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Reliability prediction through guided tail
modeling using support vector machines

Erdem Acar

Abstract

Reliability prediction of highly safe mechanical systems can be performed using classical tail modeling. Classical tail

modeling is based on performing a relatively small number of limit-state evaluations through a sampling scheme and

then fitting a tail model to the tail part of the data. However, the limit-state calculations that do not belong to the tail part

are discarded, so majority of limit-state evaluations are wasted. Guided tail modeling, proposed earlier by the author, can

provide a remedy through guidance of the limit-state function calculations toward the tail region. In the original guided

tail modeling, the guidance is achieved through a procedure based on threshold estimation using univariate dimension

reduction and extended generalized lambda distribution and tail region approximation using univariate dimension reduc-

tion. This article proposes a new guided tail modeling technique that utilizes support vector machines. In the proposed

method, named guided tail modeling with support vector machines (GTM-SVM), the threshold estimation is still per-

formed using univariate dimension reduction and extended generalized lambda distribution, while the tail region approxi-

mation is based on support vector machines. The performance of guided tail modeling with support vector machines is

tested with mathematical example problems as well as structural mechanics problems with varying number of variables.

GTM-SVM is found to be more accurate than both guided tail modeling and classical tail modeling for low-dimensional

problems. For high-dimensional problems, on the other hand, the original guided tail modeling is found to be more

accurate than guided tail modeling with support vector machines, which is superior to classical tail modeling.
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Introduction

The limit-state function of a mechanical system is usu-
ally evaluated from computationally expensive ana-
lyses (e.g., finite element analysis). The simulation
techniques such as Monte Carlo method1 or its
advanced variants (e.g. importance sampling,2 adap-
tive importance sampling3 and directional simulation4)
require a large number of limit-state evaluations, hence
they are not suitable for highly safe mechanical sys-
tems. Alternatively, the analytical methods such as
first-/second-order reliability methods (FORM/
SORM) are computationally efficient, but their accur-
acy diminishes as the limit-state function becomes non-
linear. In order to overcome the drawbacks of these
traditional methods, the techniques based on tail mod-
eling have been successfully used for reliability assess-
ment at high reliability levels.5–11

Reliability estimation using tail modeling is based
on approximating the tail of the cumulative distribu-
tion function (CDF) of the limit-state function.
Classical tail modeling methods are based on the fol-
lowing procedure.10 First, a set of limit-state evalu-
ations through Monte Carlo simulations (MCS)

is performed. Then, a proper threshold value of the
CDF is selected that specifies the tail part. Finally, the
generalized Pareto distribution (GPD) is fitted to the
tail part (i.e. the portion above the threshold value).
In this procedure, only the tail part of the limit-state
function evaluations is used in finding the parameters
of the GPD, whereas the rest of the data are dis-
carded. That is, the efforts spent for performing
limit-state function evaluations that do not belong
to the tail part are wasted.

To reduce the amount of wasted data, guided tail
modeling (GTM) technique has been proposed
recently.12 In GTM, the limit-state calculations are
guided toward the sampling points that have high
chances of yielding limit-state values falling into the
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tail region. The guidance of the limit-state evaluations
is achieved through a procedure that is based on
approximating the limit-state function and calculating
the statistical moments of the limit-state function
using the univariate dimension reduction (UDR)
method13 along with distribution fitting using
extended generalized lambda distributions
(EGLD).14,15 When the limit-state function is non-
linear, the limit-state function approximation using
UDR is ineffective. In this article, a new procedure
is proposed that does not require limit-state function
approximation. Instead, the regions of the design
space that yield limit-state values in the tail region
are approximated using support vector machines
(SVM). Then, the limit-state function calculations
are performed by sampling from those regions.

This article is organized as follows: a brief overview
of the classical tail modeling is presented in the fol-
lowing section. Brief details of the GTM procedure
are outlined in the next section. The proposed
method, GTM-SVM, is explained in the subsequent
section. The accuracy of the proposed method is eval-
uated through mathematical and engineering example
problems in the following section. Finally, the last
section provides the concluding remarks.

Classical tail modeling

Consider the limit-state function y(x), where x is the
vector of random variables. For a large threshold
value of yt (see Figure 1), the region above the thresh-
old (i.e. the tail part) can be approximated by using
GPD. The GPD approximates the conditional excess
distribution of Fz(z), where z ¼ y� yt, through

Fz zð Þ ¼
1� 1þ

�

�
z

� ��1
�

þ

if � 6¼ 0

1� exp �
z

�

� �
if � ¼ 0

8>><
>>:

ð1Þ

where Ah iþ¼ max 0,Að Þ, z50 and Fz(z) is the GPD
with shape and scale parameters x and s, respectively,
which need to be determined.

The conditional excess distribution can be related
to the cumulative distribution F(y) through

Fz zð Þ ¼
F yð Þ � F ytð Þ

1� F ytð Þ
¼

F yð Þ � Ft

1� Ft
ð2Þ

Then, F(y) above the threshold (i.e. y5yt) is
expressed in terms of the conditional excess distribu-
tion, Fz(z), through

F yð Þ ¼ Ft þ 1� Ftð ÞFz y� ytð Þ ð3Þ

Once the cumulative distribution function F(y) is
obtained, the probability of failure can be estimated
from10

Pf ¼ 1� F y ¼ 0ð Þ ¼ 1� Ftð Þ 1�
�

�
yt

� ��1
�

þ

ð4Þ

Also, the reliability index can be calculated from

� ¼ ��1 1� Pfð Þ ð5Þ

where � is the CDF of a standard normal random
variable.

The classical tail modeling (CTM) methods are
based on: (i) generating samples of the limit-state
function through a sampling procedure, (ii) selecting
a proper threshold to specify the tail part and
(iii) fitting a tail model to the tail part of the data.
Details of these steps can be found in a previous study
by Ramu10 In this article, 500 samples are generated
through MCS, and 50 of these samples are used to
define the tail part and fit a tail model.

GTM

As noted earlier, CTM uses only the tail part of the
data in estimating the GPD parameters, whereas the
other data are discarded. GTM can reduce the wasted
data using the following simple procedure.12 First, a
large number of potential sampling points are gener-
ated via MCS. Next, the approximate value of the
limit-state function is computed for all these potential
sampling points. Then, the points with approximate
limit-state values larger than the threshold yt are
stored. Finally, the actual limit-state function calcula-
tions are performed only for these stored points as
they have high chances of producing actual limit-
state values in the tail region. The GTM procedure
is shown in Figure 2. In GTM, the approximate model
for the limit-state function is constructed through an
additive decomposition technique used in the UDR
method. The threshold value yt is estimated via an
efficient distribution fitting technique that blendsFigure 1. Tail modeling concept.
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UDR and EGLD. Details of UDR and EGLD are
provided below.

Limit-state function approximation using UDR
method

As part of the UDR method, an additive decompos-
ition technique is used such that a multi-dimensional
limit-state function y(X) is approximated using mul-
tiple unidimensional functions as13

ŷðXÞ ¼
XN
j¼1

yuj Xj

� �
� N� 1ð Þ y0 ð6Þ

where each term in the summation, yuj , is a unidimen-
sional function that depends on the jth random vari-
able, Xj.

yuj Xj

� �
¼ y �1, . . . ,�j�1,Xj,�jþ1, . . . ,�N

� �
ð7Þ

where y0 is the value of y(X) calculated at the
mean values of all the random variables, �j,
j¼ 1, . . . ,N.

y0 ¼ y �1, . . . ,�Nð Þ ð8Þ

For the unidimensional functions, yuj Xj

� �
, metamo-

dels can be constructed using a small number of simu-
lations. A quadratic polynomial in one dimension has
three coefficients, hence five sampling points may pro-
vide a good approximation for yuj . For highly non-
linear functions, however, the number of sampling
points may need to be increased. The locations of
the sampling points can be determined by using the
moment-based quadrature points proposed by
Rahman and Xu.13

Distribution fitting via UDR method and EGLD

The statistical moments of the limit-state function can
be calculated efficiently using the UDR method. After
the first four moments of the limit-state function are
calculated, these moments can be matched with the
moments of an EGLD, so that the distribution par-
ameters of the fitted EGLD are assessed. More infor-
mation on the EGLD and finding its distribution
parameters from the statistical moments can be
found in Refs.14,15

After the distribution parameters of the EGLD are
found, the threshold value yt can be easily estimated
from the inverse CDF of the fitted EGLD via

yt ¼ F�1EGLD Ftð Þ ð9Þ

where FEGLD is the CDF of the fitted EGLD, and Ft is
the selected threshold CDF value. Details of UDR
and EGLD can be found in Refs.13–16

The proposed method, GTM-SVM

As noted earlier, if the limit-state function is non-
linear, its approximation using UDR is ineffective.
In this article, a new procedure is proposed based
on support vector machines (SVMs). Instead of
approximating the limit-state function as in the case
of GTM, the regions of the variable space that yield
limit-state values in the tail part are approximated
using SVM. Then, the actual limit-state function
calculations are performed by sampling from the
tail-associated regions of the variable space. The over-
all procedure of GTM with SVMs is depicted
in Figure 3.

SVMs, introduced by Vapnik17, are based on stat-
istical learning theory. SVMs are widely used for data
classification and pattern recognition. SVMs are

Figure 2. Flowchart for GTM.

GTM: guided tail modeling.
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originally developed for classification and then
extended to regression. When used for classification,
the basic idea is to separate the data into classes such
that the margin between the classes is maximized.

Consider a data set that can be separated into two
classes (see Figure 4). There exists two ‘support hyper-
planes’ separating the data into two classes. Each sup-
port hyperplane passes through at least one data point
(called ‘support vector’) of the corresponding class.
These support hyperplanes are parallel to each other
and are separated by a margin. The basic idea in con-
structing the support hyperplanes is to maximize the
margin between them. The hyperplane that lies half-
way between two support hyperplanes is called the
‘separating hyperplane’.

If the data classes have values of �1 and þ1, the
separating hyperplane can be defined through

w,xh i þ b ¼ 0 ð10Þ

where w is the vector of hyperplane coefficients, x is
the vector of data points, b is the bias and w, xh i indi-
cates the scalar product of w and x vectors. Similarly,
the support hyperplanes can be defined through

w,xh i þ b ¼ �1 and w, xh i þ b ¼ þ1 ð11Þ

The margin between two support hyperplanes is
2= wk k. Therefore, the hyperplanes can be formed
(i.e. the vector of hyperplane coefficients w and the

Figure 3. Flowchart for GTM-SVM.

GTM: guided tail modeling; CTM: classical tail modeling; SVM: support vector machine.

Figure 4. SVM classification example for a linearly separable data set.
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bias b can be found) by solving the following opti-
mization problem:

min
1

2
wk k2

s:t: yi w, xh i þ bð Þ51

ð12Þ

where the constraint reflects the fact that no sample
can lie between the support hyperplanes.

The classes can be linearly or nonlinearly separable.
If the classes are linearly separable, a hyperplane separ-
ating the data into classes can be found in the original
variable space. For the case of nonlinearly separable
classes, on the other hand, the original variable space is
projected to a feature space using a nonlinear Kernel
function. In the feature space, the classification prob-
lem is similar to that of the linearly separable case.
Widely used kernel functions include polynomials,
Gaussian functions, Fourier series and splines. In this
article, the Gaussian kernel is used following the rec-
ommendations of Refs.18,19 It must be noted that the
optimal selection of the kernel function is an active
research subject and scope of a future work.

In this article, SVMs are used to separate the data
into two classes: (i) the data that belong to the tail
region and (ii) the data that do not belong to the tail
region. The MATLAB code developed by Gunn18 is
used to develop and implement the SVM models. As
noted earlier, Gaussian kernel is used and the kernel
width parameter is selected as to minimize the leave-
one-out cross-validation misclassification rate. More
detailed information on SVMs can be found in
Refs.17–21

Example problems

To evaluate the performance of the proposed method,
GTM-SVM, mathematical example problems as well
as structural mechanics problems are used. First, a
two-dimensional (or two-variable) mathematical
example problem is used to illustrate the approach.
Then, example problems with varying dimensions
are used to evaluate the performance of GTM-SVM.

An illustrative example (Goldstein–Price function, a
two-variable problem)

To illustrate the proposed approach, the well-known
Goldstein–Price function is used to define a limit-state
function

Y ¼ ygold x1, x2ð Þ � ycrit ð13Þ

where the Goldstein–Price function is

ygold x1,x2ð Þ

¼
�
1þ x1þ x2þ 1ð Þ

2
�
19� 14x1þ 3x21

� 14x2 þ 6x1x2 þ 3x22
�	
�
�
30þ 2x1 � 3x2ð Þ

2

� 18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22
� �	

ð14Þ

In the Goldstein–Price problem, the variables x1
and x2 are taken as random variables following stand-
ard normal distributions. Figure 5 shows the behavior
of the Goldstein–Price function when the random
variables take values x1, x2 2 �3, 3½ � (i.e. within the
range of� 3 SD away from the mean values).
The value of ycrit in equation (13) is varied to adjust
the reliability level. For instance, ycrit¼ 1� 107 corres-
ponds to reliability index of 3.25, whereas the use of
ycrit¼ 8� 107 corresponds to reliability index of 4.25.
It must be noted here that we model the upper tail, so
the positive value of the limit-state function denotes
failure, as opposed to the conventional limit-state
function setting where the negative value of the
limit-state function designates failure.

CTM. The number of simulations is limited to N¼ 500
and Nt¼ 50 (i.e. Ft¼ 0.90) simulations are used to
model the tail. In CTM, the first step is to generate
N samples of the input random variables from the
given distribution types, and perform N limit-state
function evaluations. Then, the computed limit-state
function values are sorted in ascending order. The last
Nt samples in the sorted list are used to fit a tail
model. Finally, the fitted model is used to estimate
the reliability. For the Goldstein–Price problem, the
maximum likelihood method is used to obtain the
parameters of GPD, and then the reliability index is
computed.

The above procedure is applied to the Goldstein–
Price problem. The value of ycrit in equation (13) is
varied to adjust the reliability level as shown in
Table 1. To evaluate the accuracy of CTM, MCS
with 108 sampling points are performed to provide a
basis. To reduce the effect of random sampling, the

Figure 5. The variation of the Goldstein–Price function over

x1, x2 2 �3, 3½ �.
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whole procedure is repeated 1000 times with different
samples, and then the mean absolute error (MAE) is
computed. Table 1 shows that the MAE error
increases as the reliability level increases.

GTM. GTM is now applied to the Goldstein–Price
problem. In GTM, the first step is to compute the
statistical moments of the limit-state function. As
both x1 and x2 follow standard normal distribution
(which is a symmetric distribution), Nudr¼ 4�
2þ 1¼ 9 limit-state function (y) calculations are per-
formed for UDR. Note here that Nudr is the number
of limit-state function calculations used in UDR. The
results corresponding to ycrit¼ 1� 107 are listed in
Table 2.

UDR technique is used to compute the first four
statistical moments of the limit-state function. Then,
EGLD is fitted to the CDF of y and the threshold
value yt is computed. This prediction is compared
with the one calculated through MCS values with
108 sampling points. The results presented in
Table 3 show that the prediction is acceptable.

The third step of GTM is to fit unidimensional
metamodels (i.e. approximate models) using 4þ 1¼ 5
points corresponding to each random variable. Here,
polynomial response surface (PRS) approximations
are used as metamodels to relate the random variables
to the unidimensional functions. The unidimensional
PRS for x1 is constructed using simulation numbers
1–5. The constructed PRS is shown in Figure 6(a).
Similarly, the unidimensional PRS for x2 is con-
structed using simulation numbers 1 and 6–9. The con-
structed PRS is depicted in Figure 6(b).

In the fourth step, first a set of candidate sampling
points is generated and the corresponding limit-state
function values are approximated using the PRSs con-
structed in the previous step. Then, the candidate
points with approximate limit-state function values
greater than yt are stored. Finally, a number of the
stored points are selected to be used for tail modeling.
For the Goldstein–Price problem, we first generate
10,000 candidate points and calculate the approxi-
mate limit-state values for these points. Then, we
store 1262 of these points that have approximate
limit-state function values greater than yt. We limit
the total number of actual limit-state calculations to
N¼ 500. Therefore, we randomly select N�Nudr¼

500�9¼ 491 points out of those stored 1262 points.
Then, we perform actual limit-state function evalu-
ations for the selected 491 points. We found that
only 215 points have the actual limit-state function
values greater than yt. Using these 215 points, a tail
modeling is constructed. Maximum likelihood
method is used to obtain parameters of GPD.

In the fifth step, the constructed tail model in the
previous step is used to calculate the reliability. The
accuracy of GTM is evaluated similar to CTM. To
reduce the effect of random sampling, the whole pro-
cedure is repeated 1000 times with different samples
and then the MAE value is computed (Table 4,
column 3). The CTM errors in the second column
of Table 4 are copied from Table 1. It is seen that
the GTM predictions are superior to CTM
predictions.

GTM-SVM. The first and the second steps of the GTM-
SVM are the same as those of the GTM. The calcu-
lation of the statistical moments, fitting probability
distribution using EGLD and the computation of
the threshold value of the limit-state function, yt is
discussed in the previous section.

In the third step, the tail-associated regions of the
variable space are identified and SVMs are con-
structed to approximate these regions. Nsvm¼ 100
training points are generated by constructing a uni-
form grid over the design space. Note here that Nsvm

is the number of limit-state function calculations used
in SVM. The generated 100 points are combined with
the nine UDR points to form the overall training data
set of 109 points. Figure 7 shows the comparison of
the SVM approximation of the tail-associated regions

Table 2. 4nþ 1 limit-state function evaluations used in UDR.

Simulation no. x1 x2 Y/106

1 0 0 �9.9994

2 �2.334 0 �9.5754

3 0 �2.334 �9.6783

4 2.334 0 �9.9933

5 0 2.334 �9.5824

6 �0.742 0 �9.9996

7 0 �0.742 �9.9999

8 0.742 0 �9.9990

9 0 0.742 �9.9881

UDR: univariate dimension reduction.

Table 3. Comparison of threshold predictions

computed through UDRþ EGLD and MCS.

Threshold, yt

UDR �9.76� 106

MCS �9.88� 106

UDR: univariate dimension reduction; EGLD: extended

generalized lambda distribution; MCS: Monte Carlo

simulation.

Table 1. Accuracy of CTM for reliability index prediction of

the Goldstein–Price problem.

ycrit MCS (108 simulations) MAE (%)

1� 107 3.25 9.3

3� 107 3.75 12.1

8� 107 4.25 12.4

MCS: Monte Carlo simulations; MAE: mean absolute error.
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to the actual ones. Figure 7 also shows that 23 out of
109 training points are used as support vectors.

The fourth step is to guide the actual limit-state
function calculations by using the generated SVM
and perform tail modeling. We first generate 10,000
candidate points and use SVM to classify the ones
that belong to the tail region. We find that SVM pre-
dicts 981 of these points fall into the tail region.As the
total number of actual limit-state function calcula-
tions is limited to N¼ 500, we randomly select
N�Nudr�Nsvm¼ 500 � 9 � 100¼ 391 points from
the stored 981 points and perform actual limit-state
function evaluations for the selected points. We found
that 340 points have the actual limit-state function
values greater than yt. Using these 340 points, tail
modeling is performed and the reliability index is esti-
mated. Table 5 shows that the GTM-SVM predictions
are better than GTM predictions.

Tuned vibration absorber (a two-variable problem)

The tuned vibration absorber problem is a damped
single degree-of-freedom system with dynamic vibra-
tion absorber (see Figure 8(a)). This example is taken
from a study by Ramu.10 The original system is exter-
nally excited by a harmonic force and the vibration of
the system is reduced by the absorber. The amplitude

of the vibration depends on the following system par-
ameters: (i) R ¼ m=M, the mass ratio of the absorber
to the original system, (ii) �, the damping ratio of the
original system, (iii) �1 ¼ !n1=!, the ratio of the nat-
ural frequency of the original system to the excitation
frequency and (iv) �2 ¼ !n2=!, the ratio of the natural
frequency of the absorber to the excitation frequency.

The limit-state function for this problem can be
expressed as

Y ¼ y �1,�2ð Þ � ycrit ð15Þ

where y �1,�2ð Þ is the amplitude of the system normal-
ized by the amplitude of the quasi-static response of
the system and this normalized amplitude can be cal-
culated from

y �1,�2ð Þ

¼

1� 1
�2

� �2








ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R 1
�1

� �2
� 1

�1

� �2
� 1

�2

� �2
þ 1

�1�2

� �2� 2

þ 4 �2 1
�1
� 1

�1�22

h i2

8>><
>>:

9>>=
>>;

vuuuuut

ð16Þ

The random variables of the problem are �1 and �2,
and they follow normal distribution with mean value
of 1 and SD of 0.025. R and z are taken as determin-
istic variables possessing the following values:
R¼ 0.01, z¼ 0.01. The normalized amplitude of the
original system is plotted in Figure 8(b). The value of
ycrit in equation (15) is adjusted to obtain various
values of reliability indices as listed in Table 6.

In CTM, N¼ 500 and Nt¼ 50 simulations are used
to model the tail. The MAE values are provided in the
second column of Table 7.

Figure 6. Polynomial response surface approximations generated for the unidimensional functions.

Table 4. Accuracy of GTM for reliability index prediction of

the Goldstein–Price problem.

ycrit MAE_CTM (%) MAE_GTM (%)

1� 107 9.3 5.0

3� 107 12.1 6.1

8� 107 12.4 7.9

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling.
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In GTM, Nudr¼ 6� 2þ 1¼ 13 limit-state evalu-
ations are performed for UDR and the first four stat-
istical moments are calculated. Then, EGLD is used
to compute the threshold yt. Next, the unidimensional
metamodels are generated using PRS. Then, 10,000
candidate points are generated, the approximate
limit-state values are obtained via UDR and it is
found that 802 points are predicted to belong to tail
region. Next, we randomly select N�Nudr¼ 487
points from the stored points, perform actual limit-
state function evaluations and find that 310 points
have the actual limit-state function values greater
than yt. Using these 310 points, tail model is con-
structed and the reliability index is computed. The
MAE values are provided in the third column of
Table 7. It is seen that GTM predictions are better
than CTM predictions.

In GTM-SVM, the UDR points and threshold esti-
mation of GTM are utilized. In addition to the 13
UDR points, Nsvm¼ 100 more training points are
generated by constructing a uniform grid over the

design space (see Figure 9). As shown in Figure 9,
23 out of 113 training points are used as support vec-
tors. We first generate 10,000 candidate points, use
SVM to classify that 563 of these points fall into the
tail region. Then, we randomly select N�Nudr�

Nsvm¼ 387 points from the stored points, perform
actual limit-state function evaluations and find that
357 points have the actual limit-state function values
greater than yt. Using these 357 points, tail model is
constructed and the reliability index is estimated. The
MAE values are provided in the fourth column of
Table 7. We see that GTM-SVM predictions are
better than GTM predictions, which are better than
CTM predictions.

Short column design (a three-variable problem)

A short column subjected to a normal force P and
biaxial bending moments Mx and My is considered
(see Figure 10). The cross-section is rectangular with
dimensions b and h. Using the elastic–plastic consti-
tutive law, the limit-state function can be written as

y b, h, �Yð Þ ¼ 1�
4Mx

bh2�Y
�

4My

b2h�Y
�

P2

bh�Yð Þ
2

ð17Þ

where the negative value of this function designates
failure. The loading is assumed to be deterministic
with the following values: P¼ 140 kN, Mx¼My¼

14 kN*m. The cross-section dimensions and the
yield stress are taken as random variables and their
statistical properties are provided in Table 8.

Figure 7. Approximating the tail associated regions of the variable space of Goldstein–Price function using SVM. Red asterisks

indicate the points that belong to the tail region and the points that do not belong to the tail region are shown in black ‘þ’ sign. The

green areas bordered by the blue lines show the actual regions of design space that yield limit-state values in the tail region, whereas

the black line is the SVM prediction of these regions.

Table 5. Accuracy of GTM-SVM for reliability index predic-

tion of the Goldstein–Price problem.

ycrit MAE_CTM (%) MAE_GTM (%) MAE_GTM-SVM (%)

1� 107 9.3 5.0 4.0

3� 107 12.1 6.1 4.1

8� 107 12.4 7.9 5.0

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.
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To obtain varying reliability levels, the limit-state
function is formulated as

Y ¼ �y �1,�2ð Þ � ycrit ð18Þ

where ycrit term in equation (18) is adjusted to obtain
various values of reliability indices as listed in Table 9.

In CTM, N¼ 500, and Nt¼ 50 simulations are used
to model the tail. The MAE values are provided in the
second column of Table 10.

In GTM, Nudr¼ 4� 3þ 1¼ 13 limit-state evalu-
ations are performed for UDR and the first four stat-
istical moments are calculated. Then, EGLD is used
to compute the threshold yt. Next, the unidimensional
metamodels are generated using PRS. Then, 10,000
candidate points are generated, the approximate
limit-state values are obtained via UDR and it is

found that 1585 points are predicted to belong to
tail region. Next, we randomly select N�Nudr¼ 487
points from the stored points, perform actual limit-
state function evaluations and find that 263 points
have the actual limit-state function values greater
than yt. Using these 263 points, tail model is con-
structed and the reliability index is computed. The
MAE values are provided in the third column of
Table 10. It is seen that GTM predictions are better
than CTM predictions.

In GTM-SVM, the UDR points and threshold esti-
mation of GTM are utilized. In addition to the
13 UDR points, Nsvm¼ 43¼ 64 more training points
are generated by constructing a uniform grid over the
design space (four divisions in each dimension). Using
the 64þ 13¼ 77 training points, SVM is constructed.
The graphical depiction of the SVM is not provided in
the article. We first generate 10,000 candidate points,
use SVM to classify that 589 of these points fall
into the tail region. Then, we randomly select
N�Nudr�Nsvm¼ 423 points from the stored points,
perform actual limit-state function evaluations and
find that 363 points have the actual limit-state func-
tion values greater than yt. Using these 363 points, tail
model is constructed and the reliability index is esti-
mated. The MAE values are provided in the fourth
column of Table 10. We see that GTM-SVM predic-
tions are better than GTM predictions, which are
better than CTM predictions.

A four-variable highly nonlinear problem

The number of variables is now increased to four, and a
four-variable highly nonlinear problem is considered.
The limit-state function has the following form

Y ¼
1

x1x2
� log

1

x3x4












� �
� ycrit ð19Þ

The variables x1–x4 are assumed to be random with
the statistical properties given in Table 11. The ycrit

Figure 8. (a) Tuned vibration absorber and (b) the normalized amplitude of the vibration absorber.

Table 6. Various reliability levels for the tuned vibration

absorber problem.

ycrit Relativity index

27 2.29

48 3.03

53 3.86

Note: The reliability index values are computed through MCS with 108

samples.

Table 7. Accuracy of GTM-SVM for reliability index predic-

tion of the tuned vibration absorber problem.

ycrit MAE_CTM (%) MAE_GTM (%) MAE_GTM-SVM (%)

27 6.5 7.5 6.2

48 8.6 3.6 2.6

53 16.9 10.4 6.8

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.
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term in equation (19) is adjusted to obtain various
values of reliability indices as listed in Table 12.

In CTM, N¼ 500, and Nt¼ 50 simulations are used
to model the tail. The MAE values are provided in the
second column of Table 13.

In GTM, Nudr¼ 4� 4þ 1¼ 17 limit-state evalu-
ations are performed for UDR and the first four stat-
istical moments are calculated. Then, EGLD is used
to compute the threshold yt. Next, the unidimensional

Table 11. The random variables of the four-variable highly

nonlinear problem.

Random variable Distribution Mean SD

x1 and x2 Normal 2 0.65

x3 and x4 Normal 10 3

Figure 9. Support vector machines constructed for the tuned vibration absorber.

Figure 10. Short column subjected to a normal force and

biaxial bending moments.

Table 9. Various reliability levels for the short

column design problem.

ycrit Relativity index

0 2.76

5 3.27

100 3.66

Note: The reliability index values are computed through

MCS with 108 samples.

Table 10. Accuracy of GTM-SVM for reliability index pre-

diction for the short column design problem.

ycrit MAE_CTM (%) MAE_GTM (%) MAE_GTM-SVM (%)

0 9.8 4.1 3.8

5 18.6 6.1 5.1

100 33.3 17.7 14.1

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.

Table 8. The random variables of the short column design

problem.

Random variable Distribution Mean SD

b (m) Normal 0.4 0.1

h (m) Normal 0.4 0.1

�Y (MPa) Normal 40 4
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metamodels are generated using PRS. Then, 10,000
candidate points are generated, the approximate
limit-state values are obtained via UDR and it is
found that 1344 points are predicted to belong to
tail region. Next, we randomly select N�Nudr¼ 483
points from the stored points, perform actual limit-
state function evaluations and find that 300 points
have the actual limit-state function values greater
than yt. Using these 300 points, tail model is con-
structed and the reliability index is computed. The
MAE values are provided in the third column of
Table 13. It is seen that GTM predictions are better
than CTM predictions.

In GTM-SVM, the UDR points and threshold esti-
mation of GTM are utilized. In addition to the 17
UDR points, Nsvm¼ 40 more training points are gen-
erated through random sampling. Using the
40þ 17¼ 57 training points, SVM is constructed.
The graphical depiction of the SVM is not provided

in the article. We first generate 10,000 candidate
points and use SVM to classify that 934 of these
points fall into the tail region. Then, we randomly
select N�Nudr�Nsvm¼ 443 points from the stored
points, perform actual limit-state function evaluations
and find that 301 points have the actual limit-
state function values greater than yt. Using these
301 points, tail model is constructed and the reliability
index is estimated. The MAE values are provided in
the fourth column of Table 13. We see that GTM-
SVM predictions are slightly worse than GTM predic-
tions, whereas GTM–SVM predictions are better than
CTM predictions.

Propped cantilever beam problem (a seven-variable
problem)

In this example, a propped cantilever beam (see
Figure 11) under triangular distributed load is exam-
ined. The limit-state function for this problem is for-
mulated as the difference between the maximum
allowable deflection vcrit and the maximum deflection
of the beam vmax due to the applied triangular distrib-
uted load as given by

Y ¼ vmax � vcrit ð20Þ

The deflection of the beam (positive downwards) at
any location x can be found from

v xð Þ ¼
q0x

2

120LEI
4L3 � 8L2xþ 5Lx2 � x3
� �

;

I ¼
bfd

3 � bf � twð Þ d� 2tfð Þ
3

12

ð21Þ

It can be found that the maximum deflection
occurs at x¼ 0.5528L (i.e. vmax ¼ v 0:5528Lð Þ). In
this problem, there are seven random variables fol-
lowing normal distribution with mean and SD
values provided in Table 14. The maximum allowable
deflection vcrit is altered within 4 –5mm to attain reli-
ability index values as listed in Table 15.

Table 12. Various reliability levels for the four-

variable highly nonlinear problem.

ycrit Relativity index

8 2.94

16 3.68

64 4.62

Note: The reliability index values are computed through

MCS with 108 samples.

Table 13. Accuracy of GTM-SVM for reliability index pre-

diction for the four-variable highly nonlinear problem.

ycrit MAE_CTM (%) MAE_GTM (%) MAE_GTM-SVM (%)

8 11.0 3.3 3.4

16 17.2 9.4 10.2

64 26.8 15.8 17.3

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.

Figure 11. The cross-section and triangular distributed loading on the propped cantilever beam.
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In CTM, N¼ 500 and Nt¼ 50 simulations are used
to model the tail. The MAE values are provided in the
second column of Table 16.

In GTM, Nudr¼ 4� 7þ 1¼ 29 limit-state evalu-
ations are performed for UDR and the first four stat-
istical moments are calculated. Then, EGLD is used
to compute the threshold yt. Next, the unidimensional
metamodels are generated using PRS. Then, 10,000
candidate points are generated, the approximate
limit-state values are obtained via UDR and it is
found that 1386 points are predicted to belong
to the tail region. Next, we randomly select
N�Nudr¼ 471 points from the stored points, perform
actual limit-state function evaluations and find that
292 points have the actual limit-state function values
greater than yt. Using these 292 points, tail model is
constructed and the reliability index is computed. The
MAE values are provided in the third column of
Table 16. It is seen that GTM predictions are better
than CTM predictions.

In GTM-SVM, the UDR points and threshold esti-
mation of GTM are utilized. In addition to the
29 UDR points, Nsvm¼ 41 more training points are
generated by constructing a uniform grid over the
design space (four divisions in each dimension).
Using the 41þ 29¼ 70 training points (10 times the
number of variables), SVM is constructed. The graph-
ical depiction of the SVM is not provided in the article.
We first generate 10,000 candidate points, use SVM to
classify that 1898 of these points fall into the
tail region. Then, we randomly select N�Nudr�

Nsvm¼ 431 points from the stored points, perform
actual limit-state function evaluations, and find that
190 points have the actual limit-state function values
greater than yt. Using these 190 points, tail model is
constructed and the reliability index is estimated. The
MAE values are provided in the fourth column of
Table 16. We see that GTM-SVM predictions are
slightly worse than GTM predictions, whereas GTM-
SVM predictions are better than CTM predictions.

Ten-bar truss problem (a 10-variable problem)

The ten-bar truss structure in Figure 12 is made of
aluminum with a weight density of �¼ 2768 kg/m3

(�¼ 0.1 lb/in.3), an elasticity modulus of E¼ 70GPa
(E¼ 104ksi) and the bay length of b¼ 9.144m
(b¼ 360 in). The joints 2 and 3 are subjected to verti-
cal loads P1¼P2¼ 444.8 kN (P1¼P2¼ 100 kips). The
design requirement is that the maximum deflection at
node 3 should not exceed a critical value. The limit-
state function for this problem can be written as

Y ¼ v3 Að Þ � vcrit ð22Þ

where A is vector of the cross-section areas of the
truss members. All cross-section areas are taken as
random variables following normal distribution with
a mean value of 16.13 cm2 (2.5 in.2) and the SD of
3.226 cm2 (0.5 in.2). To calculate deflection at node
3, first the member forces are calculated as explained

Table 16. Accuracy of GTM-SVM for reliability index pre-

diction for the propped cantilever beam problem.

vcrit

(mm)

MAE_CTM

(%)

MAE_GTM

(%)

MAE_GTM-SVM

(%)

4.0 11.4 3.6 5.2

4.5 14.8 7.2 8.1

5.0 18.6 13.2 13.3

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.

Table 14. Mean and SD values of the random

variables for the propped cantilever beam

problem.

Random variable Mean (SD)

q0 (kN/m) 20 (2)

L (m) 6 (0.3)

E (GPa) 210 (10)

d (cm) 25 (0.5)

bf (cm) 25 (0.5)

tw (cm) 2 (0.2)

tf (cm) 2 (0.2)

Note: All random variables follow normal distribution.

Table 15. Various reliability levels for the

propped cantilever beam problem.

vcrit (mm) Relativity index

4.0 2.98

4.5 3.50

5.0 3.97

Note: The reliability index values are computed through

MCS with 108 samples.

Figure 12. Loading and boundary conditions for the ten-bar

truss problem.
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by Kumar et al.,22 then the deflection can be calcu-
lated using energy methods, such as the method of
virtual forces. The value of ycrit in equation (22) is
adjusted to obtain various values of reliability indices
as listed in Table 17.

In CTM, N¼ 500, and Nt¼ 50 simulations are used
to model the tail. The MAE values are provided in the
second column of Table 18.

In GTM, Nudr¼ 4� 10þ 1¼ 41 limit-state evalu-
ations are performed for UDR and the first four stat-
istical moments are calculated. Then, EGLD is used to
compute the threshold yt. Next, the unidimensional
metamodels are generated using PRS. Then, 10,000
candidate points are generated, the approximate
limit-state values are obtained via UDR and it is
found that 1137 points are predicted to belong to the
tail region. Next, we randomly select N�Nudr¼ 459
points from the stored points, perform actual limit-
state function evaluations and find that 395 points
have the actual limit-state function values greater
than yt. Using these 395 points, tail model is con-
structed and the reliability index is computed. The
MAE values are provided in the third column of
Table 18. It is seen that GTM predictions are better
than CTM predictions.

In GTM-SVM, the UDR points and threshold esti-
mation of GTM are utilized. In addition to the 41
UDR points, Nsvm¼ 59 more training points are gen-
erated through random sampling. Using the
59þ 41¼ 100 training points (10 times the number of
variables), SVM is constructed. The graphical depic-
tion of the SVM is not provided in the article. We first
generate 10,000 candidate points, use SVM to classify
that 1640 of these points fall into the tail region.
Then, we randomly select N�Nudr�Nsvm¼ 400

points from the stored points, perform actual limit-
state function evaluations and find that 222 points
have the actual limit-state function values greater
than yt. Using these 222 points, tail model is con-
structed and the reliability index is estimated. The
MAE values are provided in the fourth column of
Table 18. We see that GTM-SVM predictions are
worse than GTM predictions, whereas GTM-SVM
predictions are better than CTM predictions.

Summary of results

The mean absolute errors obtained for all example
problems are summarized in this section. The MAE
values are normalized with the MAE of CTM and the
results are presented in Table 19. It is seen that for
two- and three-variable problems, the performance of
GTM-SVM is better than both GTM and CTM. For
four-variable problems, the performance of GTM-
SVM is slightly worse than GTM, but better than
CTM. For 7- and 10-variable problems, GTM-SVM
is definitely worse than GTM, but better than CTM.
Overall, it is observed that the performance of GTM-
SVM reduces as the number of variables in the prob-
lem increases.

Table 19 also shows for most example problems
that the ratio of the errors of the GTM and the
error of the CTM increases as the reliability level
increases. It basically indicates that the effectiveness
of the GTM over the CTM reduces as the reliability
level increases.

For low-dimension problems, one may argue that
an accurate response surface model (RSM) can be
constructed with N¼ 500 simulations and it can be
used within an MCS procedure to get more accurate
reliability predictions. Here, Kriging models are used
as the RSMs. Table 20 presents the comparison of
reliability prediction accuracies of GTM-SVM and
the use of RSM within MCS for low-dimension prob-
lems. For Goldstein–Price function, the use of RSM
within MCS leads to better reliability predictions than
the proposed method. For tuned vibration absorber
problem and the short column design problem, the
use of RSM within MCS leads to better reliability
predictions at relatively smaller reliabilities, whereas
the proposed method performs better at relatively
higher reliabilities. Amplification of errors in reliabil-
ity estimations due to small errors in RSMs at high
reliabilities was also reported in the literature by
Ramu et al.23

Concluding remarks

A new GTM, a technique that utilizes SVMs, to
reduce the amount of discarded data was proposed
in this article. The proposed method, GTM-SVM, is
based on guiding the limit-state function calculations
toward the tail region using SVM. The guidance was

Table 17. Various reliability level values for the

ten-bar truss problem.

vcrit (cm) Relativity index

55.88 2.58

63.50 3.24

76.20 3.88

Table 18. Accuracy of GTM-SVM for reliability index pre-

diction for the ten-bar truss problem.

vcrit

(cm)

MAE_CTM

(%)

MAE_GTM

(%)

MAE_GTM-SVM

(%)

55.88 7.8 2.2 3.3

63.50 15.0 4.8 6.9

76.20 21.2 15.4 17.8

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine.

Note: The number of training points including the UDR points is 100.
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achieved through a procedure based on threshold esti-
mation using univariate dimension reduction and
extended generalized lambda distribution and tail
region approximation using SVM.

The performance of GTM-SVM was tested with
mathematical as well as structural mechanics example
problems with varying number of variables ranging
from 2 to 10. The performance of GTM-SVM is com-
pared with the performance of the original GTM

and CTM. From the results obtained from these
examples, the following were observed:

. For two- and three-variable problems, the per-
formance of GTM-SVM was better than GTM as
well as CTM. For the four-variable problem, the
performance of GTM-SVM was slightly worse
than GTM, but better than CTM. For 7- and
10-variable problems, GTM-SVM was definitely
worse than GTM, but better than CTM. Based
on these findings, we can conclude that the
GTM-SVM is more suitable for low-dimensional
problems.

. It was found that the ratio of the errors of the
GTM and the GTM-SVM to the error of CTM
increased as the reliability level increased. That is,
the effectiveness of the GTM over the CTM was
reduced as the reliability level increased.

. For low-dimension problems, constructing an
accurate RSM and using it within an MCS proced-
ure provided a good alternative to the proposed
method. It was found that this alternative
approach performed better for relatively smaller
reliabilities, whereas the proposed method per-
formed better at relatively higher reliabilities.

An important conclusion of this article is that the
original GTM is suitable for high-dimension problems
(typical for real-life engineering problems), while the
GTM-SVM is more suitable for low-dimension prob-
lems with two or three variables (typical for idealized
engineering problems).

Table 20. Reliability prediction accuracies of GTM-SVM and

the use of response surface model within Monte Carlo

framework for low dimension problems.

Example

problem nvar

Relativity

index MCS(108)

% MAE*

GTM_SVM

% MAE

RSM

Goldstein–Price 2 3.25 4.0 0.1

3.75 4.1 0.2

4.25 5.0 0.6

Tuned vibration

absorber

2 2.29 6.2 0.7

3.03 2.1 2.2

3.86 6.8 7.3

Short column

design

3 2.76 3.8 0.6

3.27 5.1 6.1

3.66 14.1 25.5

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical

tail modeling; SVM: support vector machine; RSM: response surface

model.

Table 19. MAEs for all example problems normalized with the corresponding MAE of CTM.

Example problem nvar Relativity index MCS(108) NMAE CTM NMAE GTM NMAE GTM-SVM

Goldstein–Price 2 3.25 1.0 0.54 0.43

3.75 1.0 0.50 0.34

4.25 1.0 0.64 0.40

Tuned vibration absorber 2 2.29 1.0 1.15 0.95

3.03 1.0 0.42 0.30

3.86 1.0 0.62 0.40

Short column design 3 2.76 1.0 0.42 0.39

3.27 1.0 0.33 0.27

3.66 1.0 0.53 0.42

A four-variable highly nonlinear problem 4 2.94 1.0 0.30 0.31

3.68 1.0 0.55 0.59

4.62 1.0 0.59 0.65

Propped cantilever beam 7 2.98 1.0 0.32 0.46

3.50 1.0 0.49 0.55

3.97 1.0 0.71 0.72

Ten-bar truss 10 2.58 1.0 0.28 0.42

3.24 1.0 0.32 0.46

3.88 1.0 0.73 0.84

MAE: mean absolute error; GTM: guided tail modeling; CTM: classical tail modeling; SVM: support vector machine; NMAE: mean absolute error

normalized with the mean absolute error of CTM.
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[grant number MAG-109M537].

Conflict of interest

None declared.

References

1. Liu JS. Monte Carlo strategies in scientific computing.
New York: Springer-Verlag, 2001.

2. Melchers RE. Importance sampling in structural

systems. Struct Saf 1989; 6: 3–10.
3. Wu YT. Computational methods for efficient structural

reliability and reliability sensitivity analysis. AIAA J

1994; 32: 1717–1723.
4. Nie J and Ellingwood BR. Directional methods for

structural reliability analysis. Structural Saf 2000; 22:

233–249.
5. Boos D. Using extreme value theory to estimate large

percentiles. Technometrics 1984; 26: 33–39.
6. Hasofer A. Non-parametric estimation of failure prob-

abilities. In: F Casciati and B Roberts (eds)
Mathematical models for structural reliability. Boca
Raton, FL: CRC Press, pp.195–226.

7. Caers J and Maes M. Identifying tails, bounds, and end-
points of random variables. Struct Saf 1998; 20: 1–23.

8. Kim NH, Ramu P and Queipo NV. Tail modeling in

reliability-based design optimization for highly safe
structural systems. In: 47th AIAA/ASME/ASCE/AHS/
ASC structures, structural dynamics, and materials con-
ference, Newport, RI, 2006, paper no. 1825, Newport,

RI: AIAA.
9. Ramu P, Kim NH, Haftka RT, et al. System reliability

analysis and optimization using tail modeling. In: 11th

AIAA/ISSMO multidisciplinary analysis and optimiza-
tion conference, Portsmouth, VA, 2006, paper no.
7012, Portsmouth, VA: AIAA.

10. Ramu P. Multiple tail models including inverse measures
for structural design under uncertainties. PhD Thesis,
University of Florida, Gainesville, FL, 2007.

11. Mourelatos ZP, Song J and Nikolaidis E. Reliability
estimation of large-scale dynamic systems by using re-a-
nalysis and tail modeling. In: SAE world congress &

exhibition, Detroit, MI, April 2009, Paper no. 2009-
01-0200.

12. Acar E. Guided tail modeling for efficient and accurate

reliability estimation of highly safe mechanical systems.
Proc IMechE, Part C, J Mechanical Engineering Science
2011; 225: 1237–1251.

13. Rahman S and Xu H. A univariate dimension-
reduction method for multi-dimensional integration in
stochastic mechanics. Probab Eng Mech 2004; 19:

393–408.
14. Karian ZE, Dudewicz EJ and McDonald P. The

extended generalized lambda distribution system for fit-
ting distributions to data: history, completion of theory,

tables, applications, the ‘‘final word’’ on moment fits.
Commun Stat Simul 1996; 25: 611–642.

15. Fournier B, Rupin N, Bigerelle M, et al. Estimating the

parameters of a generalized lambda distribution.
Comput Stat Data Anal 2007; 51: 2813–2835.

16. Acar E, Rais-Rohani M and Eamon C. Reliability esti-

mation using univariate dimension reduction and
extended generalized lambda distribution. Int J Reliab
Saf 2010; 24: 166–187.

17. Vapnik V. The nature of statistical learning theory. New
York: Springer-Verlag, 2000.

18. Gunn SR. Support vector machines for classification
and regression. Technical Report, University of

Southampton, UK, 1997.
19. Wang WJ, Xu ZB, Lu WZ, et al. Determination of the

spread parameter in the Gaussian kernel for classifica-

tion and regression. Neurocomputing 2003; 55: 643–663.
20. Cristianini N and Shawe-Taylor J. An introduction to

support vector machines and other kernel-based

learning methods. Cambridge, UK: Cambridge
University Press.

21. Abe S. Support vector machines for pattern classification.
London: Springer.

22. Kumar S, Pippy RJ, Acar E, et al. Approximate prob-
abilistic optimization using exact-capacity-approxi-
mate-response-distribution (ECARD). Struct

Multidiscip O 2009; 38: 613–626.
23. Ramu P, Kim NH and Haftka RT. Error amplification

in failure probability estimates of small errors in surro-

gates. In: SAE 2007 world congress, Detroit, MI, April
16–19, Paper No. 2007-01-0549.

2794 Proc IMechE Part C: J Mechanical Engineering Science 227(12)


