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Optimization of complex engineering systems is performed using computationally expensive high fidelity
computer simulations (e.g., finite element analysis). During optimization these high-fidelity simulations
are performed many times, so the computational cost becomes excessive. To alleviate the computational
burden, metamodels are used to mimic the behavior of these computationally expensive simulations. The
prediction capability of metamodeling can be improved by combining various types of models in the form
of a weighted average ensemble. The contribution of each models is usually determined such that the
root mean square cross validation error (RMSE-CV) is minimized in an aim to minimize the actual root
mean square error (RMSE). However, for some applications, other error metrics such as the maximum
absolute error (MAXE) may be the error metric of interest. It can be argued, intuitively, that when MAXE
is more important than RMSE, the weight factors in ensemble should be determined by minimizing the
maximum absolute cross validation error (MAXE-CV). Interestingly, it is found that the ensemble model
based on MAXE-CV minimization is less accurate than the ensemble model based on RMSE-CV minimi-
zation even if the MAXE is the metric of interest. The reason is found to be that MAXE-CV is mostly
related with the geography of the DOE rather than the prediction ability of metamodels.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Optimization of complex engineering systems is performed
using computationally expensive high fidelity computer simula-
tions (e.g., finite element analysis). During optimization these
high-fidelity simulations are performed many times, so the com-
putational cost becomes excessive. To alleviate the computational
burden, metamodels are used to mimic the behavior of these com-
putationally expensive simulations.

There exists a vast of metamodeling methods developed in liter-
ature. The commonly used metamodel types include but not limited
to the polynomial response surface approximations, PRS (Box,
Hunter, & Hunter, 1978; Myers & Montgomery, 2002), Kriging, KR
(Sacks, Welch, Mitchell, & Wynn, 1989; Simpson, Mauery, Korte, &
Mistree, 2001), radial basis functions, RBF (Buhmann, 2003; Dyn,
Levin, & Rippa, 1986), Gaussian process, GP (MacKay, 1998;
Rasmussen & Williams, 2006), neural networks (Bishop, 1995;
Smith, 1993), and support vector regression, SVR (Clarke,
Griebsch, & Simpson, 2005; Gunn, 1997). A good review of meta-
modeling methods can be found in Queipo et al. (2005), Wang and
Shan (2007) and Forrester and Keane (2009).
Even though most research on metamodels focus on determin-
ing the most accurate metamodel for the problem at hand, there
exist other studies that focus on merging multiple metamodels
into a weighted average ensemble model (Acar & Rais-Rohani,
2009; Acar, 2010; Goel, Haftka, Shyy, & Queipo, 2007; Hamza &
Saitou, 2012; Muller & Piche, 2011; Sanchez, Pintos, & Queipo,
2008; Zhou, Ma, Tub, & Feng, 2012). It is observed in these studies
that the generated ensemble model has a better prediction ability
than the individual metamodels that contribute to the ensemble.

The weight factors in an ensemble are chosen such that an error
metric is optimized. The error metric can be a local error metric
(Acar, 2010; Sanchez et al., 2008) or a global error metric (Acar &
Rais-Rohani, 2009; Goel et al., 2007; Hamza & Saitou, 2012;
Muller & Piche, 2011; Zhou et al., 2012). In this paper, we consider
global error metrics. The most popular error metric used for select-
ing the weight factors in an ensemble is the root mean square cross
validation error (RMSE-CV). Selecting the weight factors based on
RMSE-CV aims at constructing the ensemble such that the mean
square error over design space is minimized. However, for some
applications, other error metrics may be of interest. For instance,
in design of safety critical components, minimization of MAXE
may be more important than minimization of RMSE. For these
problems, the weight factor selection based on RMSE-CV minimi-
zation may not be appropriate and weight factor selection should
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Nomenclature

C mean square error matrix
Ei root mean square cross validation error of the ith meta-

model
ENMAXE ensemble model obtained through MAXE-CV minimiza-

tion
ENRMSE ensemble model obtained through RMSE-CV minimiza-

tion
KR0, KR1 Kriging models obtained by using zeroth-order and

first-order trend models, respectively
MAXE maximum absolute error (computed at a large number

of test points)
MAXE-CV maximum absolute cross validation error

NM number of models of the ensemble
PRS2 polynomial response surface of the second-order
RBF radial basis functions
RMSE root mean square error (computed at a large number of

test points)
RMSE-CV root mean square cross validation error (computed at

training points)
wi contribution of the ith model in the ensemble
ŷens prediction of response obtained from the ensemble

model
ŷi prediction of response obtained from the ith model of

the ensemble
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be revised. The main objective of this paper is to explore the effects
of error metrics on weight factor selection in an ensemble of
metamodels.

The paper is organized as follows. The formulation for weighted
average ensemble along with determination of the contribution of
metamodels is explained in the next section. Section 3 presents the
error metrics considered in this study. The mathematical and engi-
neering example problems used in this study is presented in Sec-
tion 4. Details of ensemble model generation is provided in
Section 5. The results obtained from the example problems are dis-
cussed in Section 6. Finally, the paper culminates with a list of
important conclusions presented in Section 7.

2. Ensemble of metamodels

In metamodel based optimization studies, first many different
types of metamodels are constructed, and then the most accurate
metamodel is selected to be used further whereas the other con-
structed metamodels are discarded. There are two major drawbacks
of this practice. First, information obtained through building vari-
ous different metamodels is not fully acknowledged. Second, the
accuracies of the constructed metamodels depend on the current
training data set, and a different metamodel than the selected one
may become the most accurate with a new data set. These short-
comings can be addressed by using ensemble of metamodels.

Suppose that there exists a data set {x1, x2, . . ., xN} that consists
of N observations of a D-dimensional variable x, together with the
corresponding observations of the response of interest {y1, y2,
. . ., yN}. The predictions of the response corresponding to different
types of stand-alone metamodels can be combined in the form of
an ensemble method. The most commonly used ensemble method
is the weighted average ensemble, where various different meta-
models are combined as

ŷensðxÞ ¼
XNM

i¼1

wiŷiðxÞ ð1Þ

where ŷens is the response prediction obtained from the ensemble
model, NM is the number of different models in the ensemble, wi

is the contribution (or weight factor) of the ith model in the ensem-
ble and ŷi is the response prediction obtained from the ith model of
the ensemble. To have an unbiased response estimation, the follow-
ing equation must be satisfied by the weight factors:

XNM

i¼1

wi ¼ 1 ð2Þ

The weight factors, wi, for the metamodels are usually chosen such
that the root mean square cross validation error (RMSE-CV) is
minimized in an aim to minimize the actual root mean square error
(RMSE). However, for some applications, minimization of other
error metrics may be more important. In that case, one may intui-
tively argue that the cross validation versions of these metrics
should be minimized while selecting the weight factors. In this
paper, the validity of this argument is questioned.

3. Error metrics

Prediction accuracy of metamodels can be measured using differ-
ent metrics, and these metrics can be used for multiple purposes
including (i) assessing the goodness of the approximation to be used
for analysis and optimization studies, (ii) identifying the regions of
high uncertainty in design space and performing additional sampling
(adaptive sampling) at these regions, (iii) selecting the best meta-
model among alternative models, and (iv) determining the weight
factors of stand-alone metamodels in an ensemble of metamodels
(Acar & Rais-Rohani, 2009; Goel et al., 2007). The most commonly
used metrics are (i) root mean square error (RMSE), (ii) mean abso-
lute error (MAE), (iii) coefficient of multiple determination (R2), (iv)
maximum absolute error (MAXE). The relative, normalized or
adjusted versions of these metrics are also frequently used.

The most popular error metric is the RMSE, which measures the
square root of the average value of the squared deviations of the
predictions from the observed values. RMSE can be computed from

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnv
i¼1ðyi � ŷiÞ2

nv

s
ð3Þ

where nv is the number of out-of-sample validation points. In
design of safety critical components, MAXE may be more important.
MAXE measures the absolute value of the maximum deviation of
the predictions from the observed values. MAXE can be computed
from

MAXE ¼max
nv
jyi � ŷij ð4Þ
4. Example problems

Overall nine example problems are considered. The first seven
example problems are well-known mathematical benchmark
problems used in optimization studies. These are followed by
two structural mechanics problems.

4.1. Mathematical benchmark problems

4.1.1. Branin–Hoo function

yðx1;x2Þ¼ x2�
5:1x2

1

4p2 þ
5x1

p �6
� �2

þ10 1� 1
8p

� �
cosðx1Þþ10 ð5Þ



Fig. 1. The cross-section of the four variable I-beam design.
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where x1 e [�5, 10], and x2 e [0, 15].

4.1.2. Camelback function

yðx1; x2Þ ¼ 4� 2:1x2
1 þ

x4
1

3

� �
x2

1 þ x1x2 þ ð�4þ 4x2
2Þx2

2 ð6Þ

where x1 e [�3, 3], and x2 e [�2, 2].

4.1.3. Goldstein–Price function

yðx1; x2Þ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2

þ 3x2
2Þ� � ½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2

1

þ 48x2 � 36x1x2 þ 27x2
2Þ� ð7Þ

where x1, x2 e [�2, 2].

4.1.4. Hartman function

yðxÞ ¼ �
Xm

i¼1

ci exp �
Xn

j¼1

aijðxj � pijÞ
2

" #
ð8Þ

where xi e [0, 1]. In this paper, three-variable model (that is, n = 3)
and six-variable model (that is, n = 6) of Hartman function are used.
Note that the three-variable model and six-variable model are used
as two separate test problems. The value of the function parameter
m is taken four, and the other function parameters ci, aij and pij are
taken from Dixon and Szegö (1978) and given in Tables 1 and 2.

4.1.5. Extended Rosenbrock function

yðxÞ ¼
Xm�1

i¼1

ð1� xiÞ2 þ 100ðxiþ1 � x2
i Þ

2
h i

ð9Þ

where xi e [�5, 10]. In this paper, nine-variable model of this func-
tion is used (m = 9 is used).

4.1.6. Dixon–Price function

yðxÞ ¼ ðx1 � 1Þ2 þ
Xm

i¼2

ið2x2
i � xi�1Þ

2 ð10Þ

where xi e [�10, 10]. In this paper, twelve-variable model of this
function is used (i.e., m = 12).
Table 1
Parameters used in three-variable Hartman function, j = 1, 2, 3.

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

Table 2
Parameters used in six-variable Hartman function, j = 1, . . ., 6.

i aij ci

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2
4.2. Structural mechanics problems

4.2.1. Simply supported beam
A simply supported beam is subjected to a concentrated load

(see Fig. 1). The beam length is L = 2 m and the applied load is
P = 600 kN. Here the maximum bending stress in the beam is the
response of interest and it can be calculated from (Messac &
Mullur, 2008)

rmax ¼
P
2

x1
2

I
; I ¼ 1

12
x2x3

1 � ðx2 � x3Þðx1 � 2x4Þ3
h i

ð11Þ

The ranges of the design variables are 0.1 m 6 x1,x2 6 0.8 m and
0.009 m 6 x3,x4 6 0.05 m.

4.2.2. Fortini’s clutch
An overrunning clutch assembly (see Fig. 2) known as Fortini’s

clutch is considered. In this problem, the response of interest is the
contact angle y. The contact angle can be expressed in terms of the
clutch geometry variables via (Lee & Kwak, 2006)

y ¼ arccos
x1 þ 0:5ðx2 þ x3Þ
x4 � 0:5ðx2 þ x3Þ

� �
ð12Þ

The lower and upper bounds of the clutch geometry variables
are given in Table 3.

5. Details of ensemble model generation

In this section, the details of generation of the training and test
points are provided first. Then, a small discussion of the individual
metamodels that contribute to the ensemble is given. Finally, the
ensemble model construction procedure is briefly discussed.

5.1. Generation of training and test points

Latin hypercube sampling is used to generate training sets, and
Monte Carlo sampling is used to create test sets for all example
problems. The number of training points is usually determined
based on two approaches: (i) the number of variables multiplied
by ten gives the number of training points, (ii) the number of coef-
pij

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



Fig. 2. The clutch assembly.

Table 3
Lower and upper bounds for the clutch geometry variables.

Variable Lower bound Upper bound

x1 54.89 55.69
x2 22.84 22.88
x3 22.84 22.88
x4 101.2 102.0

2706 E. Acar / Expert Systems with Applications 42 (2015) 2703–2709
ficients in a quadratic response surface multiplied by two gives the
number of training points. In this study, the number of points
corresponding to these approaches is first computed and the larger
value is used.

In order to lessen the effect of random sampling, multiple train-
ing and test sets are generated. The metamodels in the ensemble
are constructed and the weight factors in the ensemble models
are computed multiple times corresponding to different training
and test sets. In this way, the accuracies of metamodels and the
ensemble are evaluated multiple times for different training and
test sets and the average accuracies over multiple training and test
sets are determined. The number of training and test sets gener-
ated for the example problems are given in Table 4. To have a rea-
sonable computational cost, the number of training sets is reduced
as the number of variables is increased.

5.2. Individual metamodels

In this study, four individual metamodels contribute to the
ensemble model. The first two metamodels are Kriging metamodels
with a zeroth-order trend model (KR0), and a first-order trend
model (KR1). For these two Kriging metamodels, correlation func-
Table 4
Summary of training and test data used in each problem.

Problem Number of
training and
test sets

Number of
variables

Number of
points in a
training set

Number of
points in a
test set

Branin–Hoo 1000 2 20 1000
Camelback 1000 2 20 1000
Goldstein–Price 1000 2 20 1000
Hartman3 1000 3 30 1000
Four variable beam 1000 4 40 1000
Fortini’s clutch 1000 4 40 1000
Hartman6 400 6 60 1000
Extended

Rosenbrock
100 9 110 1000

Dixon–Price 100 12 182 1000
tion is chosen as Gaussian. The Kriging metamodels are generated
using the MATLAB Kriging toolbox developed by Lophaven,
Nielsen, and Søndergaard (2002). The third individual metamodel
is the fully quadratic PRS with all terms included. The last individ-
ual metamodel is the RBF metamodel, for which multiquadric
formulation (MQ) is used. The constant in the MQ formulation is
taken as c = 1 as suggested by Wang, Beeson, Wiggs, and Rayasam
(2006). The mathematical descriptions of these metamodels can
be found in the appendix of Acar and Rais-Rohani (2009).

5.3. Ensemble model construction

The ensemble models are constructed (that is, the optimum
weight factors used in the ensemble are found) by solving the opti-
mization problem stated in Eq. (5). For that purpose, the ‘‘fmincon’’
optimizer function of MATLAB is used. Since ‘‘fmincon’’ is a gradi-
ent-based optimizer and the objective function in Eq. (5) is not
necessarily convex, a multiple starting point strategy is used,
thereby the probability of converging to a global optimum solution
is increased.

6. Results and discussion

In this study, the dimensions of the example problems ranged
between two and twelve. Since multiple training and test sets
are considered, the mean value and the coefficient of variation of
the error metrics are computed. Instead of presenting the actual
values of the error metrics, the errors are normalized with respect
to the most accurate stand-alone metamodel. In this section, the
effects of error metrics on weight factor selection are explored first.
Then, the capability of cross validation error in representing the
actual error is investigated. Finally, the performances of ensembles
based on different error metrics are compared.

6.1. Effects of error metrics on weight factor selection

Weight factors of stand-alone metamodels calculated through
optimization of different error metrics are listed in Table 5. Note
that the weight factors presented in the table are the mean values
calculated over 1000 different training and test sets. Fig. 3 shows
boxplots for weight factors for the Branin–Hoo problem. The box-
plots provide a graphical depiction of how the weight factors vary
over the range of training and test sets used. Table 5 and Fig. 3
show that the weight factors obtained from minimization of
RMSE-CV are usually different than the ones obtained from mini-
mization of MAXE-CV.



Table 5
Weight factors of stand-alone metamodels computed from optimization of two
different error measures.

Measure WPRS WRBF WKR0 WKR1

Branin–Hooa

RMSE 0.03 0.01 0.80 0.16
MAXE 0.05 0.02 0.70 0.23

Camelbacka

RMSE 0.45 0.44 0.10 0.01
MAXE 0.60 0.34 0.05 0.01

Goldstein–Pricea

RMSE 0.09 0.51 0.30 0.10
MAXE 0.12 0.57 0.20 0.11

Hartman3a

RMSE 0.06 0.19 0.47 0.28
MAXE 0.11 0.26 0.33 0.30

Four variable beama

RMSE 0.16 0.60 0.04 0.20
MAXE 0.18 0.70 0.02 0.10

Fortini’s clutcha

RMSE 0.17 0.72 0.03 0.08
MAXE 0.16 0.77 0.03 0.04

Hartman6b

RMSE 0.08 0.35 0.39 0.18
MAXE 0.21 0.57 0.14 0.08

Rosenbrockc

RMSE 0.31 0.68 0.00 0.01
MAXE 0.46 0.47 0.02 0.05

Dixon–Pricec

RMSE 0.74 0.26 0.00 0.00
MAXE 0.75 0.22 0.02 0.01

a Mean over 1000 repetitions.
b Mean over 400 repetitions.
c Mean over 100 repetitions.

Table 6
Normalized cross validation errors for stand-alone metamodels and ensemble of
metamodels.

Measure PRS RBF KR0 KR1 ENRMSE ENMAXE

Branin–Hooa

RMSE-CV 3.02 2.23 1.00 1.32 0.97 1.02
MAXE-CV 2.37 1.96 1.00 1.34 0.97 0.93

Camelbacka

RMSE-CV 1.01 1.00 1.21 1.37 0.93 0.97
MAXE-CV 1.00 1.07 1.29 1.48 0.99 0.94

Goldstein–Pricea

RMSE-CV 1.20 1.00 1.04 1.09 0.93 0.97
MAXE-CV 1.14 1.00 1.09 1.11 0.98 0.94

Hartman3a

RMSE-CV 1.47 1.53 1.00 1.09 0.86 0.95
MAXE-CV 1.37 1.46 1.00 1.00 0.82 0.73

Four variable beama

RMSE-CV 1.43 1.00 1.36 1.25 0.82 0.89
MAXE-CV 1.36 1.00 1.58 1.43 0.90 0.84

Fortini’s clutcha

RMSE-CV 1.39 1.00 3.00 1.70 0.70 0.77
MAXE-CV 1.12 1.00 2.57 1.53 0.68 0.62

Hartman6b

RMSE-CV 1.21 1.08 1.00 1.03 0.87 1.02
MAXE-CV 1.09 1.00 1.15 1.16 1.01 0.90

Rosenbrockc

RMSE-CV 1.11 1.00 1.96 1.63 0.96 1.01
MAXE-CV 1.06 1.00 1.95 1.54 0.93 0.87

Dixon–Pricec

RMSE-CV 1.00 1.25 2.32 2.42 0.96 1.01
MAXE-CV 1.00 1.31 2.25 2.32 0.99 0.93

a Mean over 1000 repetitions.
b Mean over 400 repetitions.
c Mean over 100 repetitions.
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6.2. Capability of cross validation error to represent the actual error

Normalized errors for stand-alone metamodels and ensemble of
metamodels are listed in Table 6 (cross validation errors) and
Table 7 (actual errors). In Tables 6 and 7, the ensemble model
(a) RMSE 

The bottom and top of each box represent the lowe

the interior line representing the median. The brok

indicates 1.5 times the inter-quartile range, and the

represented by the + symbols. 

Fig. 3. Weight factors boxplots for stand-alone metamodels computed fro
based on RMSE-CV minimization is denoted by ENRMSE, and the
ensemble model based on MAXE-CV minimization is denoted by
ENMAXE. The smallest error value in each category is shown in bold
for ease of comparison. Comparing the errors in Tables 6 and 7, it is
observed for the two error metrics that the stand-alone metamodel
(b) MAXE 

r and upper quartile values, respectively, with 

en line extending from each end of the box 

 data beyond this limit (outliers) are 

m optimization of different error measures for Branin–Hoo problem.



Table 7
Normalized actual errors for stand-alone metamodels and ensemble of metamodels.

Measure PRS RBF KR0 KR1 ENRMSE ENMAXE

Branin–Hooa

RMSE 4.86 3.04 1.00 1.20 1.09 1.22
MAXE 2.71 2.47 1.00 1.17 1.07 1.14

Camelbacka

RMSE 1.17 1.00 1.33 1.38 1.07 1.13
MAXE 1.00 1.08 1.44 1.52 1.08 1.06

Goldstein–Pricea

RMSE 1.34 1.00 1.12 1.15 1.07 1.08
MAXE 1.19 1.00 1.16 1.18 1.08 1.07

Hartman3a

RMSE 1.74 1.63 1.00 1.19 1.03 1.15
MAXE 1.63 1.85 1.00 1.09 1.03 1.15

Four variable beama

RMSE 1.61 1.00 1.47 1.36 1.05 1.08
MAXE 1.56 1.00 1.69 1.57 1.20 1.16

Fortini’s clutcha

RMSE 1.10 1.00 2.10 1.19 0.90 0.96
MAXE 1.00 1.73 2.07 1.20 1.53 1.61

Hartman6b

RMSE 1.19 1.08 1.00 1.03 0.92 1.07
MAXE 1.05 1.00 1.07 1.11 1.01 1.03

Rosenbrockc

RMSE 1.10 1.00 1.95 1.62 0.98 1.03
MAXE 1.03 1.00 1.96 1.50 0.95 1.00

Dixon–Pricec

RMSE 1.00 1.24 2.37 2.43 0.96 1.02
MAXE 1.00 1.35 2.33 2.36 0.99 1.06

a Mean over 1000 repetitions.
b Mean over 400 repetitions.
c Mean over 100 repetitions.

Table 8
Normalized maximum absolute errors for the ensembles based on RMSE and MAXE
minimization.

Problem ENRMSE ENMAXE %Difference

Branin–Hoo 1.07 1.14 �6.1
Camelback 1.08 1.06 1.9
Goldstein–Price 1.08 1.07 0.9
Hartman3 1.03 1.15 �10.4
Four variable beam 1.20 1.16 3.4
Fortini’s clutch 1.53 1.61 �5.0
Hartman6 1.01 1.03 �1.9
Rosenbrock 0.95 1.00 �5.0
Dixon–Price 0.99 1.06 �6.6

Average over all problems --- --- �3.2

Fig. 4. Cross validation errors in two differ
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with smallest cross validation error has the smallest actual error,
whereas the ensemble model with smallest cross validation error
does not necessarily has the smallest actual error.
6.3. Performances of ensembles based on different error metrics

Performances of ensemble models constructed based on opti-
mization of two different error measures are compared. Table 8
shows the normalized maximum absolute errors for the ensemble
models ENRMSE and ENMAXE. Interestingly, it is observed that
ENRMSE results in 3.2% smaller maximum absolute error than
ENMAXE. The reason is found to be that MAXE-CV is mostly related
with the geography of the DOE and the holes that are created by
removing a point. Fig. 4 shows cross validation errors in two differ-
ent DOEs for the Branin–Hoo problem. It is observed that cross val-
idation errors are usually small for the training points that have
very close neighbor and are large for the training points that are
spread better and close to the boundaries. The training points that
are spread better, however, leads to better metamodel predictions.
Considering also the incapability of MAXE-CV representing the
actual MAXE in ensemble models, we can conclude that the selec-
tion of weight factors in ensemble based on MAXE-CV is not a good
strategy.
7. Conclusions

Metamodels can be combined in the form of a weighted average
ensemble to obtain a better prediction capability. The weight factor
of a metamodel in the ensemble can be determined by optimizing
an error measure. The most popular error measure used in deter-
mining the weight factors is the root mean square cross validation
error (RMSE-CV). However, for some applications such as design of
safety critical components, minimization of the maximum absolute
error (MAXE) may be more important than minimization of the
root mean square error (RMSE). Hence, if the problem at hand is
related to the design of a safety critical component, then the
designer will intuitively aim to minimize MAXE-CV, rather than
RMSE-CV, in an aim to minimize MAXE. Interestingly, it was found
in this paper that the ensemble model constructed through mini-
mization of MAXE-CV was less accurate than the ensemble model
constructed through minimization of RMSE-CV even if the MAXE
was the error metric of interest. The reason of this interesting find-
ing was found in the paper that the MAXE-CV is mostly related to
the geography of the DOE and it is incapable of representing the
actual MAXE in the ensemble models. Another important observa-
tion of this paper was that the stand-alone metamodel with
ent DOEs for the Branin–Hoo problem.
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smallest cross validation error had the smallest actual error,
whereas the ensemble model with smallest cross validation error
did not necessarily have the smallest actual error. This basically
indicated that the cross validation error performs very well in
determining the most accurate model amongst alternative stand-
alone metamodels, but does not perform that well in determining
the optimum weight factors in the ensemble of metamdoels.

The main research limitation for this study was that the number
of training and test sets was reduced as the number of variables
was increased in order to have a reasonable computational cost.
For instance, 1000 different training and test sets were used for
the two-variable-problems, whereas 100 different training and test
sets were used for the nine-variable-problem (or the twelve-
variable-problem). Therefore, the error values reported for the
nine-variable-problem (or the twelve-variable-problem) were
comparatively less accurate.

In this paper, Latin hypercube sampling design of experiments
was used to create the training points. In a future research, the
training points can be generated in an adaptive way and the effect
of design of experiments on the accuracy of ensemble and weight
factor determination can be investigated. In this study, five alterna-
tive stand-alone metamodels were used to construct the ensemble
of metamodels. In a future research, the number of stand-alone
metamodels in the ensemble can be increased and the effect on
the accuracy of ensemble and weight factor determination can be
explored. In this paper, it was found that the cross validation error
performs very well in determining the most accurate model
amongst alternative stand-alone metamdoels, but does not per-
form that well in determining the optimum weight factors in the
ensemble of metamdoels. In a future research, options for improv-
ing the correlation between the cross validation error and the
actual error for the ensemble of metamodels can be investigated.
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