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The stochastic uncertainties associated with the material, process and product are represented and
propagated to process and performance responses. A finite element-based sequential coupled process–
performance framework is used to simulate the forming and energy absorption responses of a thin-walled
tube in a manner that both material properties and component geometry can evolve from one stage to the
next for better prediction of the structural performance measures. Metamodelling techniques are used to
develop surrogate models for manufacturing and performance responses. One set of metamodels relates
the responses to the random variables whereas the other relates the mean and standard deviation of the
responses to the selected design variables. A multi-objective robust design optimization problem is formu-
lated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and
energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and
augmented robust optimization problems.

Keywords: metal forming simulation; crash simulation; process–performance simulation; robust design
optimization

1. Introduction

Traditionally, the effects of manufacturing process on the component geometry and material
microstructure/state are ignored. However, studies show that these effects can influence the over-
all behaviour of a structural component (Oliveira et al. 2006; Najafi, Marin, and Rais-Rohani,
2012). One way to address this concern is to perform sequential coupled process–performance
simulations whereby both material properties and component geometry can evolve from one
stage to the next for a more accurate prediction of the structural performance measures (Najafi,
Rais-Rohani, and Hammi 2011). Therefore, the characterization tests are performed on the stock
material and the evolution of material microstructure is tracked by mapping the material state
variables from manufacturing to performance simulation.

Previous studies on coupled process–performance simulations have considered components
made of different materials such as aluminium (Kaufman et al. 1998; Gholipour, Worswick,
and Oliveira 2004; Williams et al. 2005), steel (Dutton et al. 2001; Simunovic, Shaw, and Ara-
mayo 2001; Simunovic and Aramayo 2002) and magnesium (Najafi, Rais-Rohani, and Hammi
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Engineering Optimization 147

2011; Najafi and Rais-Rohani 2012) alloys in different crush tube geometries. Both experimental
(Grantab 2006) and computational studies have shown that the manufacturing process can affect
the energy absorption behaviour of crush tubes. The main material history effect considered in
these studies is the plastic strain in each element that updates the original yield point of the
material.

Recently, Najafi and Rais-Rohani (2012) performed sequential coupled process–performance
simulation and multi-objective optimization of thin-walled tubes. However, that study did not
consider the presence or the effect of uncertainties associated with the manufacturing process.
As an extension of that research, this article examines the representation of uncertainties associ-
ated with the geometric size of the forming tools, blank thickness and material properties, and
their propagation to both manufacturing responses and crush behaviour. A robust optimization
technique is used to optimize the process–performance design optimization in the presence of
uncertainties.

Since forming, springback and crush simulations are computationally expensive, surrogate
models are developed prior to solving the selected optimization problems. Two different sets
of metamodels are constructed. The first set relates the responses to the random variables and
is used within a Monte Carlo framework to compute the means and standard deviations of the
responses, whereas the second set relates the means and the standard deviations of the responses
to the design variables. The second set of metamodels is used within a multi-objective genetic
algorithm framework to solve the coupled process–product design optimization problems under
uncertainty.

2. Coupled simulations

A sequential coupled process–performance simulation framework was recently developed (Najafi
and Rais-Rohani 2012) with Abaqus/Explicit (version 6.10) for the deep drawing analysis,
Abaqus/Standard (version 6.10) for the springback analysis under isothermal condition, fol-
lowed by Abaqus/Explicit simulation for the crush analysis. Figure 1 illustrates the sequential
coupled simulation approach for a double-hat tube modelled by forming and joining two identical
single-hat sections that form a symmetric cross-section.

Figure 1. Coupled process–performance simulations of the double-hat crush tube.
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148 A. Najafi et al.

In the forming simulation, the contact surfaces are defined using the penalty formulation with the
friction coefficient serving as a manufacturing process parameter for an equivalent representation
of both surface roughness and draw beads. Punch velocity is held constant in this analysis. Rupture
and thinning are the two manufacturability responses of interest in the sheet-forming process.

Rupture is calculated by comparing the principal major and minor plastic strains in each finite
element with the forming limit diagram (FLD) (Lee et al. 2008). The overall measure of the
rupture response is calculated as:

R =

⎧⎪⎨
⎪⎩

n∑
i=1

R2
i =

n∑
i=1

(εi
1 − φ(εi

2))
2 εi

1 > φ(εi
2)

0 εi
1 ≤ φ(εi

2)

(1)

where φ(εi
2) is the equation representing the FLD curve with εi

1 and εi
2 as the principal major and

minor strains, respectively, at each integration point through the thickness. Parameter n represents
the total number of elements.

The overall measure of thinning is calculated as:

T =
n∑

i=1

T 2
i =

n∑
i=1

(
ti − to

to

)2

(2)

where to and ti are the initial (blank) and final (component) shell thicknesses, respectively.
Once the deep-drawing operation is completed and the tools are removed, the formed part will

have a tendency to change its geometry in what is commonly called springback. The springback
analysis is performed by considering the component geometry from the deep drawing simulation
together with the accompanying residual stresses, effect of the contact condition and the dynamic
effects of deep drawing. A single springback metric is defined in terms of deviation angle as:

S = Max(
√

(Xi − Xo)2 + (Yi − Yo)2 + (Zi − Zo)2)

H
(3)

where X, Y and Z are the nodal coordinates, with subscripts i and o representing the values at the
beginning and the end of springback simulation, respectively, and H represents the height of a
single hat section.

Following the manufacturing process simulations, the two hat sections are joined together
assuming a perfect connection with the excess tabs trimmed as shown in Figure 1. The flanges are
joined using bond contact formulation. Component mass, M, is found by adding the contributions
of all the elements in the tube model at their respective post-forming thickness values.

For crush simulation, the multicorner tube is held fixed at one end while it is loaded at the
other end by a rigid wall moving at a constant velocity. The tube’s initial state in this simulation
is defined based on the outputs of the previous simulations. The maximum crush force, Pmax, is
calculated from the contact force history of the rigid wall during the crush simulation while the
mean crush force is derived as (Najafi and Rais-Rohani 2011):

Pm = 1

δeff

∫ t

0
F(t)D(t) dt (4)

where F(t) is the instantaneous contact force, D(t) is the axial displacement of the rigid wall, and
the effective crush distance is set at δeff = 125 mm or half the tube length.

The material is modelled as bi-linear elastic–plastic with isotropic hardening. Rate dependency
is ignored in this study to reduce the computational complexity. The nominal values are taken to
be approximately those for AZ31 magnesium alloy sheet, with elastic modulus = 45 GPa, tangent
modulus = 21 GPa, yield stress = 150 MPa, Poisson’s ratio = 0.33 and density = 1.738 kg/m3.
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Engineering Optimization 149

3. Design optimization problems

With the goal of minimizing the sensitivity of the tube design to the manufacturing-induced
uncertainties, a multi-objective robust design optimization problem is formulated as:

Find x

Min {Var(R), Var(T), Var(S), Var(Pm), Var(Pmax), Var(M)}
s.t. xL ≤ x ≤ xU

(5)

where x represents the vector of design variables and Var(.) is the variance of the designated
random process or performance response. The lower and the upper bounds for the design variables
are denoted by xL and xU, respectively. The mean values of seven random variables that control
the manufacturing process and the tube geometry (Figure 1) are used as the design variables with
bounds defined in Table 2 (see below).

Table 1 shows, in three separate groups, 12 random variables and the corresponding mean and
standard deviation (SD) values.All the random variables are assumed to follow a truncated normal
distribution. FLD-a and FLD-b denote the coefficients (slope and intercept) of a linear equation
describing the lower boundary of FLD (Hu, Yao, and Hua, 2008; Wei and Yuying 2008).

A deterministic variant of Equation (5) with all the uncertainties ignored is also considered,
where the variance terms are replaced by the mean values of the designated responses as:

Find x

Min {R̄, T̄ , S̄, −P̄m, P̄max, M̄}
s.t. xL ≤ x ≤ xU

(6)

The combination of the previous two optimization problems is also considered. The so-called
augmented robust design problem is formulated as:

Find x

Min {R̄, T̄ , S̄, −P̄m, P̄max, M̄, Var(R), Var(T), Var(S), Var(Pm), Var(Pmax), Var(M)}
s.t. xL ≤ x ≤ xU

(7)

Equations (5)–(7) are solved following the determination of accurate global response surface
models as discussed in the next section.

Table 1. The random variables and associated statistical properties.

Group Random variable Mean SD

Product Width (mm) 55 0.55
Height (mm) 27.5 0.275
Corner radius (mm) 6 0.30
Blank thickness (mm) 2 0.06

Process Holding force (kN) 30 0.75
Punch velocity (m/s) 6 0.3
Friction coefficient 0.225 0.0405
FLD-a 0.7579 0.038
FLD-b 0.007 0.00021

Material Young’s modulus (GPa) 45 1.35
Yield stress (MPa) 150 12
Tangent modulus (GPa) 21 0.63
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150 A. Najafi et al.

4. Response approximation

Although direct integration of metal forming and crush simulations is possible, it is computation-
ally prohibitive within an optimization framework as numerous simulations would be required.
To alleviate the computational burden, metamodelling techniques are used.

Two different sets of metamodels are developed. The first set, called analysis metamodels
(AMMs), is constructed to relate the responses to the random variables. The AMMs are used
within a Monte Carlo framework to compute the mean and the standard deviation values of the
corresponding responses. The second set of metamodels, called design metamodels (DMMs), is
generated to relate the mean and the standard deviation values of the responses to the design
variables. The terminology of ‘analysis metamodel’ and ‘design metamodel’ is borrowed from
the work of Qu et al. (2003).

The metamodelling techniques considered include polynomial response surface approximations
(PRS) (Myers and Montgomery 2002), stepwise regression (SWR) (Myers and Montgomery
2002), radial basis functions, RBF (Buhmann 2003, Mullur and Messac 2005), kriging (KR)
(Sacks et al. 1989; Martin and Simpson 2005) and the optimized ensemble of metamodels (ENS)
(Acar and Rais-Rohani 2008).

The specific metamodels used here include linear PRS and SWR (PRS1 and SWR1), quadratic
PRS and SWR (PRS2 and SWR2), multiquadric RBF (RBFM), inverse multiquadric RBF (RBFI),
KR with Gaussian correlation plus constant trend (KR0) and linear trend (KR1), as well as ENS
representing a weighted average of the aforementioned eight models (i.e. PRS1, SWR1, PRS2,
SWR2, RBFM, RBFI, KR0 and KR1). The weight factors in ENS are selected such that the root
mean square of the leave-one-out cross-validation error is minimized.

4.1. Analysis metamodels

To develop theAMMs, 120 training points (10 times the number of random variables in Table 1) are
generated using the Latin hypercube sampling (LHS) technique. The sampling bounds for the first
six random variables are taken as the lower bounds in Table 2 minus three standard deviations and
the upper bounds in Table 2 plus three standard deviations, whereas for the friction coefficient, plus
or minus two standard deviations are used to preserve positive values. The sampling bounds for
the other five random variables are taken as the mean plus and minus three standard deviations. In
addition to the training points, 20 independent test points are generated using LHS for metamodel
accuracy assessment. The minimum and the maximum values of the responses at the training and
test points in the random space are provided in Table 3. The symbols introduced in Equations (1)–
(4) are used to identify the responses in column 1 of Table 3 and the subsequent tables.

For rupture and thinning, the response values shown in Table 3 change a few orders of magnitude
from minimum to maximum, which can have a negative impact on metamodel accuracy. One way
to overcome this challenge is to transform the response values prior to the fitting process. Hence,

Table 2. The design variables and associated properties.

Design variable Property Lower bound Nominal Upper bound

x1 Mean width (mm) 40 55 70
x2 Mean height (mm) 20 27.5 35
x3 Mean corner radius (mm) 4 6 8
x4 Mean blank thickness (mm) 1.5 2 2.5
x5 Mean holding force (kN) 10 30 50
x6 Mean punch velocity (m/s) 2 6 10
x7 Mean friction coefficient 0.10 0.225 0.35
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Engineering Optimization 151

Table 3. Bounds of the responses at the random-space training and test points.

Response Min. at training pts Max. at training pts Min. at test pts Max. at test pts

R 146.5 7966.8 427.4 3401.2
T 0.0956 682.3 14.4 267.0
S (deg.) 0.12 4.57 0.15 2.46
Pm (kN) 19.0 107.4 24.6 74.0
Pmax (kN) 56.4 229.8 71.1 175.8
M (kg) 0.095 0.334 0.125 0.267

for rupture, thinning and springback, the metamodels are fitted to log 10 of the actual responses.
For the other three responses in Table 3, the actual values are used.

The accuracies of the metamodels are evaluated using the root mean square error (RMSE) of
the responses at the test points. The RMSE values are normalized with the range (maximum–
minimum) of the responses evaluated at the test points. The most accurate (AMM1) and second
most accurate (AMM2) metamodel types and their corresponding RMSE values are listed in
Table 4. The level of accuracy is very good for most responses and satisfactory for the springback
response, which can be more drastically affected as a result of changes in the random variables.
It is worth noting that the springback response is highly sensitive to the initial state of stress
mapped from the deep-drawing simulation. The small time steps as well as the computational
artefacts such as dynamic effects, friction and number of integration points in the explicit solvers
introduce noisy results which may cause poor stress distribution and consequently affect the
springback response (Xu et al. 2004). These factors contribute to the higher-than-average error in
the springback metamodels.

Through a Monte Carlo simulation (MCS) framework, the AMM1 of each response is used to
sample the space of 12 random variables. Using a sample size of 10,000 with the seven design
variables at their nominal values in Table 2, the mean, standard deviation (SD) and coefficient of
variation (CoV) of the predicted responses are found to be those given in Table 5. Among all the
responses, thinning has the largest CoV as it is affected by geometric and material uncertainty,
while mass has the smallest CoV for the nominal case.

Table 4. Error assessment of the analysis metamodels.

(RMSE/Range) × 100

Response AMM1 AMM2 AMM1 AMM2

R ENS KR1 4.0 4.6
T KR1 ENS 5.6 6.7
S SWR1 KR1 17.8 19.5
Pm ENS KR1 7.8 7.9
Pmax KR1 ENS 2.5 3.2
M PRS2 ENS 0.5 0.5

Table 5. Random properties of responses with the design variables at their nominal
values.

Property R T S (deg.) Pm (kN) Pmax (kN) M (kg)

Mean 1240.5 84.78 1.690 50.92 126.4 0.1983
SD 169.2 22.52 0.234 1.93 6.07 0.0061
CoV (%) 13.6 26.6 13.8 3.8 4.8 3.1
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152 A. Najafi et al.

4.2. Design metamodels

The DMMs are constructed to relate the mean and the standard deviation values of the
responses to the seven design variables identified in Table 2. The advantage of using DMMs
is two-fold: (1) the noise induced by MCS is eliminated; and (2) the solution efficiency is
increased.

The DMMs are generated using the same procedure as that for the AMMs except that the
training points are in the design-variable space, and uncertainty analysis is performed for each
training point using AMM1 found previously for each response. Since the uncertainty analysis is
relatively inexpensive with the presence of the AMMs, the number of training points is chosen
as 100. The sampling bounds given in Table 2 are used in this analysis. After generating the
metamodels, their accuracy is evaluated at 20 test points.

The bounds obtained for the mean and standard deviation values at the design-space training
and test points are provided in Tables 6 and 7, respectively.

The prediction accuracy of the DMMs is measured using the RMSE of the responses evaluated
at 20 test points. The most accurate (DMM1) and second most accurate (DMM2) metamodel
types and their normalized RMSE values are given in Table 8. The metamodels generated for the
means and standard deviations of the process and performance responses have acceptable levels
of accuracy.

5. Results and discussion

To better explore the influence of underlying uncertainties in material, process and product as
defined in Table 1, the results of a sensitivity analysis are presented and discussed first. This is
followed by presentation of the solutions to the multi-objective optimization problems in Equa-
tions (5)–(7) and their comparison in the context of process–performance optimization under
uncertainty.

Table 6. Bounds of the response means at the design-space training and test points.

Response Min. at training pts Max. at training pts Min. at test pts Max. at test pts

R 359.4 4130.6 517.9 3020.4
T 1.291 900.2 8.139 450.2
S (deg.) 0.280 5.496 0.360 3.817
Pm (kN) 35.7 68.4 40.3 65.8
Pmax (kN) 71.2 198.2 77.4 168.7
M (kg) 0.112 0.305 0.121 0.258

Table 7. Bounds of the response standard deviations at the design-space training and test points.

Response Min. at training pts Max. at training pts Min. at test pts Max. at test pts

R 42.7 574.9 66.9 417.5
T 0.650 263.4 3.417 121.3
S (deg.) 0.043 1.122 0.063 0.709
Pm (kN) 1.62 4.26 1.67 4.29
Pmax (kN) 4.07 7.91 4.83 7.17
M (kg) 0.0046 0.0076 0.0047 0.0074
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Table 8. Error assessment of the design metamodels.

(RMSE/Range) × 100

Response DMM1 DMM2 DMM1 DMM2

Metamodels constructed for the mean values of the responses
R ENS KR1 1.0 1.0
T KR1 ENS 0.9 1.2
S PRS2 SWR2 0.1 0.1
Pm ENS KR1 1.6 1.7
Pmax ENS PRS2 0.6 0.7
M PRS2 SWR2 0.1 0.1

Metamodels constructed for the standard deviations of the responses
R ENS KR1 3.3 3.4
T KR1 ENS 1.3 1.3
S PRS2 SWR2 2.5 2.5
Pm KR0 ENS 10.8 11.1
Pmax KR0 ENS 10.7 11.5
M PRS1 SWR1 1.5 1.5

5.1. Sensitivity analysis

The design variables in Table 2 are normalized in the scale of −1 and +1, and the response values
are normalized with the range of response values (i.e. the difference between the maximum and
the minimum of each response) in the training points. A linear PRS is fitted to the normalized
responses in terms of the normalized design variables. The coefficients of the linear terms are
treated as the sensitivity of the responses to the design variables. The sensitivity plots are shown
in Figures 2–7. In brief, the design variable ID numbers 1–7 refer to the tube width, height, corner
radius, blank thickness, holding force, punch velocity and friction coefficient, respectively.

Figure 2 shows that the most important design variable affecting the mean and standard deviation
of rupture is the corner radius, which controls the amount of plastic flow in deep drawing. As the
corner radius increases, rupture decreases. The coefficients in Figure 2 should be interpreted as
follows. For example, if the corner radius is increased by 10% from its nominal value, rupture
will reduce by 0.02 times the range of response values at the training points (see Table 6 for the
range). Figures 2 and 3 show that the sensitivities of rupture and thinning are fairly similar.

Figure 4 shows that the most influential design variables for the mean and standard deviation
of springback are the height, corner radius and blank thickness, as they affect strongly the stress
distribution state in the tube. The mean springback as well as its variance can be reduced by
decreasing the height and the corner radius and by increasing the thickness. Decreasing the

Figure 2. Sensitivities of the rupture (R) statistical properties to design variables.
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154 A. Najafi et al.

Figure 3. Sensitivities of the thinning (T ) statistical properties to design variables.

Figure 4. Sensitivities of the springback (S) statistical properties to design variables.

Figure 5. Sensitivities of the mean crush force (Pm) statistical properties to design variables.

height reduces the stress-affected plastic zones in the material. As the corner radius decreases, the
localized plastic deformation becomes more confined to the corner regions. The increase in blank
thickness also reduces the amount of springback due to increase in plastic deformation through
the tube wall.

Figures 5–7 show that the sensitivities of the mean crush force, the maximum crush force and
mass are fairly similar. Since mass is not a function of the manufacturing process parameters, the
plots in Figure 5 only show the influence of design variables 1–4. The most significant design
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Engineering Optimization 155

Figure 6. Sensitivities of the maximum crush force (Pmax) statistical properties to design variables.

Figure 7. Sensitivities of the mass (M) statistical properties to design variables.

variable for these responses is found to be the thickness. If it is increased, all of these responses
increase significantly. This is not surprising as thickness has a significant influence on the energy
absorption and mass of thin-walled tubes.

Although for the manufacturing responses the approach used here provides reasonable estimates
of the relative importance of each design variable, for the performance responses, a more accurate
procedure would involve the use of global sensitivity equations (Sobieszczanski-Sobieski 1990).

5.2. Robust multi-objective optimization

The multi-objective robust optimization problem in Equation (5) was solved by using the built-in
function ‘gamultiobj’ of MATLAB Global Optimization Toolbox, which is an implementation of
the multi-objective genetic algorithm (MOGA) (Fonseca and Fleming 1993; MATLAB 2012).

For this problem, the optimizer was able to find 37 points on the six-dimensional Pareto frontier,
as listed in Table 9. If the Pareto set is sorted from the best to worst for each objective, the order
for the top five best designs in each category would be that shown in Table 10. For example, the
best design for rupture and thinning appears to be the one at Pareto point 11, with 22 being the
best for springback, 3 for the mean crush force, 5 for the maximum crush force, and 2 for mass.
In about 25% of the Pareto points in Table 9, a match is seen between rupture and thinning. This
is reasonable considering the sensitivity charts in Figures 2 and 3. However, there is very little
agreement in the other cases, which is to be expected in a multi-objective optimization problem.
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Table 9. Reduced set of design points on the Pareto frontier of the robust design problem.

Corner Blank Holding Punch SD
Pareto Width Height radius thickness force velocity Friction
point (mm) (mm) (mm) (mm) (kN) (m/s) coeff. R T S (deg.) Pm (kN) Pmax (kN) M (kg)

1 49.6 21.6 4.36 2.49 50.0 9.29 0.127 521.6 84.1 0.044 1.95 5.61 0.0052
2 40.8 20.3 6.77 1.61 41.7 4.76 0.330 123.8 13.0 0.335 1.75 4.56 0.0046
3 63.7 22.0 6.29 2.37 30.7 7.62 0.236 195.6 24.4 0.142 1.31 5.20 0.0060
4 68.4 32.5 7.18 2.33 30.5 3.82 0.157 96.5 8.9 0.264 1.67 7.61 0.0074
5 62.0 21.4 4.16 1.62 17.8 3.83 0.334 183.6 25.8 0.122 2.25 3.97 0.0058
6 67.3 22.8 6.91 1.92 49.5 3.78 0.142 83.9 5.4 0.240 4.31 5.81 0.0063
7 69.4 34.3 7.03 2.03 28.0 7.33 0.121 114.6 14.3 0.360 1.53 6.99 0.0076
8 44.8 22.0 4.34 2.43 48.4 9.57 0.221 639.4 132.4 0.053 1.87 5.86 0.0050
9 68.3 20.7 4.27 2.39 49.7 9.69 0.319 591.3 173.6 0.046 2.76 5.39 0.0061
10 47.5 20.7 4.38 2.38 43.5 9.39 0.257 592.5 113.9 0.060 1.82 5.68 0.0050
11 68.3 22.9 7.95 1.54 24.5 3.40 0.124 35.9 0.7 0.508 2.36 5.34 0.0063
12 66.1 33.1 7.05 1.59 23.0 6.37 0.257 101.6 14.9 0.682 1.57 6.14 0.0073
13 68.5 25.3 6.62 1.91 49.8 3.83 0.166 96.8 8.3 0.228 4.61 6.09 0.0066
14 58.7 22.4 4.27 1.81 20.7 7.44 0.299 300.0 46.8 0.130 2.02 4.43 0.0058
15 68.3 22.5 4.27 2.39 49.7 8.82 0.194 441.5 98.8 0.049 3.04 5.28 0.0063
16 64.5 22.1 5.51 2.38 34.1 7.72 0.259 263.9 43.1 0.106 1.46 5.14 0.0061
17 68.4 31.2 7.20 1.79 31.9 6.23 0.189 88.9 12.0 0.439 1.71 6.42 0.0072
18 45.0 22.3 4.33 2.08 27.5 7.59 0.282 410.3 59.7 0.102 2.15 5.40 0.0050
19 43.3 22.1 4.33 2.44 48.1 8.96 0.299 708.6 179.2 0.071 1.99 6.10 0.0050
20 63.3 22.8 4.85 2.17 48.5 6.27 0.174 254.0 34.1 0.090 3.25 5.54 0.0061
21 64.5 20.7 4.27 2.39 49.7 9.69 0.319 617.8 177.8 0.050 2.62 5.44 0.0059
22 68.3 20.7 4.27 2.39 49.7 9.69 0.287 558.4 152.4 0.043 2.77 5.30 0.0061
23 69.9 34.8 7.05 1.61 28.0 6.62 0.257 103.6 18.9 0.716 1.48 6.28 0.0076
24 58.7 22.4 4.27 1.94 20.7 8.44 0.299 363.6 61.5 0.114 2.01 4.60 0.0058
25 67.5 31.9 7.18 2.33 40.4 5.16 0.151 115.5 12.5 0.258 2.63 7.69 0.0073
26 65.8 23.5 4.82 2.29 49.8 6.62 0.234 318.4 53.8 0.080 3.49 5.67 0.0063
27 63.9 22.6 7.31 1.72 23.1 3.57 0.258 62.5 2.8 0.313 2.17 5.10 0.0061
28 64.3 21.4 4.65 2.27 49.4 6.83 0.228 331.8 52.2 0.067 3.11 5.37 0.0060
29 63.7 20.7 4.35 2.44 50.0 9.41 0.272 565.8 141.0 0.047 2.62 5.34 0.0059
30 63.7 21.9 4.17 2.04 44.5 4.07 0.332 288.3 48.5 0.086 2.92 5.47 0.0060
31 63.9 29.9 7.21 1.77 29.5 6.43 0.324 117.2 21.4 0.559 1.81 6.07 0.0068
32 57.5 21.7 4.57 2.48 49.8 7.94 0.192 443.3 76.2 0.056 2.44 5.46 0.0057
33 62.6 21.6 4.24 1.73 26.1 3.99 0.305 186.6 28.4 0.119 2.05 4.26 0.0059
34 64.2 22.3 4.79 2.36 49.3 7.27 0.289 395.5 77.4 0.075 3.03 5.55 0.0061
35 52.3 22.2 4.34 2.22 30.7 7.70 0.278 420.8 70.1 0.090 1.77 5.36 0.0054
36 68.3 26.7 7.95 1.79 34.5 2.90 0.124 44.2 1.7 0.472 2.43 6.05 0.0067
37 68.3 22.5 4.27 2.39 49.7 8.82 0.256 494.8 127.8 0.050 2.97 5.36 0.0063
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Table 10. Sorted listing of design points on the Pareto
frontier of the robust design problem.

R T S Pm Pmax M

11 11 22 3 5 2
36 36 1 16 33 19
27 27 9 23 14 8
6 6 29 7 2 10
17 13 15 12 24 18

Generally speaking, reducing variability in one response does not guarantee a similar trend in
the others. A clear trade-off exists in enhancing robustness among the responses of interest against
the underlying uncertainties in the process–product system.

A closer look at the values of product design variables in Table 9 shows that in order to minimize
the variance in the selected responses, the majority of cases (30/37 or 81%) call for an optimum
tube with width being larger than the nominal value in Table 2. Consistent with this trend is the
fact that in only seven Pareto design points we see the tube height exceed its nominal value. For
corner radius, 24 design points have values smaller than the nominal, and 23 design points have
thickness larger than the nominal value.

It appears that, in general, a wide and short rectangular cross-section is preferred to a narrow
and tall or a square cross-section in robust optimum designs; furthermore, it is preferable to have
a small corner radius and a large blank thickness. The preference for dissimilar width and height
dimensions under axial crush conditions can be traced to several factors. Most notable is the fact
that the entire tube wall along the height portion undergoes plastic deformation during the forming
process; therefore, there is more strain hardening in the vertical than in the horizontal walls. In
addition, because of the flanges in the double-hat geometry (see Figure 1), the height and width
sections of the tube undergo different amounts of deformation and contribute differently to the
crush energy absorption.

As far as the process design variables are concerned, Table 9 shows that it is preferable for the
holding force to be larger than its nominal value in 26/37 (70%) of the Pareto set. A nearly equal
percentage of the design set prefers a higher punch velocity and a lower friction coefficient than the
respective nominal values. These results appear, at first glance, to contradict the sensitivity results.
However, what they actually reveal is the presence of interaction among the design variables, which
is not captured by the main effects presented in the sensitivity plots.

5.3. Deterministic multi-objective optimization

The deterministic optimization problem in Equation (6) was also solved using the MATLAB
MOGA toolbox with an initial population size of 105 (15 times the number of design variables).
The initial population was created by using a random number generator in MATLAB within
the bounds of the design variables in Table 2. The tournament selection algorithm was used
for identifying the parents for forming the subsequent generations. The crossover fraction was
selected as 80% using the intermediate crossover function, and the function tolerance to stop
the optimization procedure was set to 10−4. The stopping criterion was applied at generation
number 100.

In this problem, the optimizer found 41 non-dominated design points on the Pareto frontier, as
shown in Table 11. As expected from a Pareto optimal set, no design point can be found where
all the objective functions simultaneously reach their respective optimum values. However, by
sorting the Pareto set from the best to worst design for each objective, the order for the top five best
designs in each category as well as the degree of conflict among them can be found in Table 12.
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Table 11. Reduced set of design points on the Pareto frontier of the deterministic design problem.

Corner Blank Holding Punch Mean value
Pareto Width Height radius thickness force velocity Friction
point (mm) (mm) (mm) (mm) (kN) (m/s) coeff. R T S (deg.) Pm (kN) Pmax (kN) M (kg)

1 42.7 25.0 4.67 1.62 32.6 2.49 0.270 1145.4 88.2 1.09 37.4 87.4 0.135
2 66.9 21.9 4.16 2.50 22.8 9.09 0.306 3856.6 528.7 0.22 60.6 162.0 0.248
3 47.7 29.0 7.94 1.66 10.6 2.61 0.110 321.2 2.7 1.83 45.7 98.7 0.159
4 41.6 23.1 5.33 1.59 27.1 2.23 0.226 785.2 38.7 0.87 36.8 80.3 0.126
5 53.0 33.0 7.44 1.75 28.9 6.04 0.279 792.2 59.6 4.32 49.0 120.3 0.188
6 61.9 33.2 4.55 2.47 29.2 8.41 0.307 3861.7 743.2 1.10 64.1 187.6 0.285
7 58.0 28.5 4.48 2.24 41.4 8.79 0.299 3654.6 548.7 0.93 56.1 152.6 0.231
8 53.9 33.5 7.63 1.74 35.0 6.65 0.331 928.0 98.5 5.31 49.6 123.2 0.191
9 56.3 33.7 7.74 1.66 27.6 5.67 0.279 657.6 42.2 4.92 48.2 117.1 0.185
10 46.0 26.5 4.48 1.61 30.6 3.77 0.253 1282.5 110.9 1.46 37.9 91.6 0.143
11 67.6 34.1 7.29 2.50 17.3 8.72 0.307 1729.0 167.9 1.71 70.7 198.6 0.306
12 58.8 30.9 4.35 2.48 39.1 9.13 0.312 4723.7 988.4 0.85 62.5 179.4 0.269
13 60.0 27.5 4.57 1.68 26.6 8.14 0.285 1994.8 217.7 1.58 43.6 110.1 0.174
14 55.4 34.4 7.73 1.74 32.5 6.65 0.339 897.7 94.7 5.79 50.4 126.4 0.196
15 57.4 33.3 7.15 1.74 32.4 6.32 0.312 956.8 100.0 4.63 49.6 124.5 0.195
16 54.1 32.5 5.58 2.15 40.2 8.74 0.324 2757.5 412.3 2.32 56.3 154.6 0.231
17 66.6 34.1 7.02 2.47 18.8 8.71 0.318 1885.1 201.8 1.76 69.5 195.6 0.301
18 66.9 32.0 4.18 2.50 40.7 9.41 0.319 5020.6 1310.3 0.62 64.7 190.9 0.293
19 41.3 22.9 5.44 1.56 27.9 2.22 0.226 750.3 34.7 0.90 36.2 77.9 0.123
20 55.6 29.0 5.04 2.23 28.2 8.70 0.310 2865.6 364.8 1.29 56.5 150.9 0.228
21 52.2 30.6 5.88 1.74 34.0 7.97 0.297 1577.1 173.8 3.10 46.2 115.1 0.178
22 52.8 34.2 7.54 1.74 31.4 5.72 0.303 803.2 70.3 5.07 49.1 122.7 0.191
23 49.7 29.3 7.87 1.69 19.3 6.26 0.285 628.9 26.2 3.29 47.3 105.9 0.166
24 52.8 33.9 6.94 2.03 38.5 7.63 0.321 1536.8 191.1 3.80 55.3 147.4 0.222
25 58.1 30.6 4.36 2.48 39.6 9.55 0.313 4936.5 1053.6 0.83 62.3 178.1 0.266
26 62.7 27.4 5.89 2.07 42.2 9.46 0.327 2301.9 295.7 1.24 54.7 142.1 0.219
27 43.5 24.3 5.48 1.73 29.0 5.83 0.264 1227.1 85.9 1.29 41.3 94.1 0.143
28 67.7 32.0 4.18 2.50 43.2 9.41 0.319 5105.6 1365.6 0.57 65.1 191.7 0.295
29 46.8 28.5 7.91 1.71 24.5 2.77 0.311 488.1 13.9 2.89 45.7 102.8 0.161
30 58.6 31.8 5.10 2.16 35.1 8.33 0.309 2735.3 394.9 1.79 56.2 155.6 0.237
31 64.6 33.7 6.75 2.50 27.6 8.88 0.320 2125.8 273.3 1.78 68.4 195.5 0.297
32 61.0 23.2 4.29 2.50 35.7 9.12 0.311 4172.8 605.4 0.35 59.7 160.2 0.240
33 61.9 30.0 6.23 2.36 41.8 9.40 0.322 2554.5 348.4 1.36 62.6 171.9 0.259
34 54.7 30.6 6.87 2.01 29.6 3.72 0.237 816.0 40.1 2.49 53.1 135.4 0.211

(Continued)
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Table 11. Continued

Corner Blank Holding Punch Mean value
Pareto Width Height radius thickness force velocity Friction
point (mm) (mm) (mm) (mm) (kN) (m/s) coeff. R T S (deg.) Pm (kN) Pmax (kN) M (kg)

35 61.2 25.6 5.57 2.37 34.4 8.17 0.331 2516.0 283.7 0.92 59.3 158.5 0.240
36 51.4 28.5 6.33 2.11 24.6 7.85 0.307 1607.7 146.4 1.98 54.8 136.5 0.206
37 67.0 34.1 5.43 2.50 34.8 8.87 0.320 3199.9 588.0 1.16 66.9 198.0 0.304
38 60.1 28.0 4.57 1.70 26.9 8.15 0.290 2048.9 230.3 1.66 44.1 112.1 0.177
39 58.8 30.9 4.35 2.48 39.1 9.13 0.320 4789.9 1025.8 0.87 62.5 179.5 0.269
40 58.9 30.6 4.36 2.48 40.9 9.55 0.321 5035.6 1113.6 0.81 62.6 178.9 0.268
41 65.1 28.2 4.47 2.50 44.0 9.61 0.312 4631.0 905.8 0.46 63.5 179.2 0.272
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Table 12. Sorted listing of design points on the Pareto frontier of the
deterministic design problem.

R T S Pm Pmax M

3 3 2 11 19 19
29 29 32 17 4 4
23 23 41 31 1 1
9 19 28 37 10 10
19 4 18 28 27 27

For example, the best design for rupture and thinning is the Pareto point 3; for the maximum crush
force and mass, the best design is at Pareto point 19, with 2 being the best for springback and 11
for the mean crush force.

It appears that rupture and springback are in strong competition with each other as well as
the other objectives, whereas rupture and thinning are in agreement in approximately 37% of the
Pareto set. While large plastic deformation tends to reduce springback, it can increase the amount
of thinning or the likelihood of rupture. Hence, the trend observed is supported by the physics of
the problem.

The maximum crush force and mass are found to be in agreement in approximately 80% of the
Pareto set. That is, an optimal design for maximum crush force is mostly an optimum design for
mass. Since the maximum crush force is generally associated with excessive stiffness in the tube,
an effective way to reduce it would be through reduction of cross-sectional size or wall thickness,
both of which tend to also reduce the mass. However, the same relationship is not seen between
mass and the mean crush force; this is because unlike the maximum crush force, it is desirable to
increase the mean crush force as much as possible since that would enhance the energy absorption
capacity of the tube.

By examining the optimal values of product design variables in Table 11, it can be seen that
among the Pareto optimal designs, approximately 61% prefer a larger width, 76% a larger height,
61% a smaller corner radius and 59% a larger blank thickness than their respective nominal
values. Unlike in the previous case, the goal of this optimization problem is to enhance the overall
performance and manufacturability of the tube assuming no variability in the design. Here, the
preferred geometry is more towards a design with longer height than width. As for the process
design variables, a greater holding force (∼56%), a higher punch velocity (∼76%) and a larger
friction coefficient (∼98%) than nominal are preferred among the Pareto optimum design points.

5.4. Augmented robust optimum design

The solution to the multi-objective optimization problem in Equation (7) resulted in 50 Pareto
optimal design points. The metamodels used for the mean values are those generated for the
deterministic optimum design problem, whereas those for the variances are those developed for

Table 13. Sorted listing of design points on the Pareto frontier of the augmented robust design problem.

Mean value Variance

R T S Pm Pmax M R T S Pm Pmax M

12 3 1 24 23 23 12 3 1 49 6 2
3 12 43 4 14 2 3 12 43 40 23 23
37 37 36 50 2 14 37 37 36 22 14 14
28 11 41 10 6 6 28 11 14 43 2 6
11 28 35 40 31 31 11 28 35 31 1 43
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Table 14. A subset of design points on the Pareto frontier of the augmented robust design problem.

Corner Blank Holding Punch Mean value (SD)
Pareto Width Height radius thickness force velocity Friction
point (mm) (mm) (mm) (mm) (kN) (m/s) coeff. R T S (deg.) Pm (kN) Pmax (kN) M (g)

1 70.0 22.9 4.00 2.50 10.0 10.0 0.116 3306 (417) 288 (67) 0.16 (0.04) 62.9 (2.5) 164.6 (4.8) 259.6 (6.4)
2 41.8 20.9 4.89 1.59 27.5 7.5 0.340 1690 (266) 140 (35) 1.02 (0.22) 36.7 (2.1) 79.4 (4.5) 119.8 (4.7)
3 68.6 27.2 7.50 1.59 18.4 3.3 0.117 369 (45) 2.5 (1) 2.59 (0.46) 46.5 (2.3) 105.8 (5.7) 177.5 (6.8)
4 69.9 34.6 6.21 2.50 40.9 9.8 0.325 2871 (376) 537 (138) 1.11 (0.23) 69 (2.2) 202.9 (7.2) 313.2 (7.7)
6 51.4 21.1 5.00 1.58 17.2 4.9 0.316 1129 (162) 66 (18) 0.96 (0.17) 38.9 (2.1) 85.1 (4.1) 133 (5.2)
10 67.2 34.0 5.93 2.49 44.2 4.3 0.154 1462 (189) 125 (31) 1.28 (0.17) 68.1 (3.1) 195.3 (8) 302.7 (7.5)
11 69.4 27.3 6.56 2.03 49.9 2.7 0.158 790 (97) 27 (8) 1.43 (0.22) 57.6 (4.7) 142.5 (6.7) 226.9 (6.9)
12 69.5 27.7 7.63 1.61 19.7 3.2 0.118 357 (43) 2.5 (1) 2.7 (0.48) 47.1 (2.3) 108.5 (5.8) 181.8 (6.9)
14 43.4 21.7 4.10 1.56 33.2 4.3 0.215 1363 (191) 99 (23) 0.74 (0.14) 34.8 (2) 78 (4.4) 121.3 (4.9)
22 59.2 34.0 6.13 1.59 33.3 7.5 0.238 1135 (154) 112 (30) 4.24 (0.78) 45.5 (1.8) 115.3 (5.9) 182 (7)
23 42.8 21.2 4.60 1.56 30.4 4.0 0.257 1179 (167) 80 (19) 0.8 (0.15) 35.1 (2.1) 77 (4.3) 119.6 (4.8)
24 69.4 34.6 6.74 2.50 14.7 10.0 0.341 2427 (312) 303 (71) 1.35 (0.28) 71.2 (2.2) 201.1 (6.8) 312.1 (7.6)
28 68.1 27.6 6.76 1.74 45.1 2.9 0.232 669 (82) 27 (9) 2.04 (0.32) 50 (4) 119.8 (6) 193.5 (6.8)
31 47.6 26.9 4.12 1.56 45.0 7.7 0.200 2177 (293) 196 (51) 1.51 (0.27) 37.9 (1.8) 92.4 (5.2) 142.1 (5.6)
35 64.7 33.0 4.30 2.41 46.7 9.4 0.255 4472 (607) 981 (282) 0.73 (0.14) 63.5 (2.8) 184.8 (7.2) 282.6 (7.2)
36 64.2 30.7 4.09 2.46 46.4 9.9 0.256 5037 (678) 1114 (316) 0.5 (0.1) 63.2 (2.7) 181.7 (6.8) 276.8 (6.9)
37 68.5 27.6 7.21 1.69 42.0 3.2 0.128 477 (57) 10 (4) 2.51 (0.42) 49.1 (3.3) 115.6 (5.9) 189.3 (6.8)
40 67.9 34.3 5.02 2.50 28.7 9.7 0.320 3869 (502) 787 (210) 0.97 (0.21) 67.2 (1.8) 198.9 (6.9) 306.6 (7.5)
41 61.0 30.7 4.16 2.47 47.0 9.8 0.335 5864 (784) 1569 (442) 0.68 (0.15) 62.8 (2.5) 180 (6.6) 271 (6.8)
43 50.6 21.6 4.31 2.35 42.1 8.6 0.323 4120 (586) 498 (137) 0.45 (0.08) 55 (1.8) 135.5 (5.8) 198.2 (5.3)
49 67.4 33.3 4.57 1.67 26.5 7.3 0.323 2008 (271) 271 (69) 2.76 (0.6) 46.6 (1.3) 126.3 (6.2) 200.5 (7.3)
50 69.9 34.6 6.21 2.50 40.9 9.7 0.327 2872 (376) 538 (139) 1.11 (0.24) 69 (2.2) 202.9 (7.2) 313.2 (7.7)

D
ow

nl
oa

de
d 

by
 [

T
O

B
B

 E
ko

no
m

i V
e 

T
ek

no
lo

ji]
 a

t 0
3:

04
 3

1 
Ja

nu
ar

y 
20

14
 



162 A. Najafi et al.

the robust design problem. The sorted order of the top five best designs in each category is shown
in Table 13. Repeated numbers in each row identify the degree of agreement among the design
points in the Pareto set. The corresponding design variable values as well as the mean and standard
deviation of each response are shown in Table 14.

In terms of geometry, the general preference is for a tube with larger height than width. On
average, the tube width and height values for the Pareto optimum designs in this case are larger
than those for the deterministic optimum designs.

For thinning, it appears that in the majority of cases (31/50 or 62%), a design that minimizes
the mean value of thinning also minimizes the corresponding variance. For the remaining five
responses, the level of agreement between a design that minimizes the mean and the one that
minimizes the variance is found to be 54% for rupture, 26% for springback, 0% for the mean
crush force, 4% for the maximum crush force and 14% for the tube mass. Although there appears
to be considerable agreement between the Pareto points that optimize the mean value of a process
response and those that minimize the corresponding variance, the same trend cannot be seen
among the performance responses.

Comparison of Pareto optimum designs here with the deterministic optimum designs shows a
wider spread in the responses among the Pareto points due to the presence of random variability.
For example, the range for the mean rupture response is 6591 or approximately 2 SD greater than
the range of 4784 in the deterministic case. Similarly, for the mean thinning, the range is 2340 or
1.5 SD greater than the thinning range of 1363 in the deterministic case.

6. Concluding remarks

A finite element-based sequential coupled process–performance simulation framework was used
to explore the effect of uncertainties rooted in process, material and product parameters on
manufacturability and performance characteristics of energy-absorbing components. The manu-
facturing method considered was thin sheet forming using a deep-drawing operation with rupture,
thinning and springback as the manufacturability metrics of interest. With a thin-walled, double-
hat crush tube as an example, separate metamodels were developed for uncertainty propagation
and approximation of process and performance responses in the design space.

The sensitivity analysis results showed that, in the presence of uncertainty, the most important
design variable affecting the mean and standard deviation of rupture and thinning is the corner
radius, whereas for springback, tube height and blank thickness have the greatest influence, with
corner radius close behind. Rupture and thinning generally show similar preference for each of
the seven design variables, which is different from springback, hence pointing to the presence
of conflict among the manufacturing response parameters. As for the performance responses, the
trends for the maximum crush force and tube mass are very similar as both are driven by the
geometric properties of the tube and are strongly dependent on blank thickness. Although the
mean and maximum crush forces show the same general trend when it comes to sensitivity of
the mean response, they show a strong contrast in terms of variance sensitivity. In general, the
variability observed in all the process and performance responses highlights the strong influence
of the underlying uncertainties in the process–product system.

With the goal of minimizing the variance of process and performance objectives due to the
embedded uncertainties, a robust multi-objective design optimization problem was formulated
and solved. The results indicated that a robust design generally requires a crush tube with a
wide and short rectangular cross-section, small corner radius and large blank thickness. These
requirements were accompanied by a general preference for a greater holding force, higher
punch velocity and smaller friction coefficient than the nominal values in the sheet-forming
process.
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When the focus shifted to optimizing the process and performance responses by ignoring the
existence of uncertainties and the risk associated with them, a deterministic Pareto optimal set was
found. Although the objectives were in competition, there was a strong preference for a tube with
a larger width and height, smaller corner radius and larger blank thickness than their respective
nominal values. The main difference with the robust Pareto set was the opposite demand for a
larger height and higher friction coefficient.

By combining the robust and deterministic design problems, a larger multi-objective optimiza-
tion problem was formulated and solved with equal emphasis on optimizing the mean values of
the responses while minimizing the corresponding variances. The results showed that there was
moderate to significant agreement among the designs with the mean and variance of the manufac-
turing responses optimized, whereas there was minimal to no agreement among the designs with
the mean and variance of the performance responses optimized. In addition, the range of values
for each mean response among the Pareto set was greater in the augmented robust design case
than in the deterministic case. This difference indicates that the inclusion of uncertainties yields
a more conservative Pareto set.
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