.23

* Baseline value of maximum displacement to the side at the dogleg plate, u_y is 2.239 mm
**Baseline value of maximum displacement to the side at the sidewall, v_y is 11.17 mm
*** Error (%) = (Surrogate – FEA) / FEA

Table 7 Absorbed energy at the
bottom foam, E_A and effective
strain at the bottom foam, E_S
values for optimum
configurations for single
objective cases

Surrogate
model

Objective
function

E_A (J)* E_S (−)**

via
Surrogate

via
FEA

Error
(%)

via
Surrogate

via
FEA

Error
(%)

PRS min Wb 28.53 28.54 −0.05 2.096 2.080 +0.77

min Wd 28.53 28.54 −0.05 2.096 2.080 +0.77

RBF min Wb 28.85 29.01 −0.55 2.096 2.098 −0.10
min Wd 28.44 28.40 +0.16 2.096 2.088 +0.37

* Baseline value of absorbed energy at the bottom foam, E_A is 27.90 J
** Baseline value of effective strain at the bottom foam, E_S is 2.096

Table 8 Optimization result for composite objective function

Objective function Design variables (x) Component Objective function (mass) (g)

t (mm) rho (kg/m3) h (mm) Baseline via Surrogate via FEA Weight reduction (%)*

min f (w= 0.5) 1.954 15.48 3.911 Bottom Foam 221.7 173.2 174.1 21.46

Dogleg Plate 307.6 300.5 300.5 2.30

* Weight reduction %ð Þ ¼ Baseline−FEA
Baseline � 100
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as design variables for minimizing the weights of the dogleg
plate and/or bottom foam. The PRS and RBF surrogate
models were used to predict the responses under the con-
straints of the optimization problem.

Based on the results obtained in this study, the following
conclusions were drawn:

& The weights of the dogleg plate and bottom foam could be
reduced, while the optimum configuration of the dish-
washer improved the crash performance.

& When a single objective was considered, the minimum
weights for both components were obtained with the

RBF model. The weight reduction for the dogleg plate
and bottom foam were 5.95 and 24.8 %, respectively.

& When a composite objective was considered, the mini-
mum weights for both components were obtained with
the PRS model. Because the PRS model yielded the same
optimum design variables for both objectives, it can also
be considered as multi-objective optimization. The weight
reduction for the dogleg plate and bottom foam were 5.0
and 22.9 %, respectively.

In this study, the inclined to side and vertical drop tests
were considered as drop scenarios. Other drop scenarios such

Table 9 Maximum displacement
to the side at the dogleg plate, u_y
and maximum displacement to
the side at the sidewall, v_y for
optimum configurations for
composite objective function

Objective function u_y (mm)* v_y (mm)**

via Surrogate via FEA Error (%) via Surrogate via FEA Error (%)

min f (w= 0.5) 1.922 1.920 +0.10 10.70 10.76 −0.56

* Baseline value of maximum displacement to the side at the dogleg plate, u_y is 2.239 mm
**Baseline value of maximum displacement to the side at the sidewall, v_y is 11.17 mm

Table 10 Absorbed energy at the
bottom foam, E_A and effective
strain at the bottom foam, E_S
values for optimum
configurations for composite
objective function

Objective function E_A (J)* E_S (−)**

via Surrogate via FEA Error (%) via Surrogate via FEA Error (%)

min f (w= 0.5) 28.49 28.57 −0.28 2.096 2.105 −0.43

* Baseline value of absorbed energy at the bottom foam, E_A is 27.90 J
** Baseline value of effective strain at the bottom foam, E_S is 2.096

Fig. 17 The Pareto optimal front
obtained using RBF model
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as inclined to the front or inclined to the corner of the dish-
washer can be introduced for future study. In addition, other
surrogate model types such as Kriging and support vector
regression can be integrated to the surrogate-based optimiza-
tion approach for future work.
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APPENDIX A. Constructed surrogate models

A1. The expressions of the PRS model and the coefficients
of the RBF model for the responses of interest

The PRS model for the maximum displacement to the side at
the dogleg plate uy can be expressed as:

uy xð Þ ¼ 35:4887−33:5905x1 þ 0:4952x2−0:1124x3−0:1769x1x2

þ0:0390x1x3−0:0006x2x3 þ 7:9126x21−0:0009x
2
2 þ 0:0015x23

ðA1Þ

where the input variable vector is x={t,ρ,h}.
The PRS model for the maximum displacement to the side at

the sidewalls vy can be expressed as:

vy xð Þ ¼ 10:2599−1:7430x1 þ 0:2113x2 þ 0:0904x3−0:0304x1x2−0:0881x1x3
−0:0003x2x3 þ 0:5774x21−0:0024x

2
2 þ 0:0063x23

ðA2Þ

The PRSmodel for the absorbed energy at the bottom foam
E_A can be expressed as:

E A xð Þ ¼ 18591þ 8372x1−133x2−103x3 þ 50x1x2

þ 91x1x3 þ 3x2x3−1581x21−x
2
2 þ x23 ðA3Þ

The PRS model for the effective strain at the bottom foam
E_S can be expressed as:

E S xð Þ ¼ 2:5706−0:1420x1−0:0152x2−0:0597x3 þ 0:0014x1x2 þ 0:0228x1x3

þ0:0006x2x3 þ 0:0150x21−1:47� 10−5x22−0:0015x
2
3

ðA4Þ

The coefficients of the RBF model for the maximum dis-
placement to the side at the dogleg plate uy, for the maximum
displacement to the side at the sidewalls vy, for the absorbed
energy at the bottom foam E_A, and for the effective strain at
the bottom foam E_S are given in Tables 11-14, respectively.
Surrogate models for absorbed energy and effective strain at
the bottom foam are shown in Figs. 18 and 19, respectively.

Table 11 The coefficients of the RBF model for the maximum
displacement to the side at the dogleg plate uy

λ1 35.6726 λ11 −35.0873 λ21 −11.5385
λ2 6.6794 λ12 −44.6100 λ22 −25.0025
λ3 10.3662 λ13 111.9505 λ23 16.2578
λ4 −7.7511 λ14 8.02444 λ24 −15.2394
λ5 25.2237 λ15 12.1390 λ25 −134.2408
λ6 0.46144 λ16 −15.5685 λ26 16.8427
λ7 34.7638 λ17 −218.0256 λ27 −24.5569
λ8 −0.83543 λ18 248.4971 λ28 −8.8749
λ9 −48.9991 λ19 42.0071 λ29 62.8018
λ10 −71.7947 λ20 −37.7956 λ30 68.4035

Table 12 The coefficients of the RBF model for the maximum
displacement to the side at the sidewalls vy

λ1 −3.4777 λ11 −546.8331 λ21 12.0784

λ2 −119.0486 λ12 −274.3191 λ22 −387.9191
λ3 43.6815 λ13 118.4742 λ23 132.9177

λ4 −4.5564 λ14 165.9248 λ24 188.7721

λ5 174.0896 λ15 5.1152 λ25 78.8297

λ6 132.1541 λ16 −52.1096 λ26 −85.2178
λ7 370.7211 λ17 58.9028 λ27 −476.7844
λ8 −3.5113 λ18 −329.8604 λ28 −43.0776
λ9 584.5073 λ19 −5.3752 λ29 26.7691

λ10 −44.8441 λ20 333.7835 λ30 −47.8121

Table 13 The coefficients of the RBFmodel for the absorbed energy at
the bottom foam E_A

λ1 −30.5156 λ11 121.0902 λ21 19.8179

λ2 2.6637 λ12 39.3095 λ22 −33.6325
λ3 −21.0546 λ13 −45.0454 λ23 −11.1266
λ4 14.4063 λ14 −1.3181 λ24 −48.8983
λ5 −45.5724 λ15 −9.7247 λ25 108.1418

λ6 11.1583 λ16 6.6972 λ26 −16.8585
λ7 21.9125 λ17 179.6243 λ27 −63.2656
λ8 5.33.52 λ18 −268.7167 λ28 14.1486

λ9 145.5161 λ19 −37.9661 λ29 −63.1190
λ10 54.9400 λ20 −36.1576 λ30 −9.4644

Table 14 The coefficients of the RBF model for the effective strain at
the bottom foam E_S

λ1 19.1981 λ11 753.2701 λ21 31.6008

λ2 45.4378 λ12 −16.8814 λ22 −77.9624
λ3 146.1826 λ13 −14.3900 λ23 −59.4440
λ4 27.4731 λ14 −285.3699 λ24 −161.9058
λ5 −299.7345 λ15 38.8698 λ25 −71.1252
λ6 −90.6270 λ16 −14.1739 λ26 147.8355

λ7 317.1662 λ17 14.1825 λ27 620.2359

λ8 33.2048 λ18 259.3635 λ28 −41.5369
λ9 −971.3303 λ19 −39.6217 λ29 −91.2928
λ10 69.1438 λ20 −309.9925 λ30 25.2719
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(a) t = 2 mm (d) t = 2 mm

(b) rho = 25 kg/m3 (e) rho = 25 kg/m3

(c) h = 2.5 mm (f) h = 2.5 mm

Fig. 18 Surrogate models for
absorbed energy at the bottom
foam: (a)-(c) PRS and (d)-(f) RBF

A.2 Absorbed energy at the bottom foam
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A.3 Effective strain at the bottom foam
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