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Abstract When the limit state function (or performance func-
tion) of a structure can be written as the difference of a capac-
ity function and a response function that are expressed in
terms of independent sets of random variables (i.e., when the
limit state function has a separable form), efficient simulation
based techniques (e.g., Separable Monte Carlo Simulation
method) can be used to predict the reliability of the structure.
The accuracies of these simulation based techniques, on the
other hand, diminishes as the structural reliability increases.
This paper proposes a reliability index extrapolation method
to predict reliability of a highly safe structure that has a sepa-
rable limit state function. In this method, the standard devia-
tions of the random variables that contribute to the capacity
function are artificially inflated by using a scale parameter to
obtain various (smaller) scaled reliability index values (that
can be predicted accurately with small number of samples).
The standard deviations of the random variables that contrib-
ute to the response function are kept unchanged in order to use
the same response values in prediction of various scaled reli-
ability indices. Then, least square regression is used to build a
relationship between the standard deviation scale parameter
and scaled reliability index values. Finally, an extrapolation
is performed to estimate the actual (higher) reliability index.
The accuracy of the proposed method is evaluated through
reliability assessment of mathematical and structural mechan-
ics example problems as well as a reliability based design
optimization problem. It is found that the proposed method

can provide reasonable accuracy for high reliability index es-
timations with only 1000 response function evaluations.

Keywords Extrapolation . High reliability . Reliability
index . SeparableMonte Carlo

1 Introduction

In reliability estimation of structures, limit state function (or
performance function) of a structure is used to separate the
safe and the failure regions of the random variable space.
The probability of failure estimation requires calculation of
the multi-dimensional integral (see (1)) of the joint probability
density function of all the random variables over the failure
region

Pf ¼
Z

⋯
Z

I g xð Þ≤0½ � f X xð Þdx ð1Þ

where I is the indicator function that takes the value of 1 when
the condition is true and takes the value of 0 when the condi-
tion is false, fX(x) denotes the joint probability density func-
tion of the set of random variables X and g(x) is the limit state
function. The analytical integration of this multi-dimensional
function is not possible for most real life structural problems,
therefore approximate analytical and simulation based ap-
proaches have been proposed for probability of failure
estimation.

The approximate analytical approaches are usually compu-
tationally inexpensive compared to simulation based ap-
proaches. The most popular analytical methods are the first
order reliability method (FORM (Hasofer and Lind 1974;
Rackwitz and Fiessler 1978)) and second order reliability
method (SORM (Breitung 1984; Tvedt 1990)), which are
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based on the first order and second order expansions of the
limit state function at the most probable failure point (MPP).
Even though the analytical approaches are computationally
advantageous, they are often suitable for mildly nonlinear
limit state functions and they usually become very complicat-
ed or inefficient for real life problems (e.g., for problems with
multiple failure modes).

The simulation based approaches, on the other hand, have
the advantage of handling any type of limit state function and
handling complicated real life problems well. The most popular
simulation based approach is theMonte Carlo simulation (MCS
(Rubinstein 1981)) method. Given a limited computational
budget for limit state function evaluations (usually requires
performing computationally expensive structural analyses, such
as finite element analysis), MCS becomes inaccurate for esti-
mating low failure probabilities. Variance reduction techniques
such as importance sampling (Melchers 1989), adaptive impor-
tance sampling (Wu 1994) can be used to improve the accuracy
of failure probability estimations. These methods also rely on
the concept of MPP search and most MPP search algorithms
may fail or give erroneous results when the limit state function
is highly nonlinear or discontinuous. In such cases, simulation
based methods that do not rely onMPP search such as stratified
sampling (Iman and Conover 1980), subset simulation (Au and
Beck 2001) or line sampling (Koutsourelakis et al. 2004) can be
used. Other alternatives include utilization of metamodels
(Kaymaz 2005; Gondal and Lee 2012) and tail modeling
(Ramu et al. 2010; Acar 2011).

In structural mechanics problems, the limit state function of a
structure can often be expressed as the response exceeding ca-
pacity. In a more general case, the limit state function of a struc-
ture can be formulated as the difference between a capacity func-
tion and a response function that are expressed in terms of inde-
pendent sets of random variables (i.e., the limit state function has
a separable form). In such a case, Separable Monte Carlo simu-
lation (SMCS) method can be efficiently used (Smarslok et al.
2010; Ravishankar et al. 2010). SMCS has a beneficial property
of allowing the use of different sample sizes for the response
function and the capacity function. In structural mechanical prob-
lems, the response evaluations are typically performed using
computationally expensive finite element analysis, whereas the
capacity evaluations are computationally inexpensive. Therefore,
by allowing the use of a smaller sample size for the response
function and a larger sample size for the capacity function,
SMCS can provide an efficient approach to predict the reliability
of the structure. Given a limited computational budget for limit
state function evaluations, on the other hand, the accuracy im-
provement gained through SMCS can be inadequate for highly
safe structures due to limited sampling.

In this paper, a reliability index extrapolation method is
proposed to predict reliability of a highly safe structure that
has a separable limit state function. In this method, the stan-
dard deviations of the random variables that contribute to the

capacity function are progressively inflated to obtain various
(smaller) scaled reliability indices that can be predicted accu-
rately with small number of samples. The standard deviations
of the random variables that contribute to the response func-
tion are kept unchanged in order to use the same response
function values in prediction of various scaled reliability indi-
ces. Then, least square regression is used to build a relation-
ship between the standard deviation inflation parameter and
scaled reliability index values. Finally, an extrapolation is per-
formed to estimate the actual reliability index.

The paper is organized as follows. The existing methods
are briefly described in the next section. The proposed reli-
ability index extrapolation method is presented in Section 3.
The application of the proposed method to an illustrative ex-
ample is presented in Section 4. The results obtained from
mathematical and structural mechanics example problems
are also presented and discussed in Section 4. Finally, the
summary of important conclusions are listed in Section 5.

2 The existing methods

2.1 Extrapolation for general limit states

The main premise of reliability index extrapolation can be stat-
ed as follows. First, the standard deviation of the random vari-
ables artificially inflated by using a scale parameter to obtain
smaller reliability indices so called “scaled” reliability indices.
Then, a functional relationship is built between the scale param-
eter and the scaled reliability index. Finally, the actual reliability
index is predicted by using the functional relationship
established. It should be noted that the scaled reliability indices
can be obtained with substantially smaller computational cost.

Motivated from the asymptotic behavior of the reliability
index with respect to standard deviation of the random vari-
ables in the independent and identically distributed (i.i.d.)
Gaussian space, Bucher (2009) proposed an asymptotic reli-
ability index extrapolation method. Bucher first considered
the case of a linear limit state function, and suggested that this
problem can be reduced to a single variable that has a standard
deviation of σ by an appropriate coordinate transformation.
Then, the reliability index can be formulated as

β kð Þ ¼ βk

k
ð2Þ

where k is the scale factor and βk is the scaled reliability index
computed for the scaled standard deviation of the random
variable σk ¼ σ

k . The actual reliability index is equal to
βact=β(k=1).

Bucher then considered a hyper circular limit state function
in n-dimensional Gaussian space in which failure is given by
g(X)=R2−XTX≤0, and obtained the relationship between the
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reliability index and the standard deviation scale parameter k
in terms of the χ2 distribution with n degrees of freedom as
given below

β kð Þ ¼ Φ−1 1−χ2 k2R2; n
� �� � ð3Þ

The graphical depiction of the relationship between the
reliability index and the standard deviation scale parameter k
is shown in Fig. 1.

Based on the asymptotically linear behavior of the reliabil-
ity index with respect to the standard deviation scale parame-
ter, Bucher (2009) assumed the following functional depen-
dence between the reliability index and the standard deviation
scale parameter k

β kð Þ ¼ Ak þ B

k
ð4Þ

Notice that as k→∞ (that is, as σk→0) the reliability index
β→∞ so that the asymptotic behavior is ensured. To determine
the coefficients A and B in (4), a set of so called “support points”
[ki,β(ki)] that consists of a set of scaled reliability index values
obtained for a set of scale parameters ki<1 are first generated, and
then least square regression is performed. The number of support

points affects the extrapolation results. Bucher (2009) used five
support points and Sichani et al. (2011) suggested determination
of the number of support points through optimization to keep the
computational cost manageable.

2.2 Separable Monte Carlo simulation (SMCS) method

The classical Monte Carlo simulation (CMCS) estimation of
the probability of failure defined in (1) is obtained from

P̂ f

� �
CMCS

≈
1

N

XN
i¼1

I g X ið Þ≤0½ � ð5Þ

where N is the number of limit state function evaluations
performed.

In structural mechanics problems, the limit state function of
a structure can be formulated as the difference of a capacity
function and a response function that are expressed in terms of
independent sets of random variables

g Xð Þ ¼ g XC;XRð Þ ¼ C XCð Þ−R XRð Þ ð6Þ
where XC is the set of random variables that contribute to the
capacity, and where XR is the set of random variables that
contribute to the response. SMCS has a beneficial property
of allowing the use of different sample sizes for the response
function and the capacity function (see Fig. 2). By considering
all possible combinations of M samples of the capacity and N
samples of the response, the SMCS estimation of the failure
probability defined in (1) is obtained from

P̂ f

� �
SMCS

≈
1

M N

XM
i¼1

XN
j¼1

I g X Ci ;XR j

� �
≤0

� � ð7Þ

As noted earlier, the response evaluations are typically per-
formed using computationally expensive finite element analy-
sis, whereas the capacity evaluations are often computationally
inexpensive. Therefore, by allowing the use of a smaller sample
size for the response function and a larger sample size for the
capacity function, SMCS can provide an efficient approach to
predict the reliability of the structure. Given a limited compu-
tational budget for response evaluations (a typical value is

Fig. 1 Relationship between the reliability index and the standard
deviation scale parameter k for hyper circular limit state function
(Bucher 2009)

Fig. 2 Comparison of CMCS (left) and SMCS (right) sampling
procedures (Ravishankar et al. 2010). In SMCS, all possible
combinations of M samples of the capacity and N samples of the
response are considered

Table 1 Statistical properties of the random variables in the illustrative
example

Random variable Distribution Mean Standard deviation

X1 Normal 8.5 1

X2 Normal 1 0.1

X3 Normal 1 0.1

X4 Normal 1 0.1

X5 Normal 1 0.1
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1000), the accuracy improvement gained through SMCS could
be inadequate for highly safe structures. In this paper, a reliabil-
ity index extrapolation method is proposed to improve the ac-
curacy of SMCS predictions as explained in the next section.

3 The proposed approach: extrapolation
for separable limit states

The main computational downside of the extrapolation meth-
od presented in Section 2.1 is the necessity of performing
computationally expensive response function calculations
needed for evaluation of several scaled reliability indices. If
the limit state function is separable, on the other hand, it is
proposed in this paper that the computational cost can be
alleviated by keeping the standard deviations of the random
variables that contribute to the response function unchanged
but scaling only the standard deviations of the random vari-
ables that contribute to the capacity function.

Consider the simple separable limit state case where the
capacity function is represented with a random variable C and
the response function is represented with a random variable R.
Then, the limit state function can be simply written as g(C,R)=
C−R. The computational cost of generating a realization of R is
often substantially larger than generating a realization ofC, so it

is proposed in this paper to use an extrapolation approach in
which only the standard deviation of C is scaled, whereas the
standard deviation of R is fixed. Therefore, in this extrapolation
approach, computation of several scaled reliability index values
requires generating multiple sets of realizations of C but only a
single set of realizations of R.

For the simple separable limit state case considered, as-
sume that both C and R follows normal distribution. Then
the scaled reliability index can be formulated as

β kð Þ ¼ μC−μRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
Ck þ σ2

R

q ; σCk ¼ σC

k
ð8Þ

Notice that as k→∞ (that is, as σCk→0) the reliability index β
does not show an asymptotic behavior but it has a finite value.
Therefore, the extrapolation formula given in (4) is not valid.
Inspired from the scaled reliability index formula given (8),
this paper proposes a general formula that could be used for
distribution types other than normal distribution provided that
the distributions of interest are not described by higher mo-
ments. The following functional dependence between the re-
liability index and the standard deviation scale parameter k is
proposed in this paper

β kð Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B
.
k2 þ C

vuut ð9Þ

Notice that (9) satisfies the expectation that as k→∞ (that is,
as σCk→0) the reliability index β has a finite value.

As noted earlier, the number of support points affects the
extrapolation results. Bucher (2009) used five support points
and Sichani et al. (2011) suggested determination of the number
of support points through optimization to keep the computa-
tional cost manageable. For the extrapolation approach pro-
posed in this paper, the number of support points is not much
an issue since only a single set of realizations of the response
function is used for all support points. The location of support
points also have a substantial effect on the extrapolation results.
For a specific problem, on one hand it is desirable to have the
largest value of the scale parameter close to one, and on the
other hand the accuracy of the corresponding reliability index
estimate has to be acceptable (30 % coefficient of variation of
the reliability index estimate for the largest scale parameter is a

Table 2 Comparison of the
reliability index predictions for
the illustrative example

Method NORFCa Rel. index Rel. index range % Difference compared to MCS

CMCS 109 4.118 – –

Extrap. Bucher 1000 4.303 (0.038) [4.183, 4.459] 4.5

Extrap. proposed 1000 4.151 (0.110) [3.856, 4.763] 0.8

SMCS 1000 4.212 (0.240) [3.558, 5.062] 2.3

The numbers in the parenthesis shows the standard deviations computed over 1000 runs
a NORFC: number of response function calculations

Fig. 3 Support points and extrapolation models generated for the
illustrative example
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reasonable value). This approach could also be used to deter-
mine the largest value of the scale parameter. In addition, if the
support points are clustered towards zero or one, then the least
square regression would put more importance towards very
small or very large reliability levels, respectively, and the ex-
trapolation results would be erroneous. In this study, the support
points are generated such that the standard deviation scale factor
k is changed between 0.3 and 0.7 with an interval of 0.025
based on our experience.

As the reliability index values at the support points are
computed through SMCS, these reliability index values are
subject to variations due to limited sampling. One approach
to protect against this variation is to perform conservative
reliability estimates by using bootstrap method as suggested
by Picheny et al. 2010. This approach requires calculation of
the reliability indices multiple times through re-sampling
using the existing response and capacity function values,
generating a bootstrap distribution for the reliability index,
and finally performing conservative reliability estimations
using the bootstrap distribution. The reader may refer to
Picheny et al. (2010) for details of this approach.

Even though the proposed reliability index extrapolation
approach is easy to follow and implement, it has some restric-
tions listed below:

& Since the proposed approach is based on scaling of the stan-
dard deviations of the capacity, the reliability estimation ac-
curacy will reduce as the standard deviation of the capacity
reduces. For the extreme case of deterministic capacity, the
reliability estimations will be as accurate as the classical
MCS.

& If the estimation of the capacity is expensive (e.g., when
the material properties are obtained through expensive
tests that need to be conducted many times), the proposed
approach will lose its computational advantage.

& The proposed approach is based on the assumption that the
reliability index increases monotonically as the standard
deviation scale factor increases. For problems with multiple
failure modes and multiple MPPs, this assumption may not

always holds true. For these kinds of problems, the pro-
posed approach is not applicable.

4 Example problems

This section provides an illustrative problem followed by an
additional mathematical example problem, two structural me-
chanics example problems and a reliability based design opti-
mization (RBDO) problem to compare the performance of the
extrapolation formula proposed in this paper to the Bucher’s
extrapolation formula and the SMCS without extrapolation.
Reliability index predictions of classical MCS with 109 sam-
ples are used as basis in comparison.

The coefficients in Bucher’s extrapolation formula and the
proposed extrapolation formula are estimated using the same
set of support points, because the main motivation of the paper
is to show that if we choose to scale only the capacity standard
deviation then Bucher’s extrapolation formula is not applicable
and we need to use a different extrapolation formula. If the main
motivation of the paper was to compare Bucher’s approach to the
proposed approach, then the response and the capacity standard
deviations had to be scaled simultaneously and only five support
points should be used for Bucher’s approach. In addition, to
maintain the same computational cost for both approaches, the
number of response function evaluations in Bucher’s approach
should be five times smaller than the proposed approach.

Table 4 Statistical properties of the random variables in the additional
mathematical example problem

Random variable Distribution Mean Standard deviation

X1 Lognormal X 1 10

X2 Normal 10 0.5

X3 Lognormal 2 0.2

X4 Normal 2 0.3

Table 3 Effect of the reliability level on the performance of the proposed extrapolation method for the illustrative example

X 1 CMCS Reliability index predictions of different methods % difference compared to CMCS predictions

Extrap. Bucher Extrap. Proposed SMC Extrap. Bucher Extrap. Proposed SMC

7.5 3.199 3.335 (0.023) 3.209 (0.056) 3.209 (0.065) 4.3 0.3 0.3

8 3.659 3.818 (0.030) 3.674 (0.099) 3.686 (0.123) 4.3 0.4 0.7

8.5 4.118 4.303 (0.038) 4.151 (0.110) 4.212 (0.240) 4.5 0.8 2.3

9 4.576 4.796 (0.058) 4.650 (0.180) N/Aa 4.8 1.6 N/Aa

9.5 5.007 5.298 (0.087) 5.194 (0.297) N/Aa 5.8 3.7 N/Aa

The numbers in the parenthesis shows the standard deviations computed over 1000 runs
a mean value and standard deviation over 1000 repetitions cannot be computed because of the occurrence of reliability index prediction value of infinity
due to limited sampling at high reliability levels
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However, this comparative study is beyond the scope of this
paper.

4.1 Illustrative example

To illustrate the proposed extrapolation approach, consider a
separable limit state function g=X1−X 2

2−X 3
2−X 4

2−X 5
2 in

which all random variables are normally distributed with
mean and standard deviation values given in Table 1. The limit
state function can be rewritten as g=C(X1)−R(X2,X3,X4,X5),
where the capacity function is C(X1)=X1 and the response
function is R(X2,X3,X4,X5)=X 2

2+X 3
2+X 4

2+X 5
2. The reliability

index for this problem is computed as 4.118 through classical
MCS with 109 samples.

To construct the extrapolation models, the support points
are generated first. The standard deviation scale factor k is
changed between 0.3 and 0.7 with an interval of 0.025, there-
by 17 support points are generated as shown in Fig. 3. The
reliability indices of the support points are computed using
SMCS method, where the number of response function calcu-
lation is limited to N=1000 and the number of capacity func-
tion calculation is limited to M=10,000. Note that for each
value of the scale factor k the same response function realiza-
tions are used to reduce the computational cost, whereas dif-
ferent capacity function realizations are used to reduce the bias
in reliability index predictions.

Since the SMCS method is a sampling based method, the
reliability indices of the support points may differ from a par-
ticular set of sampling points to another. To reduce the effect

of random sampling, the whole process is repeated for 1000
times and the mean values, the standard deviations and ranges
of the reliability index predictions are reported in Table 2. It is
seen that the prediction error of Bucher’s extrapolation formu-
la is five to six times larger than that of the extrapolation
formula proposed in this paper. It is also observed that the
proposed extrapolation formula has a better prediction capa-
bility compared to the SMCS without extrapolation.

Next, the effect of the reliability level on the performance
of the proposed extrapolation method is evaluated. The mean
value of X1 is adjusted to attain different reliability levels for
this example problem. For instance, if the mean value of X1 is

taken as X 1 ¼ 7:5 the corresponding reliability index is β=
3.199 (computed through classical MCS with 109 samples),

whereas if the mean value of X1 is taken as X 1 ¼ 9:5 the
corresponding reliability index is β=5.007 (computed through
classical MCS with 109 samples). Table 3 shows for vari-
ous reliability levels that the extrapolation formula pro-
posed in this paper has better prediction capability com-
pared to both the Bucher’s extrapolation formula and the
SMCS without extrapolation. On the other hand, the stan-
dard deviations of the reliability indices obtained from
Bucher’s extrapolation formula is smaller than the

Fig. 4 The cross section and loading for the simply supported beam

Table 6 Statistical properties of the random variables for the simply
supported beam

Random variable Distribution Mean Standard deviation

P Normal 6070 200

L Normal 120 6

a Normal 72 6

S Normal S 0.15 S

d Normal 2.3 1/24

bf Normal 2.3 1/24

tw Normal 0.16 1/48

tf Normal 0.26 1/48

Table 5 Evaluation of the performance of the proposed extrapolation method at various reliability levels for the additional mathematical example
problem

X 1 CMCS Reliability index predictions of different methods % difference compared to CMCS predictions

Extrap. Bucher Extrap. Proposed SMCS Extrap. Bucher Extrap. Proposed SMCS

80 3.274 3.908 (0.060) 3.318 (0.075) 3.284 (0.066) 19.4 1.3 0.3

85 3.655 4.394 (0.076) 3.685 (0.096) 3.686 (0.098) 20.2 0.8 0.8

90 4.023 4.870 (0.097) 4.046 (0.123) 4.111 (0.142) 21.1 0.6 2.2

95 4.388 5.342 (0.132) 4.409 (0.167) N/Aa 21.7 0.5 N/Aa

100 4.750 5.816 (0.181) 4.780 (0.227) N/Aa 22.4 0.6 N/Aa

105 5.065 6.298 (0.242) 5.168 (0.308) N/Aa 24.3 2.0 N/Aa

The numbers in the parenthesis shows the standard deviations computed over 1000 runs
a mean value and standard deviation over 1000 repetitions cannot be computed because of the occurrence of reliability index prediction value of infinity
due to limited sampling at high reliability levels
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extrapolation formula proposed in this paper, which is
smaller than the SMCS without extrapolation. Table 3 also
shows that the average performance of the SMCS cannot
be assessed due to the occurrence of reliability index pre-
diction value of infinity due to limited sampling at high
reliability levels. Conversely, the error of the proposed ex-
trapolation formula in prediction of high reliability levels (a
reliability index value around five) is smaller than 4 %.

4.2 Additional mathematical example problem

Consider a separable limit state function g ¼ X 1
X 2
−X 3X 4 in

which X1 and X3 are lognormally distributed, X2 and X4 are
normally distributed with mean and standard deviation values
given in Table 4. The mean value of X1 can be changed to
attain different reliability levels, and the performance of the
proposed extrapolation method can be evaluated for different
reliability levels.

Table 5 presents the comparison of the average reliability
index predictions of the extrapolation formula proposed in this
paper to Bucher’s extrapolation formula and SMCS without
extrapolation. It is observed from Table 5 that Bucher’s ex-
trapolation formula leads to very large errors in reliability
index predictions, even for relatively smaller reliability levels.
On the other hand, the standard deviations of the reliability
indices obtained from Bucher’s extrapolation formula is
smaller than the extrapolation formula proposed in this paper.
The extrapolation formula proposed in this paper outperforms

SMCS without extrapolation for all reliability levels except
the smallest one considered for this example (β=3.274).
Table 5 also shows that the average performance of the
SMCS cannot be assessed due to the occurrence of reliability
index prediction value of infinity due to limited sampling at
high reliability levels. Conversely, the error of the proposed
extrapolation formula in prediction of high reliability levels (a
reliability index value around five) is smaller than or equal to
2 %.

4.3 Simply supported beam problem

The first structural mechanics example is a simply-supported
I-beam shown in Fig. 4. The beam is subjected to a concen-
trated load as discussed in Huang and Du (2006). This prob-
lem has a separable limit state function, which is defined as the
difference between the strength (S) and the maximum normal
stress (σmax) due to bending as given in (10).

g ¼ S−σmax ð10Þ
where

σmax ¼ Pa L−að Þd
2LI

; I ¼ bf d
3− bf −tw
� �

d−2t f
� �3

12
ð11Þ

The statistical properties of the random variables in this
example problem are given in Table 6. The mean value of

Table 7 Evaluation of the performance of the proposed extrapolation method at various reliability levels for the simply supported beam

S CMCS Reliability index predictions of different methods % difference compared to CMCS predictions

Extrap. Bucher Extrap. Proposed SMCS Extrap. Bucher Extrap. Proposed SMCS

300,000 3.112 3.222 (0.022) 3.114 (0.057) 3.119 (0.064) 3.5 0.1 0.2

350,000 3.617 3.717 (0.026) 3.627 (0.079) 3.652 (0.146) 2.8 0.3 1.0

400,000 4.004 4.092 (0.035) 4.021 (0.110) 4.147 (0.313) 2.2 0.4 3.6

450,000 4.306 4.386 (0.044) 4.342 (0.149) N/Aa 1.9 0.8 N/Aa

500,000 4.547 4.629 (0.053) 4.590 (0.175) N/Aa 1.8 0.9 N/Aa

550,000 4.741 4.821 (0.068) 4.817 (0.222) N/Aa 1.7 1.6 N/Aa

The numbers in the parenthesis shows the standard deviations computed over 1000 runs
a mean value and standard deviation over 1000 repetitions cannot be computed because of the occurrence of reliability index prediction value of infinity
due to limited sampling at high reliability levels

Fig. 5 The loading and boundary
conditions for the torque arm
problem. Dimensions are in cm
(Picheny et al. 2008)
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the strength (S ) can be changed to attain different reliability
levels, and the performance of the proposed extrapolation
method can be evaluated for different reliability levels. For

instance, if S is taken as S ¼ 300; 000 the corresponding reli-

ability index is β=3.112, whereas if S is taken as S ¼ 550; 0
00 the corresponding reliability index is β=4.741.

Table 7 presents the comparison of the average reliability
index predictions of the extrapolation formula proposed in this
paper to Bucher’s extrapolation formula and SMCS without
extrapolation. Table 7 shows that the extrapolation formula
proposed in this paper outperforms both Bucher’s extrapola-
tion formula and SMCS without extrapolation for all reliabil-
ity levels considered. However, the standard deviations of the
reliability indices obtained from Bucher’s extrapolation for-
mula is smaller than the extrapolation formula proposed in this
paper, which is smaller than the SMCS without extrapolation.
Table 7 also shows that the average performance of the SMCS
cannot be assessed due to the occurrence of reliability index
prediction value of infinity due to limited sampling at high
reliability levels. Conversely, the error of the proposed extrap-
olation formula in prediction of high reliability levels (a reli-
ability index value around five) is smaller than 2 %.

4.4 Torque arm problem

In this example problem, design of an automobile torque arm
introduced by (Botkin 1982) is considered. This example
problem is studied by many researchers including Kim et al.
(2006) and Picheny et al. (2008). The torque arm is subjected
to a horizontal load (Fx=−2789N) and a vertical load (Fy=
5066N) transmitted from a shaft at the right hole as shown in
Fig. 5. The torque arm is connected to the chassis at the left
hole, so fixed boundary conditions are applied at the left hole.
The modulus of elasticity is equal to E=206.8 GPa, and
Poisson’s ratio is equal to ν=0.29 for the torque arm material.
Seven design variables (d1 through d7) alter the shape of the
torque arm as shown in Fig. 6.

The limit state function for the torque arm problem is in
separable form as given in (12).

g ¼ S−σmax ð12Þ
where S is the failure stress of the torque arm material and
σmax is the maximum vonMises stress developed at the torque
arm. The geometric design variables (d1 through d7), the ap-
plied loads (Fx and Fy) and the failure stress are taken as
random variables. The statistical properties of the random var-
iables are given in Table 8.

Since the structural analysis of the torque arm problem is
complex, it is not easy to formulate a simple functional rela-
tionship between the geometry/loading parameters and the
stresses in the torque arm. The maximum von Mises stress
developed at the torque arm is computed through finite
element analysis by using a MATLAB finite element
toolbox developed by Maute (2009) and CALFEM (1999).
The von Mises stress distribution in the torque arm when the
design variables and the applied loads take their mean values
is presented in Fig. 7. The mesh density is kept at a low level
to allow for repeated analysis required for reliability analyses.

Table 9 presents the comparison of the average reliability
index predictions of the extrapolation formula proposed in this
paper to the Bucher’s extrapolation formula and SMCS with-
out extrapolation. Table 9 shows that Bucher’s extrapolation
formula leads to large errors in reliability index predictions,
even for relatively smaller reliability levels. The extrapolation
formula proposed in this paper outperforms SMCS without
extrapolation for relatively large reliability levels, whereas
SMCS without extrapolation outperforms the proposed ex-
trapolation formula for relatively small reliability levels. In
addition, the standard deviations of the reliability indices

Fig. 6 Design variables for the torque arm problem (Picheny et al. 2008)

Table 8 Statistical properties of the random variables in the torque arm
problem

Random variable Distribution Mean Standard deviation

d1 through d7 (cm) Normal 0 1

Fx (N) Normal −2789 278.9

Fy (N) Normal 5066 506.6

S (MPa) Lognormal S 0.10 S

Fig. 7 The von Mises stress distribution in the torque arm when the
design variables and the applied loads take their mean values. Stresses
are in MPa
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obtained from Bucher’s extrapolation formula is smaller than
the extrapolation formula proposed in this paper, which is
smaller than the SMCS without extrapolation. Table 9 also
shows that the average performance of the SMCS cannot be
assessed due to the occurrence of reliability index prediction
value of infinity due to limited sampling at high reliability
levels. Conversely, the error of the proposed extrapolation
formula for predicting high reliabilities (a reliability index
value around five) is smaller than 3 %.

4.5 Reliability based design optimization (RBDO)
of a cantilever beam

This well-known cantilever beam design problem was first
introduced by Wu et al. (2001) and investigated in different
studies (Ramu et al. 2004; Qu and Haftka 2004; Ba-abbad
et al. 2006). The cantilever beam depicted in Fig. 8 is subject-
ed to two random loads FX and FY. The beam may fail due to
stress failure and excessive displacement. To simplify the
problem, only the stress failure mode is considered in this
paper. The limit state function for the stress failure mode can
be written as

g ¼ S−
6L

wt2
FY þ 6L

w2t
FX

	 

ð13Þ

The applied loads (FX and FY) and the yield strength S are
taken as random variables and their statistical properties are
given in Table 10. The minimum weight design is sought by
varying the width (w) and thickness (t) of the beam, which are
considered to be deterministic variables. The length of the

beam is also assumed to be deterministic and taken as L=
100 in.

All random variables in this problem follows normal dis-
tribution and the limit state function is linear with respect to
the random variables, therefore the reliability of the beam can
be computed easily by analytical means. Reliability based
design optimization (RBDO) of the beam can be achieved
by minimizing the weight of the beam such that the reliability
index is larger than or equal to a target value. In this problem,
the target reliability index is taken as 3.0. In this study, the
RBDO problem is solved by using “fmincon” optimizer func-
tion of MATLAB is used. Since fmincon is a gradient-based
optimizer, a multiple starting point strategy is used to increase
the probability of converging to a global optimum solution.
The optimum values of the beam width and thickness are
found as w*=2.446 in and t*=3.892 in. respectively, as re-
ported by Ramu et al. (2004).

In this paper, RBDO of the beam is also achieved by uti-
lizing the proposed method for reliability assessment. Since
the proposed method is a sampling based method, the reliabil-
ity predictions would be noisy due to limited sampling and
convergence problems can be faced. To eliminate this prob-
lem, metamodel based optimization approach is followed.
Response surface models (quadratic polynomial with all terms
included) are constructed to relate the beam width and thick-
ness to reliability index. Full factorial design of experiments
with three levels is used to generate nine training points. The
input variables (beam width and thickness) and the output

Table 9 Evaluation of the performance of the proposed extrapolation method at various reliability levels for the torque arm problem

S CMCS Reliability index predictions of different methods % difference compared to CMCS predictions

Extrap. Bucher Extrap. Proposed SMCS Extrap. Bucher Extrap. Proposed SMCS

160 2.976 3.263 (0.038) 3.024 (0.047) 2.981 (0.055) 9.6 1.6 0.2

170 3.439 3.759 (0.044) 3.477 (0.056) 3.449 (0.075) 9.3 1.1 0.3

180 3.879 4.238 (0.054) 3.921 (0.075) 3.899 (0.106) 9.3 1.1 0.5

190 4.299 4.687 (0.067) 4.347 (0.097) 4.349 (0.167) 9.0 1.1 1.2

200 4.701 5.134 (0.091) 4.764 (0.143) N/Aa 9.2 1.3 N/Aa

210 5.087 5.601 (0.122) 5.236 (0.205) N/Aa 10.1 2.9 N/Aa

The numbers in the parenthesis shows the standard deviations computed over 1000 runs
a mean value and standard deviation over 1000 repetitions cannot be computed because of the occurrence of reliability index prediction value of infinity
due to limited sampling at high reliability levels

Fig. 8 The geometry and loading for the cantilever beam

Table 10 The statistical properties of the random variables for the
RBDO problem

Random variable Distribution Mean Coefficient of variation

FX (lb) Normal 500 20 %

FY (lb) Normal 1000 10 %

S (ksi) Normal 40 5 %
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variable (reliability index) of the response surface models are
provided in Table 11.

Table 11 also presents the comparison of the reliability
index predictions of the proposed extrapolation formula to
the Bucher’s extrapolation formula and SMCSwithout extrap-
olation. Table 11 shows that Bucher’s extrapolation formula
leads to very large errors in reliability index predictions, even
for small reliability levels. The extrapolation formula pro-
posed in this paper outperforms SMCS without extrapolation
for large reliability levels, whereas SMCS without extrapola-
tion outperforms the proposed extrapolation formula for small
reliability levels. Table 11 also shows that SMCS fails to pro-
vide reliability index prediction for the last training point that
corresponds to a high reliability level (β=5.126). Conversely,
the error of the proposed extrapolation formula is smaller than
3 % for all training points.

Response surface models are constructed for the analytical
reliability index prediction, reliability index prediction using
Bucher’s extrapolation formula and the reliability prediction
using the proposed extrapolation formula. The accuracies of
the constructed response surface models are evaluated by
using leave-one-out cross-validation errors. Response surface
models are constructed nine times, each time leaving out one
of the training points. The difference between the exact re-
sponse at the omitted point and that predicted by each variant

response surface model defines the cross-validation error.
Table 12 provides the root mean square error (RMSE), the
mean absolute error (MAE), the maximum absolute error
(MAXE) as well as the mean and range of the response at
training points. Comparison of these error metrics to the mean
and range of response reveals that the constructed response
surfaces are quite accurate.

After generating the response surface models, the RBDO
problem is solved by using fmincon of MATLAB and follow-
ing a multiple starting point strategy. The comparison of the
metamodel based optimization results corresponding to the
use of the analytical reliability index prediction, the reliability
index prediction using Bucher’s extrapolation formula and the
reliability index prediction using proposed extrapolation formu-
la to the actual optimum are provided in Table 13. It is found
that the approximate optimum solution achieved through
metamodel based optimization using analytical reliability index
predictions is very close to the actual optimum, and the error in
reliability index prediction is less than 0.1 %. This finding
shows that the use of metamodel based optimization approach
is an acceptable strategy for solving the RBDO problem of
interest. It is also found that the approximate optimum solution
achieved by the use of Bucher’s extrapolation formula is not
close to the actual optimum, and the corresponding error in
reliability index is very large. Finally, it is also observed that

Table 11 The response surface
input and output variables for the
RBDO problem

w (in) t (in) Analytical
Rel. Ind.

Reliability index predictions of
different methods

% difference compared to analytical
value

Extrap.
Bucher

Extrap.
Proposed

SMCS Extrap.
Bucher

Extrap.
Proposed

SMCS

2.2 3.6 0.386 0.497 0.387 0.385 28.8 0.3 −0.3
2.4 3.6 1.556 1.973 1.560 1.558 26.8 0.3 0.1

2.6 3.6 2.711 3.374 2.714 2.725 24.5 0.1 0.5

2.2 3.9 1.484 1.890 1.486 1.486 27.4 0.1 0.1

2.4 3.9 2.745 3.436 2.754 2.751 25.2 0.3 0.2

2.6 3.9 3.969 4.876 3.993 4.064 22.9 0.6 2.4

2.2 4.2 2.517 3.170 2.519 2.520 25.9 0.1 0.1

2.4 4.2 3.851 4.761 3.872 3.935 23.6 0.5 2.2

2.6 4.2 5.126 6.256 5.247 N/Aa 22.0 2.4 N/Aa

a mean value over 1000 repetitions cannot be computed because of the occurrence of reliability index prediction
value of infinity due to limited sampling at high reliability levels

Table 12 Accuracies of the constructed response surface models evaluated using leave-one-out cross validation errors

Response Mean of
response

Range of
response

RMSE(a) MAE(b) MAXE(c)

Analytical reliability index prediction 2.705 4.740 0.019 0.015 0.034

Reliability index prediction using Bucher’s extrapolation formula 3.359 5.759 0.010 0.008 0.019

Reliability index prediction using the proposed extrapolation formula 2.726 4.860 0.022 0.018 0.044

(a) RMSE: root mean square error; (b) MAE: mean absolute error; (c) MAXE: maximum absolute error
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the approximate optimum solution achieved by the proposed
method is very close to the actual optimum, and the correspond-
ing error in reliability index is around 0.2 %.

4.6 Comparison of the true and extrapolated reliability
index curves

In Sections 4.1 through 4.5, the accuracy of the proposed ex-
trapolation formula is evaluated by computing the error in the

extrapolated reliability index compared to the true reliability
index (evaluated through classical MCS with 109 samples).
To provide a more comprehensive verification of the proposed
extrapolation formula, this section presents comparison of the
true and extrapolated reliability index curves in terms of the
standard deviation scale factor, k. The true reliability index
curves are obtained by computing the true reliability index for
k values ranging from 0.1 to 1 by an increment of 0.1. The
extrapolated reliability index curves are obtained following
the procedure described in Section 3. The true and extrapolated

Table 13 Comparison of the
metamodel based approximate
optimums to the actual optimum

w* (in) t* (in) Actual
reliability
index

Actual optimum 2.446 3.892 3.000

Metamodel based approximate optimums obtained using different reliability index estimation methods

Analytical reliability index prediction 2.439 3.904 3.002

Reliability index prediction using Bucher’s extrapolation formula 2.326 3.928 2.384

Reliability index prediction using the proposed extrapolation formula 2.435 3.907 2.994

(a) Additional mathematical example problem (b) Simply supported beam problem 

(c) Torque arm problem (d) RBDO problem

Fig. 9 The true and extrapolated reliability index curves
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reliability index curves are presented in Fig. 9 for all example
problems except the illustrative example. For these example
problems, the cases that lead to the largest reliability index

value are considered. That is, the case of X 1 ¼ 105 is consid-

ered for the additional mathematical example, the case of S ¼ 5
50; 000 is considered for the simply supported beam, the case

of S ¼ 210 is considered for the torque arm, and the case ofw=
2.6 in and t=4.2 in is considered for the RBDO problem.

5 Concluding remarks

The existing reliability index extrapolation approaches are
based on using a standard deviation scale factor for all random
variables, performing reliability index predictions for various
values of scale factor, constructing a functional relationship
between the scale factor and reliability index, and finally
predicting the actual reliability through extrapolation via the
functional relationship established. Since the standard devia-
tion scale factor is applied to all random variables, the re-
sponse function evaluation (often computationally expensive)
needs to be performed for each value of the scale factor, there-
fore the computational cost is high. It is argued in this paper
that if the limit state function has a separable form, the com-
putational cost can be substantially reduced by eliminating the
necessity of performing response function evaluation for each
value of the scale factor.

A new reliability index extrapolation approach is proposed
in this paper to predict the reliability of a highly safe structure
that has a separable limit state function. By taking advantage
of the separable form of the limit state function, the proposed
extrapolation approach uses the standard deviation scale factor
for the random variables that contributes only to the capacity
function. Since the standard deviation of the random variables
that affect the response function remains unchanged, the same
set of realization of the response function can be used for any
value of the scale factor used. Therefore, the proposed ap-
proach leads to a substantial reduction in the computational
cost.

The accuracy of the proposed method is evaluated through
mathematical and structural mechanics example problems.
The performance of the extrapolation formula proposed in this
paper is compared to an existing extrapolation formula and the
separable Monte Carlo simulation method without extrapola-
tion. It is found that the average performance of the proposed
extrapolation formula is superior to the existing extrapolation
formula, whereas the standard deviations of the reliability in-
dices obtained from the existing formula is found to be smaller
than the proposed extrapolation formula. It is also found that
the performance of the proposed extrapolation method is bet-
ter than the separable Monte Carlo simulation method without
extrapolation at relatively high reliability indices, and the

standard deviations of the reliability indices obtained from
the proposed extrapolation formula is found to be smaller than
separable Monte Carlo simulation method without extrapola-
tion. In general, it is found that the proposed method can
provide reasonable accuracy for high reliability index estima-
tions with only 1000 response function evaluations. For the
example problems investigated, the prediction of reliability
indices up to β=5 could be performed with smaller than 4 %
error with only 1000 response function evaluations.

Future research could focus on the following subjects:

& using bootstrap method to compute the conservative reli-
ability estimates at the support points and exploring its
effect on the extrapolated reliability index values

& comparison of the performance of the proposed approach
to subset simulation

& developing a reliability index extrapolation formula for
tail modeling
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