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Increasing automobile crash response metamodel accuracy through adjusted cross validation

error based on outlier analysis

Erdem Acar*

Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey

(Received 11 August 2014; accepted 14 October 2014)

Automakers spread on effort to maintain the crashworthiness of vehicle structures while aiming to reduce their weight.
Substantial weight savings can be obtained by vehicle redesign through optimisation. Finite element based crashworthiness
simulation models have contributed greatly to the optimisation of vehicle structures. These high-fidelity crash simulations
may be performed many times during optimisation, thereby making optimisation studies computationally intractable.
Metamodels (surrogate models) that can mimic the behaviour of the crash simulation models emerge as a solution to the
computational burden. Prediction capability in metamodelling can be improved by combining many different metamodels
in the form of an ensemble model. In this paper, approaches based on outlier analysis of cross validation errors are
proposed to increase the accuracy of ensemble models constructed for crash response predictions. Full frontal and offset
frontal crash response predictions of a c-class passenger car is used for demonstration, and it is found that the proposed
approach reduces the metamodelling errors up to 12% and on average by about 4.5%.
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Nomenclature

ENS: ensemble of metamodels based on mini-

misation of RMSEcv

ENSa: ensemble of metamodels based on mini-

misation of adjusted RMSEcv

KR0, KR1: Kriging models constructed by using

zeroth-order and first-order trend models,

respectively

MSE: mean square error (computed at test

points)

MSEcv: mean square cross validation error (com-

puted at training points)

NM: number of individual metamodels con-

tributing to the ensemble

PRS2: polynomial response surface of the sec-

ond order

RBFm, RBFi: radial basis functions constructed by

using multiquadric and inverse multiqua-

dric basis functions, respectively

RMSE: root mean square error

RMSEcv: root mean square cross validation error

wi: contribution of the ith metamodel in the

ensemble

ŷens: prediction of response obtained from the

ensemble model

ŷi: prediction of response obtained from the

ith metamodel of the ensemble

1. Introduction

Occupant safety is a major concern in vehicle design.

According to the National Highway Traffic Safety Admin-

istration, more than 33,000 people were killed and over

2.3 million others were injured in motor vehicle crashes

in the United States in the year 2012 [6]. The initial

impact point in fatal crashes for passenger vehicles is

found to be frontal in 55% and side impact in 26% of the

fatalities [5]. Meanwhile, the customers are attracted to

the lightweight automobiles due to fuel economy consid-

erations. For every 100 kg of weight reduction, the

adjusted combined city/highway fuel consumption

reduces by 0.31 L/100 km for a medium size car, and by

0.36 L/100 km for a light truck [11]. Therefore, the auto-

makers spread on effort to maintain the crashworthiness

of vehicle structures while aiming to reduce their weight.

Weight reduction of a vehicle can be achieved by

material substitution [15,31,44,57] and vehicle redesign

[7,14,19,29,30,35,61,62]. Material substitution aims to

replace heavier iron and steel with lightweight aluminium,

magnesium, high-strength steel, and plastics/composites.

Vehicle redesign is usually achieved through topology,

shape and size optimisation techniques. In addition, a suc-

cessful combination of these material substitution and

vehicle redesign through optimisation can lead to further

weight reduction [27,32,42].
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Finite element based crashworthiness simulation mod-

els have contributed greatly to the optimisation of vehicle

structures. These simulation models are used in place of

physical experiments and the crash responses of interest

are predicted. Despite the huge progress in computational

power and memory, high-fidelity crash simulations are

still computationally expensive. In addition, these high-

fidelity crash simulations may be performed many times

during optimisation (hundreds or thousands of times

depending on the problem size and the optimisation

method selected); hence, the use of metamodels (surrogate

models) that can mimic the behaviour of the crash simula-

tion models emerge as a solution to the computational

burden.

In literature, many different metamodelling methods

have been used to estimate critical vehicle crash

responses. These studies include but not limited to the use

of polynomial response surface approximations

[13,23,53,60], radial basis functions [1,17,18,25], Kriging

[21, 33, 45] and others [38,40,54]. There is no consensus

on the most accurate metamodel type for crashworthiness

response prediction. In addition, it is also difficult for an

analyst to know which metamodel type is the most accu-

rate for a specific crash response for a specific crash sce-

nario. Even though the traditional practice is to construct

many different types of metamodels and select the most

accurate one, there exist other studies that focus on merg-

ing multiple metamodels into a weighted average ensem-

ble of metamodels for crash response prediction

[4,20,39,63].

The contribution of each metamodel in the ensemble

can be determined such that the mean square cross valida-

tion error (MSEcv) is minimised with an aim to minimise

the actual mean square error (MSEact), because there is a

strong positive correlation between the MSEcv and

MSEact. In this paper, two approaches based on outlier

analysis are proposed for improving the correlation

between the cross validation error and actual error, and

thereby increasing the accuracy of response predictions.

The first approach is to remove outliers in the cross vali-

dation error set while computing the MSEcv, and the sec-

ond approach is to weigh down the outliers in the cross

validation error set. In both approaches, an adjusted

MSEcv is obtained.

The paper is structured as follows. The automobile

crash problem is defined in Section 2. The metamodel

types used in this study are introduced in Section 3. Con-

struction of ensemble of metamodels is discussed in Sec-

tion 4. The details of adjusted cross validation error based

on outlier analysis are given in Section 5. The results of

this study are presented and discussed in Section 6.

Finally, a list of important conclusions drawn from this

study is presented in Section 7.

2. Problem definition

A modified version of the full scale finite element (FE)

model of a c-class passenger car developed by the Partner-

ship of a New Generation of Vehicles group [43] is used

in this study. In the FE model (see Figure 1), 313 compo-

nents are included with an overall mass of approximately

1210 kg. The FE model consists of 184,436 nodes and

179,844 elements, mostly Belytschko�Tsay shell ele-

ments. The total degrees of freedom in the FE model is

over 1.1 million. Isotropic materials with the non-linear

behaviour of material defined by the true stress�strain

curves at different strain rates are used in the FE model.

The crash simulations are performed using LS-DYNA.

This crash problem is also used in an earlier study [1].

Figure 1. The FE model used in (a) full frontal impact and (b) offset frontal impact scenarios.
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Full frontal impact (FFI) and offset frontal impact

(OFI) scenarios are considered in this study (see Figure 1),

whereas other possible scenarios such as side impact, roof

crush and rear impact are not included. The vehicle

crashes into a rigid wall in FFI scenario, whereas it col-

lides with a deformable barrier that is placed in front of a

rigid wall in OFI scenario.

The critical crash responses are chosen as the intrusion

distances at the floor pan, the driver seat and steering-

wheel locations (see Figure 2) corresponding to FFI and

OFI scenarios, for a crash duration of 100 ms. Therefore,

a total of six critical crash responses are considered. The

crashworthiness of the vehicle can be improved by adjust-

ing the geometric parameters of the two side rails that

absorb the kinetic energy in a crash (see Figure 3). In the

metamodelling study, the critical crash responses are

related to the five geometric parameters of the side rails

along with four random variables that capture variability

in stress�strain curve, offset distance, impact speed and

occupant mass (see Table 1). Therefore, the total number

of input variables for the metamodels is nine. The effects

of the first four design variables on the side rail geometry

are depicted in Figure 4.

3. Metamodels

Metamodels (surrogate models) are approximate mathe-

matical models that can mimic the behaviour of computa-

tionally expensive high-fidelity simulations. There exists

a large number of metamodelling methods developed in

literature. The commonly used metamodel types include

the polynomial response surface approximations, PRS

[9,37], Kriging, KR [49,51], radial basis functions, RBF

[10,16], Gaussian process, GP [36,47], neural networks

[8,52] and support vector regression, SVR [12,24]. A

good review of metamodelling methods can be obtained

from [46,59]. PRS, RBF and KR metamodels and the

ensemble models composed of these metamodels are con-

sidered in this study.

Figure 2. Vehicle FE model showing the side rail and locations
of measured responses.

Figure 3. Geometry of the side rails corresponding to the upper and lower limits of the first four design variables.

Table 1. The lower and upper bounds of the input variables.

Variable name Symbol
Lower
bound

Upper
bound

Shape control parameters x1�x4 ¡0.25 C0.25

Wall thickness of the side
rails

x5 0.75 mm 1.25 mm

Variability in the material
stress�strain curve

x6 ¡10% C10%

Offset distance x7 20% 60%

Impact speed x8 14.60 m/s 16.70 m/s

Occupant mass x9 45.4 kg 136.2 kg

International Journal of Crashworthiness 109
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3.1. Polynomial response surface approximations,

PRS

The most commonly used PRS model is the quadratic

function with all terms included

ŷðxÞ ¼ b0 þ
XNv

i¼1

bixi þ
XNv

i¼1

biix
2
i þ

XNv ¡ 1

i¼1

XNv

j¼iþ1

bijxixj (1)

where ŷðxÞ is the response surface approximation of the

actual response function, y(x), Nv is the number of varia-

bles in the input vector x. The unknown coefficients b0, bi,

bii, bij are determined through least squares fitting.

3.2. Radial basis function, RBF

RBF methods approximate the true function y(x) through

ŷðxÞ ¼
Xn
i¼1

λi f ðjjx¡ xijjÞ (2)

where x is the vector of input variables, n is the number of

sampling points, xi is the vector of input variables at the

ith sampling point, k x¡ xi k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx¡ xiÞT ðx¡ xiÞ

q
is the

Euclidean norm representing the radial distance r from

design point x to the sampling point xi, f ð:Þ is a radially

symmetric basis function and λi are the unknown

Figure 4. The effects of the first four design variables on the side rail geometry.
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interpolation coefficients. Commonly used RBF formula-

tions include: fðrÞ ¼ r2logðrÞ (thin-plate spline);

fðrÞ ¼ e¡ar2 , a> 0 (Gaussian); fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 C c2

p
(multi-

quadric); and fðrÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 C c2

p
(inverse multiquadric).

In this study, multiquadric and inverse multiquadric for-

mulations are considered. A suitable value of the parame-

ter c in the multiquadrics approximation was

recommended as c D 1 [58].

The unknown coefficients in Equation (2) are found by

solving

½A�flg ¼ fyg (3)

where ½A� ¼ f k xj ¡ xi k
� �

, i; j ¼ 1; . . . ; n,
flgT ¼ fλ1; . . .; λngT and fygT ¼ fyðx1Þ; . . .; yðxnÞgT .

3.3. Kriging, KR

Kriging metamodels estimate the true function y(x)

through

ŷðxÞ ¼ pTðxÞbþ ZðxÞ (4)

The trend model pTðxÞb is a polynomial of given

order (zeroth- and first-order models are often used) that

globally approximates the response. The departure model

Z(x) is the stochastic component that generates deviations

such that the Kriging model interpolates the sampled

response data. The stochastic component has a mean value

of zero and the following covariance

COV½ZðxiÞ; ZðxjÞ� ¼ s2R½Rðxi; xjÞ� (5)

where R is an n £ n correlation matrix if n is the number

of training points, Rðxi; xjÞ is the correlation function

between the two training points xi and xj. The most com-

monly used correlation function is the Gaussian function

[28], which has the form of

RðuÞ ¼
YNv

k¼1

expð¡ ukd
2
k Þ (6)

Once the correlation function has been estimated, the

response is predicted as

ŷðxÞ ¼ pTðxÞb̂þ r̂TðxÞR̂¡ 1ðF¡ Pb̂Þ (7)

where the vectors r̂ and b̂ are given by

r̂T ðxÞ ¼ ½R̂ðx; x1Þ; R̂ðx; x2Þ; :::; R̂ðx; xnÞ�T (8:1)

b̂ ¼ ðPTR̂
¡ 1

PÞ¡ 1
PTR̂

¡ 1
F (8:2)

where r̂TðxÞ is the correlation vector of length n between a
prediction point x and the n sampling points, the R̂ matrix

is obtained by using the predicted values ûk in Equation

(6), F represents the responses at the n points and P is

obtained by evaluating p(x) array at the n points.

The variance of Z in Equation (4) can be estimated as

ŝ2 ¼ ðF¡ Pb̂ÞT R̂¡ 1ðF¡ Pb̂Þ
n

(9)

The unknown model parameters uk can be estimated

from [59]

MaxFðQÞ ¼ ¡ ½n lnðŝ2Þ þ lnjRj�
s:t: Q> 0

(10)

where jR j is the determinant of R, Q is the vector of

unknown parameters uk, and both ŝ and R are functions of

Q. In this study, the MATLAB Kriging toolbox developed

by Lophaven et al. [34] is used in the construction of Krig-

ing metamodels.

4. Ensemble of metamodels

The most commonly followed practice in metamodelling

studies is to construct many different types of metamodels

and select the most accurate one while discarding the rest.

There are two major drawbacks of this approach: (1) the

efforts spent on constructing different metamodels are not

fully utilised, (2) the performances of metamodels may

depend on the training data set used, so the selected meta-

model may not be the most accurate one for a different

data set. One way to eliminate these shortcomings is to

merge multiple metamodels into a weighted average

ensemble of metamodel as in Equation (11)

ŷensðxÞ ¼
XNM

i¼1

wi ŷiðxÞ (11)

where ŷens is the response prediction obtained from the

ensemble model, NM is the number of metamodels in the

ensemble, wi is the contribution (or weight factor) of the ith

metamodel in the ensemble and ŷi is the response prediction

obtained from the ith metamodel of the ensemble. To have

an unbiased response estimation, the following equation

must be satisfied by the weight factors:

XNM

i¼1

wi ¼ 1 (12)

The weight factors in an ensemble are chosen such

that an error metric is minimised. The error metric can be

a global error metric [3,22,56,64] or a local error metric

International Journal of Crashworthiness 111
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[2,50]. In this paper, global error metrics are considered.

The most popular global error metric used for selecting

the weight factors in an ensemble is the mean square cross

validation error (MSEcv), which is computed as follows.

If there are n training points, then a metamodel is con-

structed n times, each time leaving out one of the training

points. Then, the difference between the exact response at

the omitted point and the prediction response by each var-

iant metamodel is used to evaluate the global error as

MSEcv ¼ 1

n

Xn
k¼1

ðekÞ2; ek ¼ yk ¡ ŷð¡ kÞ (13)

where ek is the cross validation error at the kth training

point xk , yk is the true response at xk and ŷð¡ kÞ is the

corresponding predicted value from the metamodel con-

structed using all except the kth training point.

In this paper, the weight factor selection strategy

proposed by Acar and Rais-Rohani [3] is used. Acar and

Rais-Rohani [3] treated the selection of weight factors as

an optimisation problem with the objective to minimise

the MSEcv of the ensemble model. That is, they computed

the weight factors by solving

Find wi; i ¼ 12NM (15:1)

minMSEcv

n
ŷe
�
wi; ŷiðxkÞ

�
; yðxkÞ; k ¼ 12 n

o
(15:2)

such that
XNM

i¼1

wi ¼ 1 (15:3)

As MSEcv is based on the difference between the exact

response at the omitted training point and the predicted

response by each variant metamodel at that point, this

metric gives an average error at the training points. Even

though it is often found that there is a strong positive cor-

relation between MSEcv and the actual mean squared error

(MSE), depending on the behaviour of the response func-

tion as well as the number and distribution of training

points (i.e., the geography of the design of experiments)

MSEcv may not necessarily provide a good resemblance

of MSE. In this paper, two approaches are proposed to

improve the correlation between MSEcv and MSE as dis-

cussed in the next section.

5. Proposed approaches

To improve the correlation between MSEcv and MSE and

thereby increase the accuracy of response predictions, two

approaches are proposed in this paper. The first approach

is to remove outliers in the cross validation error set, and

the second approach is to use an adjusted formulation for

MSEcv, where the outlier cross validation errors are down

weighted.

The errors associated with the observations that are

significantly different from the others, outliers, are often

very large and have a greater influence on the mean square

error than the smaller errors. Since MSEcv is computed

over a training set of limited number of points, outlier

cross validation errors may have a substantial biased

effect on MSEcv. Therefore, an adjusted MSEcv formula-

tion based on outlier analysis may reduce the bias in

MSEcv and improve the correlation between MSEcv

and MSE.

There is no consensus in literature on what constitutes

an outlier, and various methods have been proposed to

detect outliers [26,48]. It is often assumed that the data

are from a normal distribution, and the outliers are

detected based on the mean and standard deviation of

data. In this study, interquartile ranges are used to detect

the outliers. That is, an observation outside the following

range is considered to be an outlier

IQR ¼ ½Q1 ¡ kðQ3 ¡Q1Þ;Q1 þ kðQ3 ¡Q1Þ� (16)

where IQR is the interquartile range, Q1 and Q3 are the

first and third quartiles, respectively, and k is a non-nega-

tive constant, for which a recommended value of 1.5 [55]

is used in this study.

Once outliers are detected, they can be removed from

data set or low weights can be assigned to the outliers

[41]. In this paper, when the outlier cross validation errors

are detected, two different approaches are followed to

obtain an adjusted MSEcv formulation: (1) the outlier

cross validation errors are not used in MSEcv calculation,

(2) the outlier cross validation errors are down weighted

in MSEcv calculation based on their Mahalanobis dis-

tance. For the first adjustment, the adjusted MSEcv formu-

lation is obvious: the mean squared error is computed

over the cross validation errors that are not outliers. For

the second adjustment, the following formulation is used

as an adjusted MSEcv formula

ðMSEcvÞadj ¼
1

n

Xn
k¼1

ðekÞ2adj (17:1)

ðekÞadj ¼
ek if k is not outlier

ek
ðdkmÞave
dkm

if k is outlier

8<
: (17:2)

where dkm is the Mahalanobis distance of the cross valida-

tion error at kth training point, and ðdkmÞave is the average

value of the Mahalanobis distances of the cross validation

errors that are not outliers.

6. Results and discussion

The first step of the metamodel construction is the deter-

mination of the training points in the input variable space
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using a design of experiment technique. Latin hypercube

sampling method is used in this study to generate 100

training points. Since two different crash scenarios (FFI

and OFI) are considered, a total of 200 crash simulations

are performed to compute the critical vehicle responses

corresponding to training points. After the training set is

formed, the metamodels are constructed (i.e., metamodel

hyperparameters are determined) as discussed in Section

3. Then, the ensemble of metamodels is constructed (i.e.,

weight factors in the ensemble model are determined).

Finally, the accuracy of metamodels (both individual and

ensemble) is evaluated with an independent test set com-

posed of 40 points. Since two different crash scenarios

(FFI and OFI) are considered, a total of 80 crash simula-

tions are performed to compute the critical vehicle

responses corresponding to test points. Simulation results

for the overall 280 crash simulations are provided in the

appendix.

The accuracies of metamodels are measured with root

mean square error evaluated at test points. To smooth the

process of comparison of different models, the errors are

normalised with respect to the most accurate individual

metamodel among the five metamodels considered.

Henceforth, the word ‘normalised’ is dropped when refer-

ring to the error.

The abbreviated symbols are used to identify the

metamodels. For the individual metamodels, polynomial

response surface is denoted by PRS, radial basis function

with multiquadric and inverse multiquadric formulations

are denoted by RBFm and RBFi, respectively, and Krig-

ing models with zeroth- and first-order trend models are

denoted by KR0 and KR1, respectively. For the ensemble

models, the ensemble based on MSEcv minimisation is

labelled as ENS, and the ensemble based on adjusted

MSEcv minimisation is labelled as ENSa.

6.1. Effect of removing the cross validation error

outliers

Table 2 shows the effect of removing the cross validation

error outliers on the accuracy of ensemble of metamo-

dels. The removal of the cross validation error outliers

reduces the RMSE of the ensemble model on average by

about 4.5%. The most effective RMSE reduction is

achieved for the intrusion distance at the steering wheel

for the FFI crash scenario, where the RMSE of the

ensemble model is decreased by around 12%. Con-

versely, the least effective RMSE improvement (in fact,

RMSE is increased in this case) is experienced for the

intrusion distance at the steering wheel for the FFI crash

scenario, where the RMSE of the ensemble model is

increased by around 1%.

Table 2 also shows the accuracies of the individual

metamodels. In general, RBF metamodels are the most

accurate models for four out of six responses, whereas KR

metamodels are the most accurate for the remaining two

responses. The multiquadratic RBF model is found to be

superior to the inverse multiquadratic RBF model. The

performance of the KR1 model is found to be better than

that of the KR0 model. The performance of the metamo-

dels can also be compared with respect to the type of

crash. RBF models are the most accurate for FFI, whereas

KR models are the most accurate for OFI (except for the

intrusion distance at steering wheel).

Figure 5 compares the boxplots of the cross validation

errors with and without removal of the outlier errors for

the FFI crash scenario. The boxplots provide a graphical

depiction of how the cross validation errors vary over the

range of training set. The bottom and top of each box rep-

resent the lower and upper quartile values, respectively,

with the interior line representing the median. The broken

line extending from each end of the box indicates 1.5 times

Table 2. Effect of removing outlier cross validation errors on the accuracy of ensemble of metamodels (metamodel accuracies are mea-
sured with normalised root mean square error evaluated at 40 test points).

Crash scenario FFI OFI

Location of the
intrusion distance Floor panel Driver seat Steering wheel Floor panel Driver seat Steering wheel

PRS 1.452 1.794 1.986 1.251 1.432 2.299

RBFm 1.010 1.000 1.000 1.103 1.148 1.000

RBFi 1.000 1.013 1.263 1.036 1.045 1.175

KR0 1.431 1.469 2.106 1.500 1.603 2.692

KR1 1.159 1.387 1.852 1.000 1.000 1.608

ENS 1.105 1.144 1.330 0.972 0.953 1.266

ENSa 1.041 1.058 1.345 0.944 0.951 1.119

Error ratio� 0.942 0.925 1.011 0.971 0.998 0.884

�The ratio of the RMSE of the ensemble based on MSEcv to the RMSE of the ensemble based on adjusted MSEcv. The average error ratio over the above
six cases is 0.955.
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the interquartile range. Similarly, the comparison of the

boxplots of the cross validation errors with and without

removal of the outlier errors for the OFI crash scenario is

depicted in Figure 6. It is observed in Figures 4 and 5 that

the removal of the outlier errors reduces the scatter in

cross validation error set, and this scatter reduction

increases the correlation between the MSE and MSEcv as

explored in the next section.

Figure 5. Boxplots of the cross validation errors for FFI crash scenario.
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6.2. Correlation between the cross validation error and

actual error

The effect of the removal of the outlier cross validation

errors on the correlation between the cross validation error

and actual error is explored in this section. Table 3 shows

the root mean square cross validation errors evaluated at

training points (RMSEcv) and root mean square errors

evaluated at the test points (RMSE) for the ensemble of

metamodels. The correlation coefficient between RMSEcv

and RMSE is computed over the six critical crash

Figure 6. Boxplots of the cross validation errors for OFI crash scenario.
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responses. It is found that the removal of outlier cross val-

idation errors increases the correlation coefficient from

0.983 to 0.991. This improvement leads to a better choice

of weight factors of individual metamodels in the ensem-

ble and reduces the RMSE of the ensemble models as

shown in the previous section.

To compute the correlation coefficient between

RMSEcv and RMSE, two arrays are generated first. For

the original ensemble, for instance, the first array is com-

posed of RMSEcv values in the first row of Table 3, that

is, A1 D {7.491, 6.149, 2.159, 7.909, 6.993, 2.129}. The

second array is composed of the RMSE values in the third

row of Table 3, that is, A2 D {5.169, 3.901, 1.425, 4.734,

3.969, 1.376}. Then, the correlation coefficient between

the arrays A1 and A2 is computed to be 0.983 from the fol-

lowing equation:

r ¼ C12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p (18)

where Cij denotes the element in row i and column j of

matrix C, which is the covariance matrix of A. Matrix A

is formed with arrays A1 and A2 as A D [A1
T, A2

T].

Similarly, the errors in the second and fourth rows of

Table 3 are used to calculate the correlation coefficient

between RMSEcv and RMSE for the ensemble based on

removal of outlier cross validation errors.

6.3. Effect of weighting down the outlier cross valida-

tion errors

Alternative to removing the outlier cross validation errors

in MSEcv calculation is to use an adjusted formula for

MSEcv calculation where smaller weights are used for the

outliers (see Equation (17)). Table 4 shows the effect of

weighing down the outlier cross validation errors on the

accuracy of ensemble of metamodels. It is found that this

practice yields results very close to those of outlier error

removal. The RMSE of the ensemble model is reduced on

average by about 4.4%.

7. Conclusions

Metamodels that can mimic the behaviour of the crash

simulation models emerge as a solution to the computa-

tional burden on simulation based optimisation studies.

Table 3. Root mean square cross validation errors (RMSEcv) and root mean square errors evaluated at test points (RMSE) for the
ensemble of metamodels.

Crash scenario FFI OFI

Location of the
intrusion distance Floor panel Driver seat Steering wheel Floor panel Driver seat Steering wheel

RMSEcv

ENS 7.491 6.149 2.159 7.909 6.993 2.129

ENSa 7.628 6.191 2.164 7.993 7.093 2.173

RMSE

ENS 5.169 3.901 1.425 4.734 3.969 1.376

ENSa 4.868 3.609 1.441 4.597 3.961 1.216

Table 4. Effect of weighting down outlier cross validation errors on the accuracy of ensemble of metamodels (metamodel accuracies
are measured with normalised root mean square error evaluated at 40 test points).

Crash scenario FFI OFI

Location of the
intrusion distance Floor panel Driver seat Steering wheel Floor panel Driver seat Steering wheel

PRS 1.452 1.794 1.986 1.251 1.432 2.299

RBFm 1.010 1.000 1.000 1.103 1.148 1.000

RBFi 1.000 1.013 1.263 1.036 1.045 1.175

KR0 1.431 1.469 2.106 1.500 1.603 2.692

KR1 1.159 1.387 1.852 1.000 1.000 1.608

ENS 1.105 1.144 1.330 0.972 0.953 1.266

ENSa 1.042 1.060 1.347 0.944 0.952 1.118

Error ratio� 0.942 0.927 1.013 0.971 0.999 0.883

�The ratio of the RMSE of the ensemble based on MSEcv to the RMSE of the ensemble based on adjusted MSEcv. The average error ratio over the above
six cases is 0.956.
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Prediction capability in metamodelling can be improved

by combining many different metamodels in the form of

an ensemble model. In this paper, two approaches based

on outlier analysis of cross validation errors were pro-

posed to increase the accuracy of ensemble models con-

structed for crash response predictions. Full frontal and

offset frontal crash response predictions of a c-class pas-

senger car were used for demonstration. The first

approach was to remove outliers in the cross validation

error set, and the second approach was to weigh down the

outliers in the cross validation error set. From the results

obtained in this study, the following conclusions could be

drawn:

� The most effective error reduction is achieved for

the intrusion distance at the steering wheel for the

full frontal crash scenario, where the ensemble

model error is decreased by around 12%.

� Conversely, the least effective error reduction (in

fact, error is increased in this case) was experi-

enced for the intrusion distance at the steering

wheel for the offset frontal crash scenario, where

the RMSE of the ensemble model is increased by

around 1%.

� The removal of the cross validation error outliers

reduces the error of the ensemble model on average

by about 4.5%.

� RBF metamodels, in general, were the most accu-

rate for response prediction of FFI, whereas Kriging

models were the most accurate for response predic-

tion of OFI.

� Removal of outlier cross validation errors

increased the correlation coefficient between the

cross validation error and the actual error from

0.983 to 0.991.

� Alternative to removing the outlier cross validation

errors, the effect of weighing down the outlier cross

validation errors was explored. It was found that

this practice yields results very close to those of out-

lier error removal.

In this study, it is assumed that the crash simulation

results are robust. That is, it is assumed that repeating the

crash simulations using a parallel computation scheme

does not lead to significantly different results. However,

this might not be the case. It is well known that some

physical and/or numerical instabilities might be observed

in some of the crash simulations (for instance, due to

deformation bifurcation of side rails). Therefore, there

might be a strong positive correlation between the cross

validation error outliers and non-robust crash simula-

tions. Investigation of the correlation between the out-

liers and non-robust crash simulations is beyond the

scope of this paper and planned to be addressed in a

future study.
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Appendix. Crash simulation results

Training points, test points and corresponding responses (intru-
sion distances) used in metamodel construction and accuracy
evaluation for FFI and OFI crash scenarios are provided in
Table A1 and A2.

Table A1. Training points and corresponding responses (intrusion distances) for both crash scenarios.

Input variables FFI responses (mm) OFI responses (mm)

ID # x1 x2 x3 x4 x5 x6 x7 x8 x9 FP DS SW FP DS SW

1 0.179 0.098 0.008 0.184 1.038 ¡7.576 35.76 16.17 128.9 52.89 37.31 12.80 63.01 46.61 7.96

2 0.174 ¡0.129 0.104 0.008 0.770 ¡2.525 28.48 14.60 129.8 50.68 31.29 13.84 54.59 35.11 14.92

3 ¡0.003 0.058 ¡0.038 ¡0.225 1.028 2.525 41.41 15.83 57.3 59.49 41.51 8.16 69.21 55.11 6.31

4 ¡0.184 ¡0.124 0.149 0.098 1.078 5.556 45.05 16.13 123.4 52.12 33.29 9.91 60.43 36.64 8.01

5 0.194 ¡0.210 ¡0.230 ¡0.058 1.215 3.737 37.37 15.24 132.5 64.39 24.83 11.69 52.97 41.06 5.78

6 0.230 0.068 0.174 ¡0.008 1.104 ¡4.545 32.53 15.38 127.9 51.52 37.31 9.23 56.64 42.83 7.45

7 ¡0.093 ¡0.189 ¡0.159 0.053 0.947 5.960 43.03 14.62 50.0 54.66 37.90 8.11 73.89 54.86 6.83

8 0.154 ¡0.174 ¡0.220 0.048 1.179 9.798 53.94 14.88 80.3 52.26 37.18 9.60 76.11 52.56 5.73

9 ¡0.114 0.225 ¡0.245 0.013 1.003 8.586 30.10 16.66 61.0 59.21 38.28 10.57 58.97 38.55 8.92

10 ¡0.063 ¡0.240 ¡0.225 0.114 0.967 6.162 50.71 15.43 126.1 60.52 44.10 9.15 69.39 45.98 5.37

11 ¡0.205 ¡0.230 0.073 0.119 1.199 ¡4.747 49.09 14.79 81.2 75.16 48.56 11.80 79.78 54.30 5.03

12 ¡0.048 ¡0.235 ¡0.169 ¡0.169 0.886 4.949 43.43 14.94 75.7 69.17 49.11 9.73 74.18 51.83 6.89

13 0.038 0.189 ¡0.053 0.129 0.851 ¡7.778 47.88 14.75 120.6 57.64 37.14 12.37 64.01 41.28 9.35

14 ¡0.179 0.053 0.225 ¡0.215 1.053 ¡3.939 39.39 15.32 86.7 53.00 26.30 14.89 66.20 39.79 9.44

15 0.164 ¡0.078 0.043 0.210 0.811 8.788 39.80 16.38 114.2 55.97 41.11 13.91 63.65 49.73 8.17

16 0.129 0.240 ¡0.063 ¡0.220 1.139 ¡2.929 48.69 15.89 110.5 57.31 39.43 9.08 68.98 46.34 7.64

17 0.098 0.104 ¡0.018 0.159 0.992 ¡2.121 40.20 16.04 92.2 60.97 42.05 12.24 69.20 50.15 6.37

18 ¡0.023 0.164 0.235 ¡0.048 1.220 6.768 22.42 15.41 74.7 53.04 32.46 14.25 47.67 28.84 11.10

19 0.199 ¡0.139 0.053 ¡0.053 0.912 0.101 53.54 16.36 82.1 53.50 32.36 8.32 79.58 53.03 5.08

20 0.124 0.018 ¡0.210 0.230 1.114 2.323 23.23 15.96 58.2 62.78 40.94 10.94 51.70 31.65 16.21

21 0.013 ¡0.215 0.169 0.028 0.977 ¡9.596 42.63 15.19 97.7 77.58 54.06 11.91 72.43 49.86 7.26

22 0.053 0.033 0.078 0.134 1.109 ¡2.727 24.44 15.55 131.6 56.75 40.40 8.54 46.84 32.89 15.35

23 ¡0.154 ¡0.109 0.063 0.164 0.896 0.909 22.83 16.45 83.9 69.55 42.72 17.48 58.50 39.73 11.23

(continued)
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Table A1. (Continued )

Input variables FFI responses (mm) OFI responses (mm)

ID # x1 x2 x3 x4 x5 x6 x7 x8 x9 FP DS SW FP DS SW

24 ¡0.124 ¡0.018 ¡0.058 ¡0.245 0.846 9.394 36.57 15.53 90.3 70.93 49.79 13.46 76.52 56.46 6.31

25 0.078 ¡0.179 0.230 ¡0.038 0.790 ¡3.535 46.67 16.15 62.8 85.20 59.13 9.22 78.45 45.92 6.55

26 0.018 0.003 0.144 ¡0.199 0.891 6.364 51.92 15.98 127.0 69.38 51.32 11.44 86.05 60.41 6.94

27 ¡0.043 ¡0.245 ¡0.109 ¡0.164 1.184 ¡6.566 22.02 15.68 88.5 52.24 34.61 13.80 43.46 26.61 15.06

28 0.149 ¡0.058 ¡0.078 0.139 1.144 ¡6.364 27.27 16.62 122.4 55.23 38.60 10.70 47.84 33.14 12.05

29 0.225 0.109 ¡0.068 ¡0.124 1.159 ¡6.162 45.86 16.34 107.8 47.53 34.74 10.11 71.45 56.85 7.01

30 ¡0.240 0.023 ¡0.119 ¡0.179 1.134 ¡9.192 55.96 15.62 108.7 43.01 30.37 7.48 69.86 52.93 13.40

31 0.114 ¡0.083 0.048 ¡0.205 0.821 ¡3.333 55.15 16.25 49.1 65.44 45.94 9.59 88.28 54.15 6.49

32 0.169 ¡0.073 ¡0.083 0.144 0.801 ¡0.505 49.90 16.23 60.1 66.68 46.55 11.01 85.52 64.99 6.84

33 0.189 ¡0.250 ¡0.023 ¡0.230 0.795 ¡6.768 50.30 15.85 94.0 55.57 33.89 7.83 69.32 46.86 6.96

34 0.073 ¡0.194 0.154 ¡0.149 0.841 ¡4.343 56.36 16.64 106.9 59.57 41.65 12.01 79.77 49.20 7.65

35 0.139 0.199 ¡0.093 ¡0.235 0.856 ¡4.949 34.95 16.00 136.2 48.99 28.24 19.59 59.73 42.08 8.41

36 ¡0.225 0.129 ¡0.104 0.154 1.129 ¡6.970 38.59 16.59 68.3 53.89 33.75 13.45 63.60 45.14 6.14

37 ¡0.194 0.144 0.189 0.003 1.093 1.111 26.06 15.81 119.7 50.52 28.40 16.23 50.02 28.16 11.80

38 0.063 0.088 ¡0.164 0.205 1.063 4.141 33.74 16.11 111.4 62.41 42.69 8.17 62.15 46.69 5.64

39 0.008 0.134 0.194 0.083 0.816 3.535 57.17 15.64 105.0 55.01 38.64 10.47 70.03 44.19 6.99

40 ¡0.174 ¡0.114 ¡0.088 0.240 0.962 ¡8.384 52.32 15.92 83.0 78.95 56.94 7.56 92.58 64.61 6.19

41 0.240 0.008 0.205 0.189 0.775 3.333 60.00 16.47 72.0 59.16 41.63 7.49 86.97 65.67 8.00

42 ¡0.028 ¡0.063 ¡0.205 ¡0.134 0.982 5.152 31.31 14.77 67.4 67.85 44.81 7.68 60.59 42.33 8.40

43 0.048 0.220 ¡0.048 0.093 0.866 ¡5.152 57.58 16.40 56.4 60.87 42.21 9.34 80.74 51.69 6.18

44 ¡0.144 0.230 0.013 ¡0.189 0.952 ¡3.737 47.47 14.96 101.3 57.85 37.93 11.53 73.51 45.76 6.87

45 0.144 ¡0.169 0.003 ¡0.139 1.245 ¡0.303 48.28 14.92 52.7 59.92 43.85 9.69 78.19 58.43 8.12

46 ¡0.134 ¡0.164 0.245 0.194 0.765 ¡1.313 43.84 15.17 77.5 56.46 34.30 12.63 76.84 46.37 8.12

47 ¡0.058 0.124 ¡0.028 ¡0.003 1.008 8.384 44.24 14.73 91.3 53.66 35.61 9.57 67.59 49.67 6.35

48 0.205 ¡0.104 0.164 ¡0.184 1.189 ¡1.919 28.89 16.08 98.6 44.95 29.77 12.66 47.55 33.97 11.50

49 ¡0.104 0.159 0.134 0.088 0.937 2.727 31.72 14.71 66.5 65.41 39.10 15.16 69.14 44.72 11.53

50 ¡0.210 0.235 0.058 0.225 0.780 ¡8.586 20.81 15.77 85.8 58.36 34.22 16.28 63.90 38.57 17.51

51 ¡0.129 ¡0.159 0.250 ¡0.250 1.250 8.182 53.13 15.47 94.9 63.37 45.27 9.31 85.44 62.94 9.18

52 ¡0.245 0.038 ¡0.003 ¡0.114 0.902 3.939 24.04 15.26 79.3 60.79 35.34 12.80 64.08 41.13 15.47

53 0.210 0.043 0.220 0.043 1.023 1.717 26.46 15.09 130.7 45.47 32.86 12.49 47.53 34.63 11.59

54 0.083 ¡0.008 0.114 ¡0.023 1.043 1.919 29.29 15.30 102.3 57.69 39.49 9.26 57.31 41.17 10.83

55 ¡0.109 ¡0.048 0.184 ¡0.078 0.760 10.000 51.52 14.81 48.2 88.66 60.40 7.74 82.96 49.13 6.58

56 ¡0.250 ¡0.199 ¡0.184 0.038 1.033 ¡2.323 30.91 16.57 124.3 51.68 33.42 11.56 59.57 49.79 10.34

57 ¡0.235 0.149 ¡0.144 0.124 1.164 ¡10.000 58.38 15.66 121.5 42.21 31.86 9.86 70.10 53.07 7.64

58 ¡0.119 ¡0.033 0.139 0.245 0.861 ¡8.182 35.35 16.06 55.5 78.50 51.16 15.39 78.49 51.42 10.86

59 ¡0.053 0.119 ¡0.215 0.174 0.881 ¡3.131 27.68 15.36 99.5 61.17 39.99 12.60 53.76 34.34 14.17

60 ¡0.220 0.245 0.240 0.033 1.119 1.313 32.93 16.53 84.8 55.90 34.31 15.32 64.45 42.28 11.92

61 0.245 0.073 0.159 0.078 0.997 5.354 41.01 16.68 78.4 47.78 34.16 7.48 61.71 45.96 6.22

62 0.068 ¡0.220 ¡0.189 ¡0.033 0.907 ¡7.980 51.11 16.02 76.6 64.84 45.39 7.70 30.03 24.50 7.17

63 0.220 0.205 0.023 ¡0.109 0.755 3.131 26.87 16.42 63.7 65.25 41.33 11.58 65.25 41.33 11.58

64 0.023 ¡0.028 ¡0.073 0.250 1.225 5.758 34.14 15.22 103.2 66.15 48.50 11.02 57.20 44.02 7.40

65 ¡0.008 ¡0.119 ¡0.114 ¡0.174 1.058 ¡0.707 46.26 16.30 59.2 63.59 44.19 9.50 75.48 56.44 6.34

66 ¡0.169 0.210 0.093 0.109 0.831 ¡4.141 57.98 16.32 116.0 49.28 34.28 12.52 76.43 44.77 6.00

67 ¡0.018 ¡0.003 ¡0.235 ¡0.083 1.088 7.980 54.34 15.75 50.9 75.76 54.96 12.07 89.44 67.57 12.56

68 ¡0.230 ¡0.205 0.199 0.073 1.205 ¡1.111 20.00 15.60 61.9 62.47 34.85 18.46 58.05 31.41 18.11

69 0.134 0.174 0.068 0.063 1.210 6.566 38.99 16.55 100.4 57.03 44.09 11.52 65.13 48.10 8.01

70 ¡0.189 0.028 ¡0.124 0.104 1.194 ¡8.788 54.75 15.11 113.3 43.16 32.60 9.24 76.16 56.69 10.71

71 ¡0.068 0.179 0.129 ¡0.154 1.068 ¡5.960 36.16 15.05 45.4 73.49 46.68 8.83 81.50 56.90 5.31

72 0.159 0.114 0.215 0.068 0.942 ¡7.172 42.22 16.49 134.4 49.90 33.10 13.26 74.52 53.29 5.33

73 ¡0.073 0.093 0.179 ¡0.088 1.169 2.929 24.85 16.28 46.3 64.18 37.16 15.29 63.55 40.47 10.98

(continued)
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Table A1. (Continued )

Input variables FFI responses (mm) OFI responses (mm)

ID # x1 x2 x3 x4 x5 x6 x7 x8 x9 FP DS SW FP DS SW

74 0.250 0.063 0.083 0.235 0.927 ¡8.990 28.08 14.85 109.6 57.82 37.70 13.87 53.42 36.12 13.44

75 0.088 ¡0.134 ¡0.250 ¡0.240 1.235 7.374 25.66 15.13 125.2 52.60 36.74 11.55 50.90 35.50 9.04

76 0.043 0.169 0.109 ¡0.210 1.083 9.192 59.60 15.70 72.9 57.54 40.84 8.92 83.94 62.53 10.44

77 0.109 ¡0.154 0.018 ¡0.063 1.013 7.778 33.33 16.21 112.4 47.64 34.13 9.80 50.69 35.40 6.94

78 ¡0.033 ¡0.053 ¡0.199 0.220 1.048 ¡1.515 56.77 14.68 70.2 62.49 40.96 9.70 69.70 47.53 5.06

79 ¡0.139 ¡0.043 ¡0.098 0.018 0.922 ¡7.374 29.70 14.83 93.1 54.92 37.79 10.94 59.88 38.01 11.50

80 ¡0.078 ¡0.184 0.210 ¡0.159 0.836 ¡1.717 45.45 15.15 104.1 75.69 53.28 12.14 75.69 53.28 12.14

81 ¡0.149 ¡0.023 ¡0.194 ¡0.119 1.124 1.515 36.97 15.02 115.1 46.55 34.73 7.94 67.68 53.70 6.30

82 0.235 0.250 ¡0.240 ¡0.104 0.826 ¡9.798 59.19 15.72 47.2 65.94 44.42 10.92 84.12 59.03 7.41

83 0.028 0.194 0.038 ¡0.068 0.917 0.707 55.56 15.49 51.8 62.60 41.44 9.49 81.49 56.11 7.48

84 0.215 0.215 0.124 ¡0.018 0.987 ¡5.354 58.79 16.70 116.9 48.45 36.35 9.68 75.51 48.96 6.26

85 ¡0.199 ¡0.068 ¡0.043 0.215 1.018 9.596 40.61 15.07 135.3 63.04 41.05 15.74 68.18 47.76 7.38

86 ¡0.159 ¡0.225 0.088 0.058 1.174 8.990 44.65 15.45 95.8 79.62 55.91 10.56 73.95 51.89 6.08

87 0.184 0.048 ¡0.033 ¡0.073 1.240 7.576 21.21 14.98 54.6 58.34 38.24 12.94 54.13 32.75 13.68

88 ¡0.013 0.013 ¡0.139 ¡0.028 0.957 6.970 32.12 15.94 69.2 67.05 46.38 8.49 68.88 49.86 6.32

89 0.093 ¡0.144 ¡0.008 0.149 1.149 4.545 49.49 15.79 87.6 54.86 40.37 12.17 76.24 57.80 6.42

90 0.119 ¡0.149 ¡0.129 ¡0.013 0.876 7.172 23.64 16.51 96.8 52.31 36.39 12.47 52.31 36.39 12.47

91 ¡0.088 0.078 ¡0.154 0.169 1.230 ¡5.556 21.62 15.51 64.7 58.42 36.68 13.35 53.12 33.81 12.95

92 0.033 ¡0.038 ¡0.149 0.023 0.785 0.303 37.78 15.58 73.8 69.16 46.56 11.90 75.77 52.59 6.78

93 0.104 0.184 0.033 ¡0.093 0.750 ¡0.101 47.07 15.87 71.1 72.49 51.98 8.51 74.21 47.12 7.26

94 ¡0.164 ¡0.088 ¡0.013 0.179 0.806 ¡0.909 30.51 15.28 89.4 74.33 50.40 14.50 63.64 43.43 13.65

95 0.058 ¡0.098 ¡0.174 ¡0.144 1.154 ¡9.394 34.55 14.66 117.9 50.52 35.43 10.27 57.94 44.29 5.55

96 ¡0.083 0.083 0.098 0.199 0.972 2.121 41.82 15.00 53.7 62.13 37.85 12.31 80.96 61.84 7.09

97 ¡0.098 ¡0.013 ¡0.134 ¡0.194 1.098 4.343 25.25 15.34 65.6 60.06 39.80 9.47 61.67 41.69 8.33

98 ¡0.215 0.154 ¡0.179 ¡0.129 1.073 4.747 52.73 16.19 133.4 50.34 35.95 7.09 49.00 37.07 6.85

99 0.003 0.139 0.119 ¡0.098 0.871 0.505 38.18 14.64 118.8 59.72 39.42 15.27 67.57 45.88 9.69

100 ¡0.038 ¡0.093 0.028 ¡0.043 0.932 ¡5.758 20.40 14.90 105.9 54.47 33.03 18.10 36.77 23.46 13.33
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Table A2. Test points and corresponding responses (intrusion distances) for both crash scenarios.

Input variables FFI responses (mm) OFI responses (mm)

ID # x1 x2 x3 x4 x5 x6 x7 x8 x9 FP DS SW FP DS SW

1 0.051 ¡0.161 0.138 0.232 1.062 0.637 39.04 16.32 90.5 63.40 42.91 12.12 68.02 43.95 8.88

2 ¡0.183 0.182 ¡0.184 0.078 0.863 ¡0.325 31.83 15.83 58.2 62.99 38.13 12.44 75.36 55.38 4.06

3 0.206 0.081 0.010 0.205 0.807 5.986 39.75 15.53 68.0 62.32 43.71 11.77 62.89 39.34 12.80

4 0.229 0.032 ¡0.159 0.055 0.903 9.024 55.31 15.02 89.6 59.08 41.82 9.64 60.81 47.70 10.67

5 0.041 ¡0.127 0.085 ¡0.166 0.838 2.611 27.81 15.00 93.2 68.34 46.20 13.20 69.04 48.31 9.82

6 ¡0.102 ¡0.194 ¡0.068 ¡0.149 0.953 2.811 34.13 16.40 91.8 68.37 45.58 13.02 65.04 47.72 11.53

7 ¡0.169 0.065 0.048 ¡0.233 1.242 0.899 20.38 15.69 52.1 57.85 35.34 15.66 75.07 49.19 6.43

8 ¡0.177 0.046 ¡0.135 0.233 0.911 ¡1.710 26.26 15.44 102.7 65.71 36.80 14.76 59.09 40.68 13.01

9 ¡0.118 ¡0.074 ¡0.155 0.087 0.836 4.064 24.06 16.34 76.2 64.14 41.27 14.70 58.24 38.14 14.37

10 ¡0.108 0.231 ¡0.201 0.084 1.038 0.723 49.15 15.05 107.8 53.97 37.84 8.30 59.77 35.76 13.78

11 ¡0.086 ¡0.145 0.022 0.020 1.081 ¡4.583 42.70 15.82 126.9 50.11 37.99 9.58 62.29 42.51 11.64

12 0.182 ¡0.041 0.216 ¡0.205 0.812 3.470 49.56 15.09 102.9 61.17 43.68 8.68 67.20 41.91 10.84

13 0.108 0.038 0.215 ¡0.157 1.091 8.105 54.38 14.87 97.6 54.63 39.44 9.36 66.96 46.16 8.11

14 ¡0.017 0.188 0.147 ¡0.219 0.962 5.900 31.61 15.15 85.8 68.57 43.27 11.08 64.14 50.88 9.50

15 ¡0.003 ¡0.175 0.155 ¡0.126 1.085 3.604 36.38 16.39 123.8 54.13 32.72 11.83 81.25 56.20 8.65

16 0.037 0.174 0.089 0.047 1.157 0.979 42.59 16.37 52.5 59.21 44.66 11.98 72.22 57.24 6.79

17 ¡0.070 ¡0.039 0.059 ¡0.077 1.125 1.286 59.68 16.61 108.2 49.73 32.07 9.86 67.81 46.06 10.08

18 ¡0.143 ¡0.114 0.187 0.097 0.896 1.585 39.40 15.23 101.2 58.68 40.24 15.12 84.79 59.72 6.96

19 ¡0.154 ¡0.068 ¡0.058 0.219 0.786 ¡3.197 54.49 16.21 114.5 62.52 42.10 12.67 64.14 43.92 9.15

20 0.183 0.146 0.173 ¡0.040 0.798 3.262 35.54 15.23 100.1 52.53 42.44 12.03 79.60 48.97 5.63

21 0.085 0.249 ¡0.054 ¡0.029 1.065 ¡4.939 56.43 15.55 85.8 59.45 42.38 8.68 69.86 49.23 6.76

22 ¡0.026 ¡0.102 0.078 0.171 0.985 5.158 39.17 14.97 92.9 65.01 43.88 13.57 76.60 59.32 7.48

23 0.082 0.032 0.061 ¡0.145 0.948 ¡0.821 23.96 15.34 87.3 55.43 36.46 15.20 64.37 40.47 10.98

24 ¡0.178 0.037 ¡0.114 0.210 1.199 1.512 50.36 16.36 114.0 61.50 46.74 10.07 82.11 52.42 6.88

25 ¡0.132 0.056 0.051 0.221 1.013 9.005 43.55 15.80 96.2 55.19 38.01 10.90 62.39 40.97 10.71

26 ¡0.208 ¡0.079 ¡0.018 0.027 0.828 ¡4.313 29.06 14.90 76.2 74.02 49.19 12.92 67.57 51.91 6.00

27 0.010 0.116 0.071 ¡0.059 0.858 ¡7.063 47.17 15.98 69.2 73.79 50.33 8.25 81.87 57.95 6.14

28 0.240 0.176 ¡0.207 0.165 1.042 6.245 56.76 15.97 70.9 54.07 36.25 11.12 70.83 46.37 6.98

29 0.216 ¡0.093 ¡0.236 0.087 0.900 2.468 57.68 15.01 103.6 48.91 34.78 9.86 52.73 33.51 13.18

30 ¡0.006 ¡0.102 ¡0.169 ¡0.058 0.780 ¡6.103 20.97 15.42 86.8 57.90 35.83 16.99 58.61 40.75 11.29

31 0.182 ¡0.230 ¡0.149 ¡0.122 1.226 ¡0.069 55.66 16.46 67.5 50.39 36.44 11.61 68.93 48.54 6.62

32 0.155 0.043 ¡0.229 ¡0.070 1.100 8.080 51.61 15.25 80.2 64.37 45.74 9.48 65.53 44.24 13.79

33 0.107 0.160 ¡0.071 0.170 0.813 1.747 42.62 14.89 118.3 55.44 34.31 13.09 75.61 47.15 5.56

34 0.107 0.142 0.002 0.088 1.091 8.569 40.23 15.03 124.2 52.17 39.65 10.57 77.68 56.16 7.61

35 0.007 0.106 ¡0.117 0.059 1.095 2.197 59.63 16.18 67.2 55.78 42.03 9.57 76.66 55.18 6.30

36 0.220 ¡0.080 ¡0.229 ¡0.184 0.801 2.143 41.26 15.75 123.2 53.06 30.78 13.02 74.74 45.72 5.34

37 ¡0.208 ¡0.243 ¡0.106 ¡0.005 1.138 8.822 54.65 16.36 98.6 70.61 51.39 9.20 45.35 34.43 16.62

38 ¡0.094 0.004 ¡0.087 0.226 0.948 2.163 35.93 16.18 46.8 65.64 47.96 14.28 67.99 56.13 9.21

39 ¡0.033 0.169 ¡0.204 0.186 0.960 7.863 58.47 15.29 49.8 57.20 41.15 11.64 86.93 66.72 8.79

40 ¡0.196 0.194 0.223 0.192 1.015 7.312 37.66 15.04 107.8 52.52 33.23 16.50 66.29 44.45 9.83
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