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Tradeoff of Uncertainty Reduction
Mechanisms for Reducing Weight
of Composite Laminates
Inspired by work on allocating risk between the different components of a system for a
minimal cost, we explore the optimal allocation of uncertainty in a single component. The
tradeoffs of uncertainty reduction measures on the weight of structures designed for
reliability are explored. The uncertainties in the problem are broadly classified as error
and variability. Probabilistic design is carried out to analyze the effect of reducing error
and variability on the weight. As a demonstration problem, the design of composite
laminates at cryogenic temperatures is chosen because the design is sensitive to uncer-
tainties. For illustration, variability reduction takes the form of quality control, while
error is reduced by including the effect of chemical shrinkage in the analysis. Tradeoff
plots of uncertainty reduction measures, probability of failure and weight are generated
that could allow choice of optimal uncertainty control measure combination to reach a
target probability of failure with minimum cost. In addition, the paper also compares
response surface approximations to direct approximation of a probability distribution for
efficient estimation of reliability. �DOI: 10.1115/1.2406097�
Introduction
For systems composed of multiple components, system failure

robability depends on the failure probabilities of the components,
nd the cost of changing the failure probability may vary from one
omponent to another. The risk or reliability allocation problem
an be defined �1–3� as determining the optimal component reli-
bilities such that the system objective function �e.g., cost� is op-
imized and all design constraints �e.g., system reliability level�
re met. Several researchers applied risk and reliability allocation
ethods to optimize the total cost of nuclear power plants by

llocating the risk and reliability of individual subsystems such
hat a specified reliability goal is met �4–7�. Ivanovic �8� applied
eliability allocation to design of a motor vehicle. The vehicle
eliability is allocated to its elements for minimum vehicle cost
hile keeping the reliability of the vehicle at a specified level.
car and Haftka �9� investigated reliability allocation between the
ing and tail of a transport aircraft. The concept of risk allocation

s also used in finance applications, where risk allocation is de-
ned as the process of apportioning individual risks relating to
rojects and service delivery to the party best placed to manage
ach risk. Risks are allocated across the supply chain—that is,
etween the department, its customers, its suppliers and their sub-
ontractors. Refs. �10–12� are some examples of numerous publi-
ations on risk allocation in finance applications.

Instead of considering a system of multiple components, we
ay also consider multiple sources of uncertainty for a single

omponent. Again, the probability of failure can be reduced by
educing the uncertainty from each source, with different cost as-
ociated with each. That is, the probability constraints can be sat-
sfied by reducing different types of uncertainties. The objective
f this paper is to demonstrate this approach for reliability based
esign optimization �RBDO� of structures.
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Over the years, researchers have proposed different classifica-
tions for uncertainty. Oberkampf et al. �13,14� provided an analy-
sis of uncertainty in engineering modeling and simulations. Here
as in our previous work �Acar et al. �15,16��, we use a simplified
uncertainty classification. Uncertainty is divided into error and
variability, to distinguish between uncertainties that apply equally
to an entire fleet of a structural model �error� and the uncertainties
that vary for an individual structure �variability�.

In aircraft structural design there are different players engaged
in uncertainty reduction. Researchers reduce errors by developing
better models of failure prediction and this leads to safer struc-
tures �Acar et al. �17��. Aircraft companies constantly improve
finite element models, thus reducing errors in structural response.
The Federal Aviation Administration �FAA� leads to further reduc-
tion in error �Ref. �15�� through the process of certification testing.
Aircraft makers also constantly improve manufacturing tech-
niques and quality control procedure to reduce variability between
airplanes. Airlines reduce variability in structural failure due to
operating conditions by conducting inspections, and the FAA con-
tributes to reduced variability by licensing pilots, thereby reducing
the risk that incompetent pilots may subject airplanes to exces-
sively high loads.

These uncertainty reduction mechanisms are costly, and their
cost can be traded against the cost of making the structure safer by
increasing its weight. Kale et al. �18� investigated the tradeoff of
inspection cost against the cost of structural weight, and found
that inspections are quite cost effective. Qu et al. �19� analyzed the
effect of variability reduction on the weight savings from compos-
ite laminates under cryogenic conditions. They found that employ-
ing quality control to −2� for the transverse failure strain may
reduce the weight of composite laminates operating at cryogenic
temperatures by 25% marking such laminates as a structure where
weight is sensitive to the magnitude of uncertainties.

In this paper, we use the example of this composite laminate to
explore tradeoffs between the variability reduction, considered by
Qu et al. �19�, and error reduction in the form of improved accu-
racy of structural analysis.

The paper is structured as follows. Section 2 discusses the de-
sign of composite laminates for cryogenic temperatures. Probabil-
ity of failure estimation of the laminates is described in Sec. 3.
The probabilistic design optimization problem is discussed in Sec.

4. Weight savings using error and variability reduction mecha-
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isms are given in Sec. 5. The optimum use of uncertainty reduc-
ion mechanisms are discussed in Sec. 6, followed by concluding
emarks in Sec. 7.

Design of Composite Laminates for Cryogenic Tem-
eratures
We consider the design of a composite panel at cryogenic tem-

eratures as demonstration for trading off uncertainty reduction
echanisms. The definition of the problem is taken directly from
u et al. �19�. The laminate �Fig. 1� is subject to mechanical

oading �Nx is 4800 lb./ in. and Ny is 2400 lb./ in.� and thermal
oading due to the operating temperature −423°F, where the
tress-free temperature is 300°F.

The objective is to optimize the weight of laminates with two
ly angles �±�1 / ±�2�s. The design variables are the ply angles �1,

2 and ply thicknesses t1, t2. The material used in the laminates is
M600/133 graphite–epoxy of ply thickness 0.005 in. The mini-
um thickness necessary to prevent hydrogen leakage is assumed

o be 0.04 in. The geometry and loading conditions are shown in
ig. 1. Temperature-dependent material properties are given in
ppendix A.
The deterministic design optimization of the problem was

olved by Qu et al. �19�. They used continuous design variables
nd rounded the thicknesses to integer multiples of the basic ply
hickness 0.005 in. In the deterministic optimization, they multi-
lied the strains by a safety factor of SF=1.4.
The deterministic optimization problem is formulated as

min h = 4�t1 + t2�

s.t. �1
L � SF�1 � �1

U,�2
L � SF�2 � �2

U,SF��12� � �12

t1,t2 � 0.005 �1�
here the allowable strains are given in Table 1.
Since designs must be feasible for the entire range of tempera-

ures, strain constraints were applied at 21 different temperatures,
hich were uniformly distributed from 77°F to −423°F. Qu et

l. �19� found the optimum design given in Table 2.

Calculation of the Probability of Failure
The failure of the laminates is assessed based on the first ply

ailure according to the maximum strain failure criterion. The
train allowables listed in Table 1 are the mean values of the
ailure strains according to Qu et al. �19�.

ig. 1 Geometry and loading of the laminate with two ply
ngles †±�1 / ±�2‡s „x-is the hoop direction and y is the axial
irection…

Table 1 Allowable strains for IM600/133

�1
L �1

U �2
L �2

U �12
U

−0.0109 0.0103 −0.013 0.0154 0.0138
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The first step in the calculation of the probability of failure is to
quantify uncertainties included in the problem. As we discussed
earlier, we use a simple classification for uncertainty that we used
in our previous work �Acar et al. �15,16��. Uncertainty is divided
into two parts, error and variability, to distinguish between the
uncertainties that apply equally to the entire fleet of a structural
model �error� and the uncertainties that vary for an individual
structure �variability�. Since errors are epistemic, they are often
modeled using fuzzy numbers or possibility analysis �Refs.
�20–22��. We model the errors probabilistically by using uniform
distributions to maximize the entropy.

Variability refers to the departure of a quantity in individual
laminates that have the same design. Here, the elastic properties �
E1, E2, G12, and �12�, coefficients of thermal expansion ��1 and
�2�, failure strains ��1

L, �1
U, �2

L, �2
U, and �12

U � and the stress-free
temperature �Tzero� have variability. These random variables are
all assumed to follow uncorrelated normal distributions, with co-
efficients of variations listed in Table 3.

We also use a simple error model, assuming that calculated
values of failure strains differ from actual values due to experi-
mental or measurement errors. Using standard classical lamination
theory �CLT� for ply strain calculation leads to errors in part,
because standard CLT does not take chemical shrinkage into ac-
count. We relate the actual values of the strains to their calculated
values via Eq. �2�

�calc = �1 + e��true �2�

where e is the representative error factor that includes the effect of
all error sources on the values of strains and failure strains. For
example, if the estimated failure strain is 10% too high, this is
approximately equivalent to the strain being calculated 10% too
low. For the error factor e, we use a uniform distribution with
bounds of ±be. This error bound can be reduced by using more
accurate failure models. For example, the cure reference method
�23� may be used to account for the shrinkage due to a chemical
process. In Secs. 4 and 5, we will investigate the effect of reduc-
ing be on the probability of failure and the weight.

To calculate the probability of failure, we use Monte Carlo
Simulation �MCS�. For acceptable accuracy, sufficient strain
analyses �simulations� must be obtained through standard CLT
analysis. However, this is computationally expensive and needs to
be repeated many times during the optimization. In order to re-
duce the computational cost, Qu et al. �19� used response surface
approximations for strains ��1 in �1, �1 in �2, �2 in �1, �2 in �2, �12
in �1, and �12 in �2�. They fitted quadratic response surface ap-
proximations to strains in terms of four design variables �t1, t2, �1,
and �2�, material parameters �E1, E2, G12, �12, �1, and �2� and
service temperature Tserv. These response surfaces were called the
analysis response surfaces �ARS�, because they replace the CLT
analysis. A quadratic response surface approximation in terms of
12 variables includes 91 coefficients, so they used 182 realizations

Table 2 Deterministic optimum design by Qu et al. †19‡. The
number in parentheses denote the unrounded design
thickness

�1
�deg�

�2
�deg�

t1
�in�

t2
�in�

h
�in�

27.04 27.04 0.010 0.015 0.100�0.095�

Table 3 Coefficients of variation of the random variables „as-
sumed uncorrelated normal distributions…

E1, E2, G12, and �12 �1 and �2 Tzero �1
L and �1

U �2
L, �2

U, and �12
U

0.035 0.035 0.03 0.06 0.09
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rom Latin hypercube sampling �LHS� design. As seen from Table
the root mean square error predictions are less than 2% of the
ean responses, so the accuracies of the ARS is good.
We found, however, that even small errors in strain values may

ead to large errors in probability of failure calculations, so we
onsidered approximate cumulative distribution functions �CDF�
f strains instead of ARS. We assume normal distributions for
trains and estimate the mean and the standard deviation of strains
onservatively by MCS. That is, the mean and standard deviation
f the assumed distribution are found so that the CDF of the
pproximated distribution is smaller than or equal to �i.e., more
onservative� the CDF calculated via MCS, except for strain val-
es very near the tail of the distribution. Detailed information on
onservative CDF fitting is given in Appendix B. We use 1000
CS simulations, which are accurate to a few percent of the

tandard deviation for estimating the mean and standard deviation.
umulative distribution function obtained through 1000 MCS, the
pproximate normal distribution and the conservative approximate
ormal distributions for �2 corresponding to the deterministic op-
imum given in Table 2 are compared in Figs. 2�a� and 2�b�.

Next, we compare the accuracy of the analysis response surface
nd approximate CDF approaches by using 1,000,000 MCS in
able 5. We can see that the use of approximate CDFs for strains

eads to more accurate probability of failure estimations than the
se of ARS. Furthermore, the case of conservative fit to CDF
eads to overestimation of the probability of failure. However, the
pproximate CDFs were obtained by performing 1000 MCS,
hile the ARS were constrained by using only 182 MCS. In ad-
ition, the approximate CDF needs to be repeatedly calculated for
ach design. It is possible that some combination of ARS with

Table 4 Evaluation of the accuracy of the an
†19‡. Note that the strains are in millistrains.

�1 in �1 �1 in �2

Radj
2 a 0.9977 0.9978

RMSE Predictorb 0.017 0.017
Mean of response 1.114 1.108

aAdjusted coefficient of multiple determination.
bRoot mean square error predictor.

Fig. 2 Comparison of CDF obtained via 1000 MCS, the approx
distributions for �2 on �1 corresponding to the deterministic o

fitted CDF

68 / Vol. 129, MARCH 2007
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approximate CDF may be more efficient and accurate than either
using ARS or approximate CDF alone, and this will be explored in
future work.

4 Probabilistic Design Optimization
The laminates are designed for a target failure probability of

10−4. The optimization problem can be formulated as given in Eq.
�3�. The design variables are the ply thicknesses and angles

min h = 4�t1 + t2�

s.t. Pf � �Pf�target

t1,t2 � 0.005 �3�
For this optimization, we need to fit a design response surface

�DRS�2 to the probability of failure in terms of the design vari-
ables. The accuracy of the DRS may be improved by using an
inverse safety measure. We use the probabilistic sufficiency factor
�PSF� developed by Qu and Haftka �24�.

4.1 Probabilistic Sufficiency Factor (PSF). The safety factor
S is defined as the ratio of the capacity GC of the structure to the
structural response GR. The PSF is the probabilistic interpretation
of the safety factor S with its CDF defined as

2The term design response surface �DRS� follows Qu et al. �19� and indicates
approximations to the probability of failure or other measures of safety as a function
of design variables.

sis response surface „ARS… used by Qu et al.

in �1 �2 in �2 �12 in �1 �12 in �2

.9956 0.9961 0.9991 0.9990

.060 0.055 0.055 0.060

.322 8.328 −3.13 −3.14

ate normal distribution and conservative approximate normal
um: „a… CDF versus strain, „b… actual „empirical… CDF versus
aly

�2

0
0
8

im
ptim
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FS�s� = Prob�GC

GR
� s� �4�

iven a target probability of failure, �Pf�target, PSF is defined as
he solution to

FS�s� = Prob�GC

GR
� PSF� = Prob�S � PSF� = �Pf�target �5�

That is, the PSF is the safety factor obtained by equating the
DF of the safety factor to the target failure probability. The PSF

akes values such that

PSF = �	1 if Pf 
 �Pf�target

=1 if Pf = �Pf�target


1 if Pf 	 �Pf�target
	 �6�

When MCS are used, the PSF can be estimated as the nth
mallest safety factor over all MCS, where n=N� �Pf�target. Using
he PSF, the optimization problem can be formulated as

min h = 4�t1 + t2�

s.t. PSF � 1

t1,t2 � 0.005 �7�
he optimization problem given in Eq. �7� is solved by using
equential quadratic programming �SQP� using function fmincon
n MATLAB.

4.2 Design Response Surface (DRS). We have three compo-
ents of strain for each angle: �1, �2, and �12. The strain �2 and
12 are more critical than �1. The mean and standard deviation of
our strains ��2 in �1, �2 in �2, �12 in �1, and �12 in �2� are
omputed by using MCS of sample size 1,000 and fitted with
onservative normal distributions as shown in Fig. 2. The corre-
ations between these distributions were low, and so the strains
ere treated as independent in MCS using 1,000,000 simulations

t each design point to compute PSF. In order to perform the
ptimization, we need to approximate the PSF in terms of the
esign variables by a DRS. We fit three DRS of the PSF as func-
ion of the four design variables �t1, t2, �1, and �2� for three dif-
erent error bound �be� values of 0, 10%, and 20%. As shown in
ppendix C, the use of the PSF leads to much more accurate

stimate of the safety margin than fitting a DRS to the probability
f failure.

Weight Savings by Reducing Error and Quality
ontrol
As noted earlier, the probabilistic design optimizations of the

omposite laminates were performed for three different values of
he error bound, be, namely 0, 10%, and 20%. Schultz et al. �25�
ave shown that neglecting chemical shrinkage leads to substan-
ial errors in strain calculations. Based on Ref. �25�, we assume
hat using the standard CLT without chemical shrinkage leads to

able 5 Comparison of probability of failure estimations for
he deterministic optimum of Qu et al. †19‡. Samples size of
CS is 1,000,000.

pproach followed

Probability of
failure, Pf

��10−4�

Standard error in Pf
due to limited

sampling ��10−4�

CS with CLT �exact analysis� 10.21 0.320
CS with ARSa of strains 16.83 0.410
CS with approximation to
DF of strains

11.55 0.340

ARS=analysis response surface approximation.
0% errors in strain calculations, while using the modified CLT

ournal of Mechanical Design
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�i.e., CLT that takes chemical shrinkage into account� leads to the
reduction of error bounds from 20% to 10%. As noted earlier, the
errors are assumed to have uniform distribution, which corre-
sponds to maximum entropy.

For the error bounds discussed, we solve the optimization prob-
lem given in Eq. �7�. The results of the optimization are presented
in Table 6 and the weight �proportional to thickness� savings due
to error reduction are shown in Fig. 3. We see that reducing the
error bounds from 20% to 10% leads to 12.4% weight saving. In
addition, reducing error from 20% to 0 �clearly only a hypotheti-
cal case� leads to weight saving of 23.1%.

We have shown that it is possible to reduce the laminate thick-
ness by 12.4% through reducing the error from 20% to 10%. Now,
we combine error reduction with variability reduction and analyze
the overall benefit of both uncertainty reduction mechanisms. An
example of variability reduction is testing a set of composite lami-
nates and rejecting the laminates having lower failure strains as a
form of quality control. The test can involve a destructive evalu-
ation of a small coupon cut out from laminate used to build the
structure. Alternatively, it can involve a nondestructive scan of
laminates to detect flaws known to be associated with lowered
strength. We study the case where specimens that have transverse
failure strains lower than two standard deviations below the mean
are rejected �2.3% rejection rate�. We construct three new DRS for
PSF corresponding to error bounds of 0, 10%, and 20%.

The probabilistic design optimizations of composite laminates
for three different values of error bound �be� are performed and
the results are presented in Table 7 and in Fig. 4. We note that
when this form of variability reduction is applied, the laminate

Table 6 Probabilistic optimum designs for different error
bounds when only error reduction is applied. The PSF and Pf
given in the last two columns are calculated via Monte Carlo
simulations „sample size of 10,000,000… where the strains are
directly computed via standard CLT analysis. The numbers in
parentheses under PSF and Pf show the standard errors due to
limited Monte Carlo sampling.

Error
bound

�1

�2
�deg�

t1

t2
�in.�

h
�in.�

��h�%��a PSF
Pf

�1�10−4�

0 25.47 0.0156 0.1169 0.9986 1.017
26.06 0.0137 �23.1� �0.0030� �0.032�

10% 25.59 0.0167 0.1332 1.018 0.598
25.53 0.0167 �12.4� �0.0035� �0.024�

20% 23.71 0.0189 0.1520 0.9962 1.111
23.36 0.0191 �0.0� �0.0035� �0.105�

aThe optimum laminate thickness for 20% error bound is taken as the basis for �h
computations.

Fig. 3 Reducing laminate thickness „hence weight… by error

reduction „no variability reduction…

MARCH 2007, Vol. 129 / 269
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hickness can be reduced by 19.5%. If the error bound is reduced
rom 20% to 10% together with the variability reduction, the lami-
ate thickness can be reduced by 36.2%.

The numbers in the last two columns of Table 7 show the PSF
nd Pf calculated by using the 10,000,000 MCS where strains are
irectly calculated through the standard CLT analysis. The design
alues for PSF and Pf of the optimum designs are expected to be
.0 and 10−4. Discrepancies can be the result of the following.

1. Error due to the use of normal distributions for strains which
may not exactly follow normal distributions;

2. Error due to limited sample size of MCS while calculating
the mean and standard distribution of strains;

3. Error due to limited sample size of MCS while computing
the probabilistic sufficiency factor PSF; and

4. Error associated with the use of response surface approxi-
mations for PSF.

5. Error due to neglecting correlations between strains.

Next, a plot for the probability of failure �calculated via
,000,000 MCS�, weight and error reduction measures is shown in
ig. 5. The optimum ply angles for the case with 20% error bound
nd no variability reduction are 25.59 deg and 25.53 deg. Here we
ake both ply angles at 25 deg. We note from Fig. 5 that for our
roblem, the error reduction is a more effective way of reducing
eight compared to the specified variability reduction when the

arget probability of failure of the laminates is higher than 2
10−4 and quality control is more effective for lower probabili-

ies.

able 7 Probabilistic optimum designs for different error
ounds when both error and variability reduction are applied.
SF and Pf given in the last two columns are calculated via
CS „sample size of 10,000,000… where the strains are directly
omputed via the standard CLT analysis. The numbers in pa-
entheses under PSF and Pf show the standard errors due to
imited sample size of MCS.

rror
ound

�1

�2
�deg�

t1

t2
�in.�

h
�in.�

��h�%��a PSF
Pf

��10−4�

28.52 0.0089 0.0813 0.9965 1.255
28.71 0.0114 �−46.6� �0.0014� �0.035�

0% 27.34 0.0129 0.0970 1.0016 0.906
27.37 0.0144 �−36.2� �0.0015� �0.030�

0% 25.57 0.0168 0.1224 0.9968 1.190
25.66 0.0138 �−19.5� �0.0015� �0.109�

The optimum laminate thickness for the 20% error bound given in Table 6 �i.e. h
0.1520 in.� is taken as the basis for �h computations.

ig. 4 Reducing laminate thickness by error reduction „ER…
nd quality control „QC…

70 / Vol. 129, MARCH 2007
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6 Choosing Optimal Uncertainty Reduction Combina-
tion

Obviously, when it comes to a decision of what uncertainty
reduction mechanisms to use, the choice depends on the cost of
the uncertainty reduction measures. For a company, the costs of
small error reduction may be moderate, since they may involve
only a search of the literature for the best models available. Sub-
stantial error reduction may entail the high cost of doing addi-
tional research. Similarly, small improvements in variability, such
as improved quality control may entail using readily available
nondestructive testing methods, while large improvements may
entail developing new methods, or acquiring expensive new
equipment. To illustrate this, we assume a hypothetical cost func-
tion in quadratic form

cost = A�ER�2 + B�QC + 3�2 �8�

where A and B are cost parameters, ER represents the error reduc-
tion, and QC stands for the number of standard deviations that are
the threshold achieved by quality control. We generated hypotheti-
cal cost contours by using Eq. �8� as shown in Fig. 6. The nominal
value of error is taken as 20% and we assume that the quality
control to −3� is associated with no cost. For example, if error is
reduced from 20% to 15%, ER=0.20−0.15=0.05. Similarly, if
quality control to −2.5� is employed, then QC+3 takes the value
of 0.5. As an example we take A=$20 million and B=$100,000.

Next, we generated tradeoff plot for probability of failure and
uncertainty reduction measures for laminates of thickness t1
=0.010 in. and t2=0.015 in. as shown in Fig. 6. The optimum ply
angles are calculated such that they minimize the probability of
failure. The probabilities of failure are calculated via MCS
�sample size of 106�. The hypothetical cost contours for the un-
certainty reduction measures given in Fig. 6 enable a designer to
identify the optimal uncertainty control selection. We see in Fig. 6
that for high probabilities quality control is not cost effective,
while for low failure probabilities quality control becomes more
effective and a proper combination of error reduction and quality
control leads to a minimum cost.

7 Concluding Remarks
The tradeoffs of uncertainty reduction measures for minimizing

structural weight were investigated. Inspired by the allocation of
the risk between the components of a system for minimal cost, the
optimal allocation of uncertainty as error and variability was ana-
lyzed. As a demonstration problem, the design of composite lami-
nates at cryogenic temperatures was chosen because the design is
very sensitive to uncertainties. Quality control was used as a way
to reduce variability, and its effect was compared to the effect of
reducing error in the analysis. Tradeoff plots of uncertainty reduc-

Fig. 5 Tradeoff plot for the probability of failure, design thick-
ness, and uncertainty reduction measures: „ER… error reduc-
tion „reducing from 20% to 10%…, „QC… quality control to −2�
tion measures, probability of failure and weight were generated
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hat would enable a designer to choose the optimal uncertainty
ontrol measure combination to reach a target probability of fail-
re with minimum cost.

For this specific example problem we observed the following:

1. Reducing errors from 20% to 10% led to 12% weight reduc-
tion;

2. Quality control to −2 � led to 20% weight reduction;
3. The use combined of error reduction and quality control

mechanisms reduced the weight by 36%; and
4. Quality control was more effective at low required failure

probabilities, while the opposite applied for higher required
probabilities of failure.

In addition, a computational procedure for estimating the prob-
bility of failure based on approximating the cumulative distribu-
ion functions for strains in a conservative manner was developed.

e found that this approach led to more accurate probability of
ailure estimates than response surface approximations of the re-
ponse.
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ppendix A. Temperature Dependent material Proper-
ies

Since we analyze the problem that was addressed by Qu et al.
19�, the geometry, material parameters and the loading conditions
re taken from that paper. Qu et al. �19� obtained the temperature
ependent properties by using the material properties of IM600/
33 given in Aoki et al. �26� and fitted with smooth polynomials
n order to be used in calculations. The reader is referred to Ap-
endix A of Qu et al. �19� for the details. The temperature depen-

Fig. 6 Tradeoff of probability of fa
abilities of failure are calculated via
crosses in the figure indicate the op
that minimizes the cost of uncertain
failure.
ent material properties are shown in Figs. 7 and 8.
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Appendix B. Details of Conservative Cumulative Distri-
bution Function (CDF) Fitting

As we noted earlier, we assume normal distributions for strains
and estimate the mean and the standard deviation of the assumed
distributions conservatively. Conservative fitting is assessed as
follows. We first perform Monte Carlo simulations with sample
size of 1000 and calculate the mean and the standard deviation of
the strains. Then we assume that the strains follow normal distri-
bution with the calculated mean and standard deviation. We see in
Fig. 2�a� that the normal CDF is smaller than the empirical CDF
for some strain values, and larger for other strain values. That is,
the normal CDF leads to conservative estimates for some strain
values, while it leads to unconservative estimates for other strain
values. It is desirable to have conservative estimates for all strain
values, that is, to have a conservative CDF fit which is smaller
than the empirical CDF for all strain values. However, the tails of
the distribution are volatile, and fitting conservative CDF includ-
ing these values can lead to over conservative results. Accord-

e and uncertainty reduction. Prob-
CS „sample size of 1,000,000…. The
al uncertainty control combination
ontrol for a specified probability of

Fig. 7 Material properties E1, E2, G12, and �12 as a function of
ilur
M

tim
ty c
temperature
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ngly, we do not apply constraints to the first five points �out of
000 points� of the left tail and last five points of the right tail.
ut of the remaining 990 points, we choose uniformly spaced 100
oints and calculate the maximum deviation of the normal CDF fit
rom the empirical CDF fit at these 100 points. The maximum
eviation of the fitted CDF for the empirical CDF is called the
olmogorov–Smirnov distance. We shift the mean value of the
tted CDF to close the Kolmogorov–Smirnov distance between

he normal fit and empirical fit. The normal distribution with this
hifted mean and original standard deviation is our conservative
ormal fit. As we see in Fig. 2�a� that the conservative normal
DF lies below the empirical CDF for all strains except near the

ails.
A better conservative fit can possibly be obtained by varying

he mean and standard deviation at the same time. Detailed inves-
igation on conservative estimation of CDF for probability of fail-
re calculations is provided in Picheny et al. �27�.

ppendix C. Details of Design Response Surface Fitting
Qu et al. �19� showed that using the combination of face cen-

ered central composite design �FCCCD� and Latin hypercube
ampling �LHS� designs gives accurate results, so we follow the
ame procedure.

The ranges for design variables for DRS are decided as follows.
he initial estimates of the ranges for design variables were taken

rom Qu et al. �19�. When we used these ranges, we found that the
rediction variances at the optimum designs were unacceptably

ig. 8 Material properties �1 and �2 as a function of
emperature

able 9 Accuracies of DRS fitted to PSF and Pf in terms of fou
nd 20%

Mean of
response

RMSE
predictor

e=0% PSF 1.077 4.655�10−3

Pf 8.081�10−4 9.447�10−4

e=10% PSF 0.9694 4.645�10−3

Pf 1.340�10−3 8.281�10−4

e=20% PSF 0.8621 3.610�10−3

Pf 4.103�10−3 7.664�10−4
72 / Vol. 129, MARCH 2007
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large. The ranges for DRS were then reduced by zooming around
the optimum designs obtained from the wider ranges. After zoom-
ing, the prediction variances at the optimum designs were found
to be smaller than the RMSE predictors. The final ranges for re-
sponse surfaces are given in Table 8.

Qu et al. �19� used a fifth-order DRS for the probability of
failure, and found it to be quite accurate. We also use a fifth-order
DRS. A fifth-order response surface in terms of four variables has
126 coefficients. Following Qu et al. �19�, we used 277 design
points, 25 correspond to FCCCD and 252 are generated by LHS.
In addition to response surfaces for probability sufficiency factor,
three more DRS were also fitted to the probability of failure for
comparison purpose. The comparison of the accuracies of DRS
for PSF and DRS for Pf are shown in Table 9. For instance, for
error bound of 20%, the root mean square error predictions of
DRS for PSF and DRS for Pf are 3.610�10−3 and 7.664�10−4,
respectively. Since PSF and Pf are not of the same order of mag-
nitude, we cannot compare these errors directly. One possibility is
to compare the ratios of RMSE and mean of the response. When
we compare the ratios for error bound of 20%, we see that the
ratio of RMSE and mean of the response DRS for Pf is 0.1868,
while the same ratio of DRS for PSF is 0.0042. It is an indication
that DRS for PSF is more accurate than DRS for Pf.

Another way of comparing the accuracies is to calculate
equivalent errors of DRS for PSF to those of DRS for Pf. That is,
the equivalent error in Pf due to error in DRS for PSF can be
compared to the equivalent error in PSF due to error in DRS for
Pf.

The standard errors in calculation of PSF and Pf due to limited
MCS sample size are given in the last two columns of Table 6.
The standard error for Pf is calculated from

�P =
Pf�1 − Pf�
N

�C1�

The standard error in PSF is calculated as illustrated in the
following example. Assume that for calculating a probability of

Table 8 The ranges of variables for the three DRS constructed
for Pf calculation

t1 and t2
�in.�

�1 and �2
�deg�

be=0 0.012–0.017 24–27
be=10% 0.013–0.018 24–26
be=20% 0.015–0.022 22–25

sign variables „t1 , t2 ,�1 and �2… for error bounds, be, of 0, 10%,

Ratio of
RMSE to the

mean of
response

Equivalent
error in Pf

Equivalent
error in PSF

4.332�10−3 5.397�10−7

�	9.447�10−4�
—

1.196 — 4.205�10−2

�
4.655�10−3�
4.792�10−3 4.615�10−6

�	8.281�10−4�
—

0.6180 — 1.862�10−2

�
4.645�10−3�
4.187�10−3 6.308�10−5

�	7.664�10−4�
—

0.1868 — 1.013�10−2

�
3.610�10−3�
r de
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ailure of 1�10−4, we use sample size of 106 in MCS. Then, the
umber of simulations failed is 100 and the standard error for Pf
alculation from Eq. �C1� is 1�10−5. Thus, ten simulations out of
00 represent the standard error. The standard error in PSF can be
pproximated as the difference between the 105th smallest safety
actor and 95th smallest safety factor. A better estimation for PSF
an be obtained by utilizing the CDF of the safety factor S.

The equivalent error in Pf due to the error in DRS for PSF, for
rror bound of 20% for instance, can be approximated as follows.
he mean of response and RMSE prediction of DRS for PSF are
=0.8621 and �=3.610�10−3, respectively. We calculate the Pf

alues corresponding to PSF values of 
-� /2 and 
-� /2 as
.605�10−4 and 3.974�10−4, respectively. The difference be-
ween these two Pf values, 6.31�10−5, gives an approximation
or the equivalent error in Pf. We see that this equivalent error in

f is smaller than the error in DRS for Pf, 7.664�10−4, indicating
hat the DRS for PSF has better accuracy than DRS for Pf. The
quivalent error in PSF due to errors in DRS for Pf can be com-
uted in a similar manner. The equivalent error in PSF �1.013
10−2� due to error in DRS for Pf is larger than the error in DRS

or PSF �3.610�10−3� indicating that the DRS for Pf does not
ave good accuracy. The errors in DRS for Pf are clearly unac-
eptable in view that the required probability of failure is 1
10−4.

DRS for Error Reduction and Quality Control Case. Table 8
howed the ranges of design variables for DRS when only error
eduction was of interest. When quality control is also considered,
e changed the ranges of the design variables. All properties such

s the design of experiments and the degree of polynomial were
ept the same for the new response surfaces; the only change
ade was the ranges of design variables. The new ranges of de-

ign variables used while constructing the new response surfaces
re given in Table 10. Notice that the ranges for laminates thick-
esses are reduced and ranges for ply angles are increased, the
afety of the laminates are further improved by addition of quality
ontrol.

omenclature
�1, �2 � coefficient of thermal expansion along and

transverse to fiber direction
be � bound of error

�h � weight saving �i.e., thickness reduction�
�1, �2, �12 � strains in the fiber direction, transverse to the

fiber direction, and shear strain of a composite
ply, respectively.

E1, E2, G12 � elastic modulus along and transverse to fiber
direction and shear modulus of a composite
ply, respectively.

h � total laminate thickness
�12 � major Poisson’s ratio of a composite ply

Nx and Ny � mechanical loading in x and y directions,
respectively

Pf and PSF � probability of failure and probability suffi-
ciency factor, respectively

2

able 10 Ranges of design variables for the three DRS con-
tructed for probability of failure estimation for the error and
ariability reduction case

t1 and t2
�in.�

�1 and �2
�deg�

e=0 0.008–0.012 27–30

e=10% 0.009–0.014 26–29

e=20% 0.013–0.018 24–27
Radj � adjusted coefficient of multiple determination

ournal of Mechanical Design
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RMSE � root mean square error
SF � safety factor

�, �1, �2 � ply orientation angles
t1, t2 � thickness of plies with angles �1 and �2,

respectively
Tzero � stress free temperature
Tserv � service temperature

Superscripts
U � upper limit
L � lower limit
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