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Abstract Radial basis functions (RBFs) are approximate
mathematical models that can mimic the behavior of fast
changing responses. Different formulations of RBFs can be
combined in the form of an ensemble model to improve pre-
diction accuracy. The conventional approach in constructing
an RBF ensemble is based on a two-step procedure. In the
first step, the optimal values of the shape parameters of
each stand-alone RBF model are determined. In the second
step, the shape parameters are fixed to these optimal val-
ues and the weight factors of each stand-alone RBF model
in the ensemble are optimized. In this paper, simultane-
ous optimization of shape parameters and weight factors is
proposed as an alternative to this two-step procedure for
further improvement of prediction accuracy. Gaussian, mul-
tiquadric and inverse multiquadric RBF formulations are
combined in the ensemble model. The efficiency of the pro-
posed method is evaluated through example problems of
varying dimensions from two to twelve. It is found that the
proposed method improves the prediction accuracy of the
ensemble compared to the conventional two-step procedure
for the example problems considered.
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1 Introduction

Radial basis functions (RBFs) are approximate mathemati-
cal models used as surrogates for fast changing and compu-
tationally expensive simulations. RBFs have many attractive
features including (i) their capability of accurately mod-
elling arbitrary functions, (ii) their capability of handling
scattered training points in multiple dimensions, and (iii)
their relatively simple implementation compared to Krig-
ing and neural networks (Mullur and Messac 2005). Due
to these capabilities, RBFs have been used in many engi-
neering applications. Hardy (1971, 1990, 1992) used RBFs
to predict potential or temperature on the Earth’s surface at
some desired points. Arad et al. (1994) used RBFs for image
warping of facial expressions. Tu and Barton (1997) used
RBFs as surrogates for electronic circuit simulation models.
Zala and Barrodale (1999) used RBFs to warp aerial pho-
tographs to orthomaps. Kremper et al. (2002) used RBFs in
neuro-physic applications to classify neural signals. Papila
et al. (2002) used RBFs for design optimisation of propul-
sion system and turbo-machinery components. Reddy and
Ganguli (2003) used RBFs to predict structural damage in
helicopter rotor blades. Wuxing et al. (2004) used RBFs for
gear fault classification. Sonar et al. (2006) used RBFs for
predicting the surface roughness in a turning process. Zhang
et al. (2006) used RBFs for optimising a microelectronic
packaging system. Young et al. (2007) used RBFs to pre-
dict responses of control systems used in aircraft. Sjögren
(2009) used RBFs for multi-objective design of antennas.

The accuracy of the RBF models depends heavily on
the shape parameters. Several methods have been suggested
in the literature for selecting the shape parameters. Hardy
(1971), Franke (1982), Kansa (1990a, b) and Fasshauer
(2002) proposed empirical formulations for selecting good
values for the shape parameters. Carlson and Foley (1991)
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Table 1 Parameters used in Hartman-3 function, j = 1, 2, 3

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

and then Foley (1994), with an improved procedure, pro-
posed computing the RBF shape parameters by minimizing
mean square error evaluated at a set of test points. As
the use of test points is computationally prohibitive when
the responses are calculated through time-consuming anal-
ysis models (e.g., high-fidelity finite element simulations),
Rippa (1999) proposed computing the RBF shape param-
eters by minimizing mean square of cross validation error
(CVE) evaluated at training points. Evaluation of CVE
becomes computationally costly when the number of train-
ing points is large. In that case, numerically more efficient
techniques (Wang 2004; Roque and Ferreira 2010) can be
used to compute CVE.

Alternative to using a single RBF model, different stand-
alone RBF models can be combined to construct an ensem-
ble model. The idea of using an ensemble model can be
traced to the development of ensembles of neural networks
by Perrone and Cooper (1993) with further refinement by
Bishop (1995). The resulting ensemble model takes advan-
tage of the prediction ability of each stand-alone model to
increase the prediction accuracy. Similar to combining neu-
ral networks in an ensemble model, other surrogate models
such as RBFs can also be combined to form an ensemble
(Tumer et al. 1998; Gutta et al. 2000; Hernàndez-Espinosa
et al. 2004). The conventional approach in constructing an
RBF ensemble is based on a two-step procedure (Gutta et al.
2000). In the first step, the optimal values of the shape
parameters of each RBF model are determined. In the sec-
ond step, the shape parameters are fixed at the previously
found values and the optimal values of the weight factors of
each RBF model are found. Instead of determining the opti-
mal values of shape parameters and weight factors in two
steps, it may be more advantageous to unify these two steps
to perform simultaneous optimization of shape parameters
and weight factors.

In this paper, simultaneous optimization of shape param-
eters and weight factors in ensemble of RBFs is proposed.
Gaussian, multiquadric and inverse multiquadric stand-
alone RBF models are combined in the ensemble. The paper
is organized as follows. Section 2 provides a brief descrip-
tion of RBFs. Section 3 presents the current practice in
choosing shape parameters and weight factors in ensem-
ble of RBFs. A new method for determining the shape
parameters and weight factors is proposed in Section 4.
Six benchmark mathematical problems and two structural
mechanics problems used to measure the accuracy of the
proposed method are presented in Section 5. The numeri-
cal procedure followed in this study is detailed in Section 6.
The results of test problems are presented and discussed
in Section 7, followed by concluding remarks given in
Section 8.

2 Radial basis functions (RBFs)

Radial basis functions were originally developed to approx-
imate multivariate functions based on scattered data
(Buhmann 2003). For a data set consisting of the values of
input variables and response values at N training points, the
true function y(x) can be approximated as

ŷ(x) =
N∑

k=1

λkφ (‖x − xk‖) (1)

where x is the vector of input variables, xk is the value
of x at the kth training point, r = ‖x − xk‖ =√
(x − xk)T (x − xk) is the Euclidean norm representing the

radial distance from the prediction point x to the training
point xk , φ is a radially symmetric basis function, and λk are
the unknown interpolation coefficients. Equation (1) rep-
resents a linear combination of a finite number of radially

Table 2 Parameters used in Hartman-6 function, j = 1, · · ·, 6

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



Simultaneous optimization of shape parameters 971

Fig. 1 The cross-section of the four variable beam problem

symmetric basis functions. The most popular RBF formula-
tions include the Gaussian formulation with φ(r) = e−cr2

,
the multiquadric formulation with φ(r) = √

r2 + c2, and
the inverse multiquadric formulation with φ(r) = 1√

r2+c2

(in all of these formulations c > 0). The shape parameter c
plays an important role in the accuracy of the RBF models.

Given the locations of training points xk and calculated
responses at training points y(xk), the unknown interpola-
tion coefficients λ are found by minimizing the residual R
as

R =
N∑

j=1

[
y

(
xj

) −
N∑

i=1

λiφ
(∥∥xj − xi

∥∥)
]2

(2)

Equation (2) can be expressed in matrix from as

[A] {λ} = {y} (3)

where [A] = [φ‖xj − xi‖], i = 1 ∈ N , j = 1 ∈ N , {λ}T =
{λ1, λ2, ...λN }T , and {y}T = {y(x1), y(x2), ..., y(xN)}T .
The unknown interpolation coefficient vector λ is obtained
by solving (3).

Fig. 2 The clutch assembly (Courtesy of Lee and Kwak 2006)

3 Ensemble of radial basis functions (ERBF)

An ensemble of radial basis functions (ERBF) can be
constructed by using a weighted average of different stand-
alone RBF models as

ŷens (x) =
M∑

i=1

wiŷi (x) (4)

where ŷens is the prediction of the ensemble, M is the num-
ber of stand-alone RBF models used, wi is the weight factor
for the ith stand-alone RBF model and ŷi is the prediction of
the ith stand-alone RBF model. The weight factors satisfy

M∑

i=1

wi = 1 (5)

The conventional approach in constructing an ERBF is
based on a two-step procedure. In the first step, the opti-
mal values of the shape parameters, ci , of each stand-alone
RBF model are determined such that the prediction accuracy
of each stand-alone RBF model is maximized. The shape
parameters are usually found from solving the optimization
problem in (6) so that the mean square cross validation error
is minimized.

Findci, i = 1 ∈ M (6.1)

min MSECV

{
ŷi

(
ci , x

k
)
, y

(
xk

)
, k = 1 ∈ N

}
(6.2)

Here MSECV is the mean square cross validation error
calculated at the training points, and it is calculated from

MSECV = 1

N

N∑

k=1

(
yk − ŷ(k)

)2
(7)

where N is the number of training points, yk is the true
response at xk and ŷ(k) is the corresponding predicted
value from the stand-alone RBF model constructed using
all except the kth training point. Computational cost of
MSECV evaluation increases as the number of training
points increases. An efficient method for cross validation
error computation proposed by Rippa (1999) is used in this
paper so that MSECV is calculated from

MSECV =
N∑

k=1

(
λk/A−1

kk

)2
(8)

Table 3 Mean and standard deviation of the geometric variables

Variable Mean Standard deviation

x1 55.29 0.0793

x2 22.86 0.0043

x3 22.86 0.0043

x4 101.60 0.0793
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Table 4 Summary of training and test data used in each problem

Problem Number of Number of Number of Number of

variables points in a points in a training and

training set test set test set

Branin-Hoo 2 20 1,000 1,000

Camelback 2 20 1,000 1,000

Hartman-3 3 30 1,000 1,000

Four variable beam 4 40 1,000 600

Fortini’s clutch 4 40 1,000 600

Hartman-6 6 60 1,000 400

Extended Rosenbrock 9 110 1,000 100

Dixon-Price 12 182 1,000 25

where λ and A are defined earlier in (3). If needed, numer-
ically more efficient techniques (e.g., Wang 2004; Roque
and Ferreira 2010) can also be used to compute MSECV .

In the second step, the shape parameters of each stand-
alone RBF model are fixed at the previously found optimal
values and the weight factors, wi , for the stand-alone RBF
models are usually chosen such that the mean square cross
validation error is minimized.

Find wi, i = 1 ∈ M (9.1)

min MSECV

{
ŷens

(
wi, ŷi

(
xk

))
, y

(
xk

)
, k = 1 ∈ N

}

(9.2)

s.t.
M∑

i=1

wi = 1 (9.3)

4 Proposed method for constructing an ERBF

The conventional approach in constructing an RBF ensem-
ble has a shortcoming that the shape parameters for stand-
alone RBF models may not be optimal for the ensemble
when stand-alone RBF models are combined to form an
ensemble. The selection of shape parameters together with
the weight factors is a better strategy. That is, the conven-
tional two-step approach can be modified to a unified step
such that the shape parameters as well as weight factors

can be optimized simultaneously. In this study, it is pro-
posed that the shape parameters and weight factors can be
determined by solving the following optimization problem

Find {ci , wi} , i = 1 ∈ M (10.1)

min MSECV

{
ŷens

(
wi, ŷi

(
ci , x

k
))

, y
(
xk

)
, k=1 ∈ N

}

(10.2)

s.t.
M∑

i=1

wi = 1 (10.3)

The proposed method increases the prediction accuracy
of the constructed ensemble at the expense of increased
dimensionality of the optimization problem and computa-
tional cost. The conventional approach requires solution of
M number of one-dimensional optimization problems fol-
lowed by a single M-dimensional optimization problem.
However, the proposed method requires solution of a single
2M-dimensional optimization problem.

The inflation of the computational cost in the proposed
method compared to the conventional approach is mainly
due to the necessity for calculating cross validation errors
repeatedly for each stand-alone RBF model as the shape
parameter changes during optimization. In conventional
approach, on the other hand, the cross validation errors
for each stand-alone RBF model are fixed as the shape
parameters are fixed.

Table 5 RMSECV (average over 1,000 different training sets) and RMSE (average over 1,000 different training and test sets) of stand-alone and
ensemble models for the Branin-Hoo problem

RBF G RBF M RBF I ERBF C ERBF P

RMSECV 1.26(0.39) 1.00(0.38) 1.03(0.40) 0.95(0.41) 0.93 (0.41)

RMSE 1.17(0.37) 1.00(0.67) 1.12(1.35) 1.11(1.31) 1.05(0.64)

The smallest error value in each category is shown in bold for ease of comparison. The numbers in parenthesis are the coefficient of variation of
the corresponding quantity
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Fig. 3 Boxplots of RMSECV over 1,000 training sets for the Branin-
Hoo problem

5 Example problems

Overall eight example problems are used. The first six
examples are widely used mathematical benchmark prob-
lems in the literature. The remaining two examples are
structural mechanics problems, where the responses are
described by analytic functions.

5.1 Mathematical problems

The mathematical benchmark problems are defined by the
following analytical functions:

• Branin-Hoo function (two-variable)

y (x1, x2) =
(
x2 − 5.1x2

1

4π2
+ 5x1

π
− 6

)2

+10

(
1 − 1

8π

)
cos (x1)+ 10 (11)

where x1 ∈ [−5, 10], and x2 ∈ [0, 15].

Fig. 4 Boxplots of RMSE over 1,000 training and test sets for the
Branin-Hoo problem

• Camelback function (two-variable)

y (x1, x2) =
(

4 − 2.1x2
1 + x4

1

3

)
x2

1+x1x2+
(
−4 + 4x2

2

)
x2

2

(12)

where x1 ∈ [−3, 3], and x2 ∈ [−2, 2].
• Hartman function (three and six-variable)

y (x) = −
m∑

i=1

ci exp

⎡

⎣−
n∑

j=1

aij
(
xj − pij

)2

⎤

⎦ (13)

where xi ∈ [0, 1]. Both three-variable (n = 3) and six-
variable (n = 6) models of this function are considered,
where m is taken four. The values of function parame-
ters ci , aij and pij , taken from Goel et al. (2007), are
provided in Tables 1 and 2.

• Extended Rosenbrock function (nine-variable)

y (x) =
m−1∑

i=1

[
(1 − xi)

2 + 100
(
xi+1 − x2

i

)2
]

(14)

where xi ∈ [−5, 10]. Here nine-variable (m = 9) model
of this function is considered.

• Dixon-Price function (twelve-variable)

y (x) = (x1 − 1)2 +
m∑

i=2

i
(

2x2
i − xi−1

)2
(15)

where xi ∈ [−10, 10]. Here twelve-variable (m = 12)
model of this function is considered.

5.2 Structural mechanics problems

The structural mechanics problems are the following beam
and clutch examples:

• Beam design (four-variable)

This four-variable I-beam (see Fig. 1) problem is taken from
Messac and Mullur (2008). The beam is simply supported
at both ends, and is subjected to an applied concentrated
load. The beam length is L = 2 m and the applied load is
P = 600 kN. The critical response for this problem is the
maximum bending stress developed in the beam, which is
calculated from

σmax =
P
2
x1
2

I
, I = 1

12

[
x2x

3
1 − (x2 − x3) (x1 − 2x4)

3
]

(16)

The ranges of the design variables are 0.1m ≤ x1, x2 ≤
0.8m and 0.009m ≤ x3, x4 ≤ 0.05m as specified in Messac
and Mullur (2008).

• Fortini’s clutch (four-variable)
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Table 6 Optimum shape parameters for RBF models and weight factors in ensemble models for the Branin-Hoo problem

Conventional ensemble Proposed ensemble

RBF G RBF M RBF I RBF G RBF M RBF I

Shape parameter 6.07 1.05 1.28 4.98 1.00 1.24

Weight factor 0.11 0.70 0.19 0.13 0.67 0.20

Average values over 1,000 different training sets are provided

The other structural mechanics problem is taken from
Lee and Kwak (2006). This overrunning clutch assembly,
depicted in Fig. 2, is known as Fortini’s clutch. The con-
tact angle y is given in terms of the geometric variables x1

through x4 as

y = arccos

[
x1 + 0.5 (x2 + x3)

x4 − 0.5 (x2 + x3)

]
(17)

The problem specified in Lee and Kwak (2006) is a reli-
ability assessment problem for the clutch. The mean and
standard deviations of the geometric variables are provided
in Table 3. The ranges for these variables are taken as ± five
times standard deviations away from the mean values.

6 Numerical procedure

For all example problems, Latin hypercube sampling (LHS)
technique is used to select the locations of the training points
such that the minimum distance between the design points is
maximized. The MATLAB® routine “lhsdesign” and “max-
imin” criterion with a maximum of 100 iterations is used to
obtain the locations of the training points. Random sampling
is used to generate 1,000 test points for a specified training
set.

To reduce the effect of random sampling, a varying
number of different training sets are used for the example
problems (see the last column of Table 4). The low com-
putational cost allowed considering repetitive training and
test sets. Hence, all the stand-alone RBF models and ensem-
ble models are constructed multiple times with the error
estimate being the average value corresponding to multiple

versions (replicates) of the same model. In addition, for each
training set, a different set of test points is used to reduce
the bias in error estimation. To keep the computational cost
affordable, the number of training sets is reduced as the
number of variables is increased. There exists no globally
accepted method to determine the number of training points.
The most commonly followed two approaches are: (i) using
ten times the number of variables, and (ii) using twice the
number of coefficients in a full quadratic PRS. In this work,
the number of points corresponding to both approaches is
computed and the larger value is used.

The shape parameters of stand-alone RBFs and weight
factors in the ensemble are calculated through optimiza-
tion where the “fmincon” function (optimizer) of MATLAB
based on sequential quadratic programming algorithm is
used. Since fmincon is a gradient-based optimizer and the
objective function being minimized is not necessarily con-
vex, a multiple starting point strategy is used to increase the
probability for the solution to converge to a global optimum.

7 Results and discussion

As noted earlier, the shape parameters of stand-alone RBFs
and the weight factors in the ensemble model are selected
such that the mean square cross validation error is mini-
mized. Therefore, the root mean square error (RMSE) is
chosen as the error metric of interest. The error values are
normalized with respect to the most accurate stand-alone
RBF model to provide a better comparison of different mod-
els. The stand-alone RBF models and ERBF models are
designated using the following abbreviated symbols. The

Table 7 p-values of the two-sample t-test to determine the significance of the differences between the optimum values of the shape parameters
and the weight factors for RBF models for the conventional ensemble and the proposed ensemble

RBF G RBF M RBF I

Shape parameter 1.89 × 10−14 0.584 0.744

Weight factor 0.051 0.174 0.911
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Fig. 5 Boxplots of shape parameters of stand-alone RBF models over
1,000 training sets for the Branin-Hoo problem

stand-alone RBF models with Gaussian, multiquadratic and
inverse multiquadratic formulations are denoted by RBF G,
RBF M and RBF I, respectively. The ERBF model gen-
erated using conventional two-step procedure is denoted
by ERBF C. The ERBF model generated using proposed
method is denoted by ERBF P.

7.1 Branin-Hoo problem

Table 5 provides the root mean square cross validation error
(RMSECV ) and RMSE (calculated at test points) of all
stand-alone RBF models as well as ERBF models for the

Fig. 6 Boxplots of weight factors of stand-alone RBF models over
1,000 training sets for the Branin-Hoo problem

Branin-Hoo problem. The most accurate model in terms
of RMSECV metric is ERBF P (the proposed ensemble),
whereas the most accurate model in terms of RMSE metric
is RBF M, and ERBF P is the second most accurate model.
The proposed ensemble, ERBF P, is more accurate than the
conventional ensemble, ERBF C, in terms of both RMSECV

and RMSE metrics. The accuracy improvement that can be
obtained using the proposed ensemble instead of the con-
ventional ensemble is 1.6 % in terms of RMSECV and 5.6 %
in terms of RMSE.

The mean and the coefficient of variation (COV) values
in Table 5 are calculated based on 1,000 different training
and test sets, so the mean values over the selected popula-
tion sample have COV of 1/

√
1000 times that of the native

COV. For instance, the COV of the mean RMSECV for
RBF G model is 0.39/

√
1000 = 0.012. This number pro-

vides an estimate of the standard error in the prediction of
mean GMSE over 1,000 training sets, which is fairly small
in this case.

Figures 3 and 4 show the boxplots for the error met-
rics RMSECV and RMSE, respectively, corresponding to
the stand-alone and ensemble models for the Branin-Hoo
problem. The boxplots provide a graphical depiction of how
the normalized value of each metric varies over the range of
training and test sets used. The bottom and top of each box
represent the lower and upper quartile values, respectively,
with the interior line representing the median. The broken
line (whiskers) extending from each end of the box indi-
cates the extent of the remaining data relative to the lower
and upper quartiles. Here, the maximum whisker length
is set at 1.5 times the inter-quartile range, and the data
beyond this limit (if present) are characterized as outliers
and represented by the + symbols.

Table 6 presents the average values (over 1,000 dif-
ferent training sets) of the optimum values of the shape
parameters of the RBF models and the weight factors in
the ensemble models. To determine whether the difference
between the optimal values of the shape parameters and
the weight factors in the ensemble models are significant
for the conventional ensemble and the proposed ensemble,
independent two-sample t-test is performed. The p-values
are given in Table 7. The critical value of the p-value is
typically chosen as 0.05. If the p-value is smaller than the
critical value, then the difference is determined to be sig-
nificant; otherwise the difference is not significant. For the
optimal values of the shape parameters, Table 7 shows that
the difference for the RBF G is significant, whereas the dif-
ferences for the RBF M and RBF I are not significant. For
the weight factors in the ensemble models, Table 7 shows
that the differences are not significant for all the RBF mod-
els. This indicates that the conventional two-step ensemble
construction provides near optimal solutions. Similarly, the
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Table 8 RMSECV (average over 1,000 different training sets) of stand-alone and ensemble models for all example problems

RBF G RBF M RBF I ERBF C ERBF P

Branin-Hoo 1.26 1.00 1.03 0.95 0.93

Camelback 1.31 1.00 1.08 0.94 0.93

Hartman-3 1.00 1.11 1.02 0.96 0.95

Four variable beam 1.26 1.00 1.07 1.00 0.99

Fortini’s clutch 1.21 1.00 1.06 1.00 0.99

Hartman-6 1.00 1.06 1.03 0.99 0.99

Extended Rosenbrock 1.32 1.00 1.14 1.00 0.99

Dixon-Price 1.13 1.00 1.05 1.00 0.99

The smallest error value in each category is shown in bold for ease of comparison

optimum values of the weight factors in the ensemble mod-
els are slightly different for the conventional ensemble and
proposed ensemble. Boxplots for the shape parameters and
weight factors, respectively, corresponding to the stand-
alone and ensemble models for the Branin-Hoo problem are
given in Figs. 5 and 6.

7.2 Other example problems

Table 8 provides RMSECV of all stand-alone RBF models
as well as ERBF models for all the example problems con-
sidered. RMSECV of both ERBF models are smaller than
RMSECV of all stand-alone RBF models, and RMSECV of
ERBF P (the proposed ensemble) is smaller than that of
ERBF C (the conventional ensemble). Amongst the stand-
alone RBF models, RBF M is the most accurate model for
six example problems, while RBF G and RBF I models are
the most accurate models for one example problem each. In
addition, it is observed that the accuracy gain due to the use
of ensemble models is larger for low dimensional problems
than high dimensional problems.

Table 9 presents RMSE of all stand-alone RBF mod-

els as well as ERBF models for all the example problems

considered. It is found that the proposed ensemble is usu-

ally the second most accurate model whereas the most

accurate model was one of the stand-alone RBF models

(RBF M for six example problems, RBF G and RBF I

for one example problem each). This is the major benefit

of using ensemble models over stand-alone models as the

ensemble provides protection against using a poor stand-

alone model. Comparison of results presented in Tables 8

and 9 reveals that the RMSECV performs well for rank-

ing the approximation models according to their prediction

accuracy for a set of stand-alone models, but it does not per-

form well if the ensemble models are added to the set. This

explains why ERBF models that outperform stand-alone

RBF models in terms of RMSECV does not necessarily

outperform stand-alone models in terms of RMSE. Box-

plots for the correlation coefficient between RMSECV and

RMSE for Branin-Hoo and Hartman-6 problems (chosen as

representative examples) are shown in Fig. 7.

Table 9 RMSE (average over 1,000 different training and test sets) of stand-alone and ensemble models for all example problems

RBF G RBF M RBF I ERBF C ERBF P

Branin-Hoo 1.17 1.00 1.12 1.11 1.05

Camelback 1.21 1.00 1.13 1.08 1.06

Hartman-3 1.00 1.11 1.03 1.02 1.02

Four variable beam 1.16 1.00 1.04 1.01 1.01

Fortini’s clutch 1.16 1.00 1.05 1.01 1.01

Hartman-6 1.00 1.05 1.03 1.01 1.01

Extended Rosenbrock 1.32 1.00 1.14 1.00 1.00

Dixon-Price 1.14 1.00 1.06 1.00 0.99

The smallest error value in each category is shown in bold for ease of comparison
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Fig. 7 Boxplots of correlation
coefficient between RMSECV

and RMSE over 1,000 training
and test sets for the a
Branin-Hoo and b Hartman-6
problems

a b

8 Concluding remarks

The conventional approach in constructing an ensemble
model is based on a two-step procedure. In the first step,
the optimal values of the model parameters for each stand-
alone model are determined. In the second step, the model
parameters are kept frozen to these optimal values and the
weight factors of each stand-alone model in the ensemble
model are optimized. In this paper, these two steps are uni-
fied and simultaneous optimization of model parameters
and weight factors is proposed. Ensemble of RBF models
with Gaussian, multiquadric and inverse multiquadric RBF
formulations are considered, and the effectiveness of the
proposed method is tests through example problems of vary-
ing dimensions. From the results of this study, the following
conclusions could be drawn.

• The prediction accuracy of the proposed ensemble con-
struction method was better than or equal to that the
conventional two-step ensemble construction approach
for all problems in terms of both cross-validation error
and test point errors.

• The proposed method increased the prediction accu-
racy of the constructed ensemble at the expense of
increased dimensionality of the optimization problem
and computational cost. The conventional approach
required solution of M number of one-dimensional opti-
mization problems followed by a single M-dimensional
optimization problem, where M is the number of stand-
alone models in the ensemble. However, the proposed
method required solution of a single 2M-dimensional
optimization problem. The main computational cost
driver was the necessity of calculating cross validation
errors repeatedly for each stand-alone RBF model as
the shape parameter changed during optimization. In
conventional approach, on the other hand, the cross val-
idation errors for each stand-alone RBF model were

fixed as the shape parameters were fixed at the second
step.

• When the prediction accuracy was evaluated using
cross-validation errors (RMSECV metric), the most
accurate model was the proposed ensemble, followed
by the conventional ensemble. The accuracy gain over
the most accurate stand-alone model ranged from 1 %
to 7 % for the example problems considered. This accu-
racy gain can be increased by increasing the number of
stand-alone models in the ensemble (Acar and Solanki
2009). RBF models with linear, cubic, thin-plate spline
and compactly supported formulations can be added to
the ensemble.

• The reduction of RMSECV obtained from ERBF over
stand-alone RBF was larger for low dimensional prob-
lems than high dimensional problems. The error reduc-
tion was 7 % for two-variable problems, 5 % for
three-variable problems and only 1 % for four and
larger variable problems. Therefore, it could be con-
cluded that the additional computational cost of the
proposed ERBF construction procedure is more legiti-
mate for low dimensional problems, and the use of the
best stand-alone RBF model is more suitable for high
dimensional problems.

• When the prediction accuracy was evaluated using error
at test points (RMSE metric), the most accurate model
was usually one of the stand-alone RBF models. The
proposed ensemble was usually the second most accu-
rate model. The reason for this result was that the
capability of RMSECV for ranking the approximation
models according to their prediction accuracy was sat-
isfactory for a set of stand-alone models, but not that
satisfactory if the ensemble models are added to the set.

• Even though the proposed ensemble was usually the
second most accurate model, it could protect against
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using the poor RBF formulation (e.g., using multi-
quadratic formulation instead of Gaussian formulation
for the three-variable Hartman problem) and thereby
leading to a robust approximation.

• The differences between the optimum values of the
shape parameters for RBF models for the conventional
ensemble and proposed ensemble were not substantial.
This indicates that the conventional two-step approach
provides near optimal solutions. Similarly, the optimum
values of the weight factors in the two ensemble models
were only slightly different.

• Amongst the stand-alone RBF models, RBF with multi-
quadratic formulation was found to be the most accurate
model for six example problems, while RBF with Gaus-
sian formulation and RBF with inverse multiquadratic
formulation were the most accurate models for one
example problem each.
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