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Abstract: This paper explores the effects of the correlation model, the trend model, and the number of training points on the accuracy of
Kriging metamodels. Gaussian correlation models are found to be superior to exponential and linear correlation models. No particular trend
model is found to be better than the other models. The number of training points used in constructing the Kriging metamodels is observed to
change the relative performances of the trend and the correlation functions. The leave-one-out cross-validation error is found to become a
better surrogate for the actual error, as the number of training points is increased. Finally, the use of an ensemble of metamodels is discussed
and it is found that using an ensemble may improve the accuracy.
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1. Introduction

Computer simulations are used in many disciplines includ-
ing astrophysics, biology, chemistry, economics, engineering,
entertainment, and social sciences. For instance, in the engi-
neering discipline, design of advanced vehicles (e.g. aircraft,
automobiles) relies on high-fidelity computer simulations for
accurate analysis of system characteristics. Simulation mod-
els of acceptable accuracy have required at least 6–8 h of CPU
time throughout the last 30 years, even though computer pro-
cessing power along with memory and storage capacities have
drastically increased (Venkataraman & Haftka, 2004). This
lack of computation speed-up can be explained by the fact
that the fidelity and the complexity of the models have also
steadily increased over the same period. When these compu-
tationally expensive high-fidelity simulations are used within
a design optimization framework, the computational cost
becomes excessive. In addition, if gradient-based techniques
are used for optimization, the accuracy and the convergence
of the optimization solution can suffer, since the objective
function or the constraint functions can be noisy. Hence, it is
common practice to replace the computationally expensive
simulations with smooth analytic functions that can serve
as surrogate models for efficient response estimation. These
approximate models are also called metamodels, emulators,
etc.

Metamodelling techniques aim at approximating the re-
sponse data at the specified training points that are selected
using a design of experiments technique (e.g. central compos-
ite design, Latin hypercube design). There are many meta-
modelling techniques including polynomial response surface
approximations (Myers et al., 2009), multivariate adaptive
regression splines (Friedman, 1991), radial basis functions
(Hardy, 1971; Mullur & Messac, 2005), neural networks
(Smith, 1993), support vector regression (Gunn, 1997; Clarke

et al., 2005), and Kriging (Sacks et al., 1989; MacKay, 1998;
Simpson et al., 2001b; Lophaven et al., 2002; Martin & Simp-
son, 2005; Wang et al., 2005).

This study focuses on Kriging metamodels that have
shown successful applications in many disciplines of engi-
neering design. In aerospace design, amongst many exam-
ples, Kriging is used for optimization of an aerospike noz-
zle problem (Simpson et al., 2001a), aerodynamic design of
centrifugal compressor’s impeller (Wang et al., 2006), and
performing multi-objective design exploration for a three-
element airfoil consisted of a slat, a main wing, and a
flap (Kanazaki et al., 2007). The Kriging applications in
other engineering disciplines include the studies for elec-
tromagnetic device optimization (Lebensztajn et al., 2004),
automobile crashworthiness design (Forsberg & Nilsson,
2005), structural reliability analysis (Kaymaz, 2005), struc-
tural analysis of concrete dams (McLean et al., 2006),
and structural optimization of an automotive door (Lee &
Kang, 2007).

The trend and the correlation functions used in Kriging
metamodels affect the accuracy of the constructed metamod-
els. There is limited guidance in the literature on selecting the
form of the trend and the correlation functions (Martin &
Simpson, 2005). Stein (1999) noted that the Matern family of
functions is a good candidate. Simpson et al. (2001b) noted
that zeroth-order trend and Gaussian correlation functions
are the most commonly used models in engineering applica-
tions. The main contribution of this paper is to address the
issue of how to improve the accuracy of Kriging metamod-
els. For this purpose, the effects of choosing the proper trend
and correlation models, the effects of the number of training
points, the effectiveness of cross-validation error to represent
the actual error at the test points, and the use of an ensemble
of Kriging metamodels are investigated.
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The remainder of the paper is organized as follows. Sec-
tion 2 presents the basics of Kriging metamodels. Section 3
first discusses different trend and correlation models used in
Kriging metamodels. Then, a weighted sum formulation is
presented in Section 3 that combines various Kriging meta-
models with different combinations of trend and correlation
models in the form of an ensemble. Section 4 describes the
benchmark problems considered in this study. The results of
this study are presented and discussed in Section 5, followed
by some concluding remarks provided in Section 6.

2. Kriging metamodels

The basic assumption in Kriging metamodels is that the es-
timation of a response function y, expressed in terms of the
input variables x, is in the following form:

ŷ (x) = pT (x)β + Z (x) (1)

The trend model pT (x) β is a polynomial of given order
(e.g. first order in Figure 1) that globally approximates the
response. The departure model Z(x) is the stochastic compo-
nent that generates deviations such that the Kriging model
interpolates the sampled response data (see Figure 1).

Amongst the trend models, the zeroth-order (i.e. a con-
stant value) (Simpson et al., 2001b) and the first-order (i.e.
linear) (Zerpa et al., 2005) polynomials are the most com-
monly used models. Figure 2 depicts the Kriging metamod-
els with constant and linear trend models over the same data
points. In this study, the use of a second-order (i.e. quadratic)
polynomial is also considered.

The stochastic component has a mean value of zero and
the following covariance:

COV
[
Z

(
xi) , Z

(
x j)] = σ 2R

[
R

(
xi, x j)] (2)

where R is an N × N correlation matrix if N is the number of
data points, R

(
xi, x j

)
is the correlation function between the

two data points xi and xj. The correlation models considered
in this study have the following mathematical form:

R (θ, d ) =
L∏

k=1

Rk

(
θk, dk

)
(3)

where Rk is the correlation function defined in terms of the
unknown model parameters θk, and the distance dk between
the kth components of the two data points xi and xj (dk =

Figure 1: Response approximation via Kriging metamodel

xi
k − xj

k), and L is the number of input variables. The most
commonly used correlation function is the Gaussian function
(Wang et al., 2005), which has the form of

R (θ ) =
L∏

k=1

exp
(−θkd2

k

)
(4)

In this paper, two additional correlation models (exponen-
tial and linear) are also considered. The mathematical forms
of the exponential and the linear correlation models are given
in equations (5) and (6), respectively.

R (θ ) =
L∏

k=1

exp
(−θk

∣∣dk

∣∣)(exponential) (5)

R (θ ) =
L∏

k=1

max
{
0, 1 − θk

∣∣dk

∣∣}(linear) (6)

The variation of the correlation function, Rk, with the
distance, dk, for exponential, Gaussian, and linear functions
is depicted in Figure 3.

Once the correlation function has been estimated, the re-
sponse y in equation 1 is predicted as

ŷ (x) = pT (x) β̂ + r̂T (x) R̂−1 (
F − Pβ̂

)
(7)

where the vectors r̂ and β̂ are given by

r̂T (x) = [
R̂

(
x, x1) , R̂

(
x, x2) , . . . , R̂

(
x, xN)]T

(8.1)

β̂ = (PTR̂−1P)−1PTR̂−1F (8.2)

where r̂T (x) is the correlation vector of length N between a
prediction point x and the N sampling points, the R̂ matrix
is obtained by using the predicted values θ̂k in equation (3),
F represents the responses at the N points, and P is obtained
by evaluating p(x) array at the N points.

The variance of the output y (or the variance of Z in
equation (1) can be estimated as

σ̂ 2 =
(
F − Pβ̂

)T
R̂−1

(
F − Pβ̂

)
N

(9)

The estimator of the predictor variance is presented in lit-
erature (see Den Hertog et al., 2006), but this paper does not
use the predictor variance; instead it uses the cross-validation
error.

The unknown model parameters θk can be estimated
by solving the following constrained maximization problem
(Lophaven et al., 2002):

Max � (�) = − [
N ln(σ̂ 2) + ln |R|]

s.t. � > 0
(10)

where | R | is the determinant of R, � is the vector of un-
known parameters θk, and both σ̂ and R are functions of �.
In this study, the MATLAB Kriging toolbox developed by
Lophaven et al. (Martin & Simpson, 2005) is used.

This paper focuses on single output models. When a mul-
tiple output system is of interest, each output can be treated
independently while ignoring the correlation between them.
In literature, however, there exist some studies that account

C© 2012 Wiley Publishing Ltd Expert Systems, November 2013, Vol. 30, No. 5 419



Figure 2: Kriging metamodels with (A) constant and (B) linear trend model.

for the correlation between the outputs (Santner et al., 2003;
Li et al., 2006).

3. An ensemble of different Kriging models

The predictive capability of Kriging metamodels may de-
pend on the trend model and the correlation model used.
The traditional approach is to select a trend model and a
correlation model based on experience or intuition. A more
judicious way to choose trend and correlation models may
be as follows. First, various Kriging metamodels with dif-
ferent combinations of trend models (e.g. constant, linear,
quadratic) and correlation functions (e.g. exponential, Gaus-
sian, linear) are constructed. Then, the combination with the
greatest accuracy is usually chosen, while the other combi-
nations are discarded. Instead, all the constructed Kriging
metamodels can be combined in the form of an ensemble,
which takes advantage of the prediction ability of each indi-
vidual metamodel to increase the accuracy of the predicted
response. The reader is referred to other studies (Zerpa et al.,
2005; Goel et al., 2007; Acar & Rais-Rohani, 2009) for more
information on the ensemble of metamodels. The remainder
of this section provides brief information on the ensemble of
Kriging metamodels.

The idea of using an ensemble of Kriging metamodels is
borrowed from the work of Bishop (1995) on neural net-
works. Bishop (1995) combined different neural networks in

the form of a committee to take advantage of the predictive
capabilities of the individual neural networks. In this work,
Kriging metamodels composed of different combinations of
trend and correlation models are combined in the form of an
ensemble using a weighted sum formulation:

ŷens (x) =
M∑

i=1

wi (x) ŷi (x) (11)

where ŷens is the ensemble prediction for the response, M
is the number of individual Kriging metamodels used in the
ensemble, wi is the weight factor for the ith individual Kriging
metamodel (0 ≤ wi ≤ 1), ŷi is the response estimated by the
ith Kriging metamodel, and x is the vector of independent
input variables.

The weight factors in equation (11) are calculated while
satisfying the requirement

M∑
i=1

wi(x) = 1 (12)

In general, the weight factors are selected such that the
metamodels with high accuracy have large weight factors
and vice versa. Bishop (1995) proposed selecting the weight
factors as

wi =
M∑
j=1

(
C−1)

i j

/
M∑

m=1

M∑
j=1

(
C−1)

m j (13)

Figure 3: Correlation functions for Kriging metamodels: (A) exponential, (B) Gaussian, and (C) linear function. Here, the
values of θk are 0.2, 1.0, and 5.0 for the dashed line, the solid line, and the dash-dotted line, respectively.
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where C is the estimated error covariance matrix whose ele-
ments are calculated from

Ci j = 1
N

N∑
k=1

(
ŷk

i − yk) (
ŷk

j − yk
)

(14)

where yk is the true response value corresponding to the input
vector xk, with ŷk

i and ŷk
j the corresponding predicted values

by the ith and jth neural networks, respectively.
Selecting weight factors from equation (13) minimizes the

error in the whole domain of input variables based on the
assumption that the errors of different neural networks are
uncorrelated and unbiased (that is, with zero mean), which is
not always true. In addition, even though this approach may
be suitable for application to a committee of neural networks,
it may be unsuitable for ensembles based on other metamod-
elling techniques. In the case of neural networks, since there
is a difference between the true response computed at each
training point and the prediction of a neural network, ŷk

i ,
the error correlation matrix C is non-vanishing. For Krig-
ing metamodels, however, if the error metric is chosen as the
difference between the predicted and the true responses at
the training points (see equation (14)), then the difference
is zero (because Kriging metamodels are exact interpola-
tors) and the correlation matrix C becomes a null matrix.
A possible solution to this problem is to use leave-one-out
cross-validation errors.

In this study, the weight factors are selected by solving
an optimization problem of the form (Acar & Rais-Rohani,
2009)

Find wi, i = 1, . . . , M (15.1)

min GMSE = 1
N

N∑
k=1

(
yk − �y

(k)

ens

)2
(15.2)

s.t.
M∑

i=1

wi = 1 (15.3)

where yk is the true response at xk and ŷ(k)
ens is the correspond-

ing predicted value from the ensemble model constructed
using all except the kth design point. As evident by (15.2),
the greater the number of training points the higher the cost
of calculating the GMSE metric. This metric gives an aver-
age error in the estimated response at the selected training
points. Therefore, depending on the number and the distribu-
tion of training points, GMSE may not necessarily provide
the evidence of the global error in the whole domain of input
variables. One of the objectives of this paper is to investigate
the effect of the number of training points on the efficiency
of GMSE in providing a global error measure.

4. Test problems and numerical procedure

The following six benchmark functions are used as test prob-
lems in this study.

i. A cubical function (Mullur & Messac, 2005)

y
(
x1, x2

) = 0.5x3
1 + x2

2 − x1x2 − 7x1 − 7x2 (16)

where x1, x2 ∈ [5, 10].

Table 1: Parameters used in Hartman-3 function

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

ii. Branin-Hoo (Dixon & Szego, 1978)

y
(
x1, x2

) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10
(

1 − 1
8π

)

× cos
(
x1

) + 10 (17)

where x1 ∈ [−5, 10], and x2 ∈ [0, 15].
iii. Camelback (Dixon & Szego, 1978)

y(x1, x2) =
(

4 − 2.1x2
1 + x4

1

3

)
x2

1 + x1x2

+ (−4 + 4x2
2

)
x2

2 (18)

where x1 ∈ [−3, 3], and x2 ∈ [−2, 2].
iv. Goldstein-Price (Dixon & Szego, 1978)

y
(
x1, x2

) =
[

1 + (
x1 + x2 + 1

)2 (
19 − 4x1 + 3x2

1 − 14x2

+ 6x1x2+3x2
2

)][
30+ (

2x1−3x2

)2 (
18−32x1

+ 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)]
(19)

where x1, x2 ∈ [−2, 2].
v. A sinusoidal function (Mullur & Messac, 2005)

y (x) = x1 sin
(
x2

) + x2 sin
(
x1

)
(20)

where x1, x2 ∈ [−2π, 2π ].
vi. Hartman-3 (Dixon & Szego, 1978)

y (x) = −
m∑

i=1

ci exp

⎡
⎣−

n∑
j=1

ai j (xj − pi j )
2

⎤
⎦ (21)

where xi ∈ [0, 1]. In this study, the three-variable (n = 3)
model of this function is considered. The values of function
parameters ci, aij, and pij for Hartman-3 function are given
in Table 1. The value of the parameter m for both cases is
taken as 4.

4.1. Numerical procedure

The first step of constructing a metamodel is to choose the
Kriging metamodel parameters, order of polynomial, and
type of correlation function. Then, a design of experiments
type is selected to determine the points in the design space
where the numerical experiments are conducted. The selected
points are called training points (or sampling points). Next,
numerical experiments are performed at the training points.
Then, the Kriging metamodel is constructed using the de-
sign of experiments information and the results of numerical
experiments, and the accuracy of the metamodel is evaluated
using the normalized root mean square error (NRMSE).
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In this study, the maximin space-filling technique proposed
in Mourelatos et al. (2006) is used to generate the training
points. The number of training points is varied and its effect
on the results is explored. The benchmark functions are eval-
uated at the selected training points, and Kriging metamod-
els with various trend and correlation function combinations
(nine combinations overall) are constructed. Then, the accu-
racies of the constructed metamodels are evaluated using a
large number of test points generated on a uniform grid. For
the two-dimensional functions, 322 = 1024 test points, and
for the three-dimensional function 103 = 1000 test points are
used. NRMSE is used as the error metric to quantify the
accuracy of the metamodels

NRMSE =

√√√√√√√√
Nt∑
i=1

[
(yt )i − (ŷt )i

]2

Nt∑
i=1

(yt )
2
i

(22)

where Nt is the number of test points, (yt )i and (ŷt )i are
the true function value and the metamodel prediction of the
function value at the ith test point, respectively. The dif-
ference between equations (15.2) and (22) is that the cross-
validation error is used in equation (15.2) while the error at
test points is used in equation (22).

It should be noted that the use of 1000 (approximately)
test points is only feasible for these academic mathematical
test problems. For real-life problems, since the evaluation of a
response function value takes about 6–8 h (Venkataraman &
Haftka, 2004), using 1000 (or 1024) test points is not feasible.
Instead, either a small number of test points is used (which
can only give a questionable accuracy) or no test points are
used at all but cross-validation error is used. In this study,
normalized cross-validation error, denoted as NRMSECV, is
also used, and the efficiency in representing the actual error
is investigated

NRMSECV =

√√√√√√√√
N∑

i=1

[
yi − ŷ−i

i
]2

N∑
i=1

(
yi

)2
(26)

where ŷ−i
i is the function prediction of the Kriging meta-

model constructed without using the ith training point.

5. Results

In this section, first the effects of the trend and the corre-
lation models on the accuracy of the Kriging metamodels
are investigated. Next, the effect of the number of training
points on the relative performances of the trend and the cor-
relation models is analysed. Then, the inter-relation of the
cross-validation error and the actual error is explored. Fi-
nally, the accuracy of the best individual Kriging metamodel
is compared to that of the ensemble of Kriging metamodels.

5.1. Effect of the trend model

The effects of the trend model on the accuracy of Kriging
metamodels for the Branin-Hoo and the Camelback func-
tions (chosen as representative examples) are depicted in

Figures 4–6. The exponential, the Gaussian, and the linear
correlation models are used, respectively.

When the exponential correlation function is used, Figure
4 shows that the zeroth-order trend model worked best for
the Branin-Hoo function, while the quadratic model worked
best for the Camelback function.

When the Gaussian correlation function is used, Figure
5 shows that the quadratic trend model worked best for the
Branin-Hoo function, while the constant and the linear mod-
els both worked best for the Camelback function.

When the linear correlation function is used, Figure 6
shows that the quadratic trend model showed a clear superi-
ority over the constant and the linear trend models for both
the Branin-Hoo and the Camelback functions.

Similarly, for the other benchmark functions, it is found
that the performance of the trend models depends on the
correlation function used. No particular trend model is found
to outperform the other models for all test problems. It is
also found that the number of training points influences the
effectiveness of the trend models.

5.2. Effect of the correlation model

The effects of the correlation model on the accuracy of Krig-
ing metamodels for the Branin-Hoo and the Camelback
functions (chosen as representative examples) are depicted
in Figures 7–9. The constant, the linear, and the quadratic
trend models are used, respectively.

Figures 7–9 show for the Branin-Hoo and the Camel-
back functions that the Gaussian correlation model outper-
forms the other correlation models, and the linear correla-
tion model displays the worst performance. These findings
are also valid for all the test functions investigated. Hence,
regardless of the trend model chosen, the Gaussian correla-
tion model performs best, and the linear correlation model
performs worst.

5.3. Effect of the number of training points

In general, as the number of training points increased, the ac-
curacy of the metamodels improves. In addition, the number
of training points may also affect the relative performances
of the trend and the correlation models. The effect of the
number of training points on the relative performances of
the trend models for the Goldstein–Price function is pre-
sented in Figure 10(A). When the number of training points
is smaller than 35, the quadratic trend model outperforms all
other trend models. As the number of training points is larger
than 35, on the other hand, the constant and the linear mod-
els outperform the quadratic trend model. Similarly, Figure
10(B) shows for the Hartman-3 function that the linear and
the quadratic trend models perform better than the constant
model when the number of training points is smaller than 35,
while the constant model performs best when the number of
training points is larger than 35.

Figure 11(A) depicts the effect of the number of training
points on the relative performances of the correlation models
for the Goldstein-Price function. The Gaussian correlation
model performs best when the number of training points
is between 10 and 20, the exponential correlation model
performs best when the number of training points is be-
tween 20 and 35, and again the Gaussian correlation model
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Figure 4: Effects of the chosen trend model on the accuracy of the constructed Kriging metamodels when exponential correlation
model is used in the metamodels.

Figure 5: Effects of the chosen trend model on the accuracy of the constructed Kriging metamodels when Gaussian correlation
model is used in the metamodels.

performs best when the number of training points is larger
than 35. Similarly, for the Hartman-3 function, the Gaussian
correlation model performs best when the number of train-
ing points is between 20 and 45, the exponential correlation
model performs best when the number of training points is
between 45 and 60, and the Gaussian correlation model per-
forms best when the number of training points is larger than
60.

5.4. Inter-relation of the cross-validation error and the actual
error

Inter-relation between the cross-validation error and the ac-
tual error for the Branin-Hoo function (chosen as the rep-
resentative example) are displayed in Figure 12. Since the
linear correlation model is found to be the worst choice, it is
excluded from the analysis. Overall, three trend models and
two correlation models (six combinations) are considered,

Figure 6: Effects of the chosen trend model on the accuracy of the constructed Kriging metamodels when linear correlation model
is used in the metamodels.
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Figure 7: Effects of the chosen correlation model on the accuracy of the constructed Kriging metamodels when zeroth-order trend
model is used in the metamodels.

Figure 8: Effects of the chosen correlation model on the accuracy of the constructed Kriging metamodels when linear trend model
is used in the metamodels.

shown in Figures 12(A) through (E). It is seen that the gen-
eral trend of the cross-validation error and the actual error
is similar. This finding is also valid for the other benchmark
problems. The next section will analyse whether the use of
cross-validation or actual errors leads to the selection of the
same trend/correlation model combinations.

5.5. The advantages of using an ensemble of Kriging
metamodels

Sections 5.1 through 5.3 showed that the performances
of the constructed metamodels depend on the selected
trend and correlation models as well as the training data
set. In general, the most accurate trend and correlation

Figure 9: Effects of the chosen correlation model on the accuracy of the constructed Kriging metamodels when quadratic trend
model is used in the metamodels.
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Figure 10: Effect of the number of training points on the performance of the trend models. Gaussian correlation model is used in
the metamodels.

Figure 11: Effect of the number of training points on the performance of the correlation models. Linear trend model is used in the
metamodels.

models are not known a priori for a given problem. Therefore,
instead of using a Kriging metamodel with a particular trend
and correlation model, it may be more advantageous to use
an ensemble of Kriging metamodels. This section analyses
the effectiveness of using an ensemble of Kriging metamod-
els.

For the Branin-Hoo function (chosen as the repre-
sentative example), the normalized cross-validation errors
(NRMSECV) of the individual Kriging metamodels, and the
ensemble of metamodels are presented in Table 2. The cross-
validation error of the ensemble of Kriging metamodels is
smaller than the best individual Kriging metamodel. This re-
sult is not very surprising because the ensemble is formed via
solving an optimization problem that minimizes the cross-
validation error. Therefore, the cross-validation error of the
ensemble is always smaller than or equal to that of the best
individual metamodel. This finding is also valid for all the
benchmark problems investigated.

Instead of cross-validation error comparison, it is more
important to compare the actual errors of the metamodels.
For the Branin-Hoo function, the actual errors (NRMSE)
of the individual Kriging metamodels and the ensemble of
metamodels are presented in Table 3. If the number of train-
ing points is larger than or equal to 30, the actual error of the
ensemble of Kriging metamodels is close to the actual error
of the best individual Kriging metamodel.

Comparing Tables 2 and 3 it is seen that if the number of
training points are small, different trend/correlation model
combinations can be selected as the most accurate whether
the cross-validation or the actual error is used. As the number
of training points increases, on the other hand, usually the
same trend/correlation model combination is selected via
the cross-validation or the actual error. This may indicate
that the cross-validation error becomes a good surrogate for
the actual error as the number of training points increases.

Finally, Table 4 shows the comparison of the accuracy of
the ensemble (using NRMSE) to those of the first, the second,
and the third most accurate individual metamodels. It is seen
that if the number of training points is not sufficiently large,
the ensemble is not better than the most accurate metamodel,
almost as good as the second most accurate, and always bet-
ter than the third most accurate metamodel. However, as the
number of training points increases, the ensemble becomes
as good as the most accurate metamodel.

6. Concluding remarks

This paper analysed the effectiveness of the type of the cho-
sen trend and correlation models, the number of training
points, and the use of an ensemble of Kriging metamod-
els for improving the accuracy of Kriging metamodels. The
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Figure 12: The variation of the cross-validation error and the actual error for the Branin-Hoo function. Linear correlation models
are excluded in comparison.

investigation on six different mathematical benchmark prob-
lems resulted in the following findings.

� For the benchmark problems considered, the Gaussian
correlation models resulted in the most accurate results.
For the trend models, on the other hand, no particular
trend model was found to be superior to the other models.

� The number of training points was found to have a sub-
stantial effect on the relative performances of the trend
and the correlation functions to one another.

� The effectiveness of cross-validation errors in providing a
global error measure was analysed. It was found that as the

number of training points is increased, the cross-validation
error might become a better surrogate for the actual
error.

� The potential of accuracy improvement by using an en-
semble of Kriging metamodels is investigated. It was found
that the cross-validation error of the ensemble was always
smaller than that of the individual metamodel with the
smallest cross-validation error. It was also found that that
if the number of training points is not sufficiently large, the
ensemble is not better than the most accurate metamodel,
almost as good as the second most accurate, and always
better than the third most accurate metamodel. However,
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Table 2: Normalized cross-validation errors (NRMSECV) for individual Kriging metamodels and the ensemble of metamodels
for the Branin-Hoo function. The individual Kriging metamodel with the smallest NRMSECV is indicated with a bold font

N* C-E* L-E* Q-E* C-G* L-G* Q-G* C-L* L-L* Q-L* ENS*

10 85.33 112.41 114.66 86.04 112.79 114.56 82.48 112.40 114.67 78.49
15 77.24 98.71 85.62 44.22 50.90 47.37 80.00 102.69 93.64 40.97
20 60.17 77.09 49.05 11.29 14.77 13.56 77.79 91.43 73.95 11.18
25 24.01 24.32 24.28 3.43 3.14 3.22 74.69 82.42 58.11 3.06
30 22.97 23.17 24.55 3.34 3.52 2.45 72.38 78.53 55.06 2.41
35 20.74 20.99 20.12 2.80 2.93 1.95 73.69 79.25 53.02 1.95
40 19.41 19.50 18.84 2.13 2.19 1.73 73.95 78.34 52.39 1.65
45 16.71 16.65 13.56 1.34 1.32 0.68 72.46 75.89 48.55 0.68
50 16.16 16.09 12.49 0.98 0.92 0.66 73.39 75.06 47.91 0.66
55 15.21 15.12 11.75 0.92 0.86 0.56 72.61 73.71 48.46 0.56
60 13.96 13.86 10.16 0.46 0.42 0.19 72.91 73.21 46.95 0.19

*N, number of training points; C-E, zeroth-order trend model, exponential correlation model; L-E, linear trend model, exponential correlation
model; Q-E, quadratic trend model, exponential correlation model; C-G, zeroth-order trend model, Gaussian correlation model; L-G, linear
trend model, Gaussian correlation model; Q-G, quadratic trend model, Gaussian correlation model; C-L, zeroth-order trend model, linear
correlation model; L-L, linear trend model, linear correlation model; Q-L, quadratic trend model, linear correlation model; ENS, ensemble of
Kriging metamodels.

Table 3: Normalized actual errors (NRMSE) for individual Kriging metamodels and the ensemble of metamodels for the
Branin-Hoo function. The individual Kriging metamodel with the smallest NRMSE is indicated with a bold font

N
*

C-E
*

L-E
*

Q-E
*

C-G
*

L-G
*

Q-G
*

C-L
*

L-L
*

Q-L
*

ENS
*

10 63.34 78.21 51.61 64.52 68.83 49.08 74.73 78.42 53.48 61.49
15 26.75 26.83 25.97 16.51 15.15 15.96 69.87 74.08 46.71 16.18
20 21.68 22.75 33.57 15.35 14.38 15.11 68.12 68.89 43.62 15.22
25 17.51 17.67 24.74 11.93 11.55 6.34 69.65 69.13 41.35 9.16
30 9.46 9.52 11.14 2.09 2.20 2.11 69.74 66.65 38.67 2.07
35 5.52 5.47 7.97 0.61 0.60 0.64 67.74 64.79 37.56 0.64
40 5.13 5.17 6.58 0.43 0.39 0.35 66.92 63.94 36.92 0.36
45 4.94 4.97 5.04 0.35 0.30 0.31 67.02 62.85 36.15 0.31
50 4.63 4.66 4.85 0.13 0.12 0.11 66.14 62.39 35.90 0.11
55 4.52 4.55 4.73 0.13 0.10 0.09 65.96 62.25 35.00 0.09
60 4.54 4.56 4.70 0.079 0.093 0.077 65.50 61.85 35.00 0.077

*See footnote below Table 2.

Table 4: Comparing the accuracy of the ensemble (using
NRMSE) to those of the first, second, and third most ac-
curate individual metamodels for different number of training
points for the Branin-Hoo function*

N
**

Better than 1st? Better than 2nd? Better than 3rd?

10 No No Yes
15 No No Yes
20 No No Yes
25 No Yes Yes
30 Yes Yes Yes
35 No No Yes
40 No Yes Yes
45 No Yes Yes
50 Yes Yes Yes
55 Yes Yes Yes
60 Yes Yes Yes

*When the error of the ensemble was equal to the error of the individ-
ual model, the individual model was taken better than the ensemble.
**Number of training points.

as the number of training points increases, the ensemble
becomes as good as the most accurate metamodel.

� Overall, it can be summarized that the best individual
Kriging metamodel is usually better than the ensemble.
However, which individual metamodel is really the best is
unknown in practice. Therefore cross-validation is used,

but then the ensemble is always estimated to be the best.
The cross-validation gives a good estimate only if ’enough’
training points are available.
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DIXON, L.C.W. and G.P. SZEGÖ (1978) Towards Global Optimization
2, Amsterdam, The Netherlands: North Holland.

FORSBERG, J. and L. NILSSON (2005) On polynomial response surfaces
and kriging for use in structural optimization of crashworthiness,
Structural and Multidisciplinary Optimization, 29, 232–243.

FRIEDMAN, J.H. (1991) Multivariate adaptive regression splines, The
Annals of Statistics, 19, 1–141.

GOEL, T., R.T. HAFTKA, W. SHYY and N.V. QUEIPO (2007) Ensemble
of surrogates, Structural and Multidisciplinary Optimization, 33,
199–216.

GUNN, S.R. (1997) Support Vector Machines for Classification and
Regression, Technical Report, UK: Image Speech and Intelligent
Systems Research Group, University of Southampton.

C© 2012 Wiley Publishing Ltd Expert Systems, November 2013, Vol. 30, No. 5 427



HARDY, R.L. (1971) Multiquadratic equations of topography and
other irregular surfaces, Journal of Geophysical Research, 76, 1905–
1915.

KANAZAKI, M., K. TANAKA, S. JEONG and K. YAMAMOTO (2007)
Multi-objective aerodynamic exploration of elements’ setting for
high-lift airfoil using Kriging model, Journal of Aircraft, 44, 858–
864.

KAYMAZ, I. (2005) Application of Kriging method to structural reli-
ability, Structural Safety, 27, 133–151.

LEBENSZTAJN, L., C.A.R. MARRETTO, M.C. COSTA and J.L. COULOMB

(2004) Kriging: a useful tool for electromagnetic device optimiza-
tion, IEEE Transactions on Magnetics, 40, 1196–1199.

LEE, K-H. and D-H. KANG (2007) Structural optimization of an auto-
motive door using the Kriging interpolation method, Proceedings
of the Institution of Mechanical Engineers – Part D – Journal of
Automobile Engineering, 221, 1525–1534.

LI, G., S. AZARM, A. FARHANG-MEHR and A.R. DIAZ (2006) Approx-
imation of multiresponse deterministic engineering simulations:
a dependent metamodeling approach, Structural and Multidisci-
plinary Optimization, 31, 260–269.

LOPHAVEN, S.N., H.B. NIELSEN and J. SØNDERGAARD (2002) DACE
– A MATLAB Kriging Toolbox, Informatics and Mathematical
Modeling, Technical University of Denmark, Lyngby, Denmark.

MACKAY, D.J.C. (1998) Introduction to Gaussian processes, in Neural
Networks and Machine Learning, C.M. Bishop (ed), Vol. 168 of
NATO ASI Series, Berlin: Springer, 133–165.

MARTIN, J.D. and T.W. SIMPSON (2005) Use of Kriging models to
approximate deterministic computer models, AIAA Journal, 43,
853–863.

MCLEAN, P., P. LEGER and R. TINAWI (2006) Post-processing of fi-
nite element stress fields using dual Kriging based methods for
structural analysis of concrete dams, Finite Elements in Analysis &
Design, 42, 532–546.

MOURELATOS, Z.P., R.C. KUCZERA and M. LATCHA (2006) An ef-
ficient Monte Carlo reliability analysis using global and local
metamodels, in Proceedings of 11th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, 6–8 September,
Portsmouth, VA.

MULLUR, A.A. and A. MESSAC (2005) Extended radial basis func-
tions: more flexible and effective metamodeling, AIAA Journal,
43, 1306–1315.

MYERS, R.H., D.C. MONTGOMERY and C.M. ANDERSON-COOK

(2009) Response Surface Methodology: Process and Product Op-
timization Using Designed Experiments, 3rd edn, New York, NY:
Wiley.

SACKS, J., W.J. WELCH, T.J. MITCHELL and H.P. WYNN (1989) Design
and analysis of computer experiments, Statistical Science, 4, 409–
435.

SANTNER, T.J., B.J. WILLIAMS and W.I. NOTZ (2003) The design and
analysis of computer experiments, New York: Springer-Verlag.

SIMPSON, T.W., T.M. MAUERY, J.J. KORTE and F. MISTREE (2001a)
Kriging models for global approximation in simulation-based mul-
tidisciplinary design optimization, AIAA Journal, 39, 2233–2241.

SIMPSON, T.W., J.D. PEPLINSKI, P.N. KOCH and J.K. ALLEN (2001b)
Metamodels for computer based engineering design: survey and
recommendations, Engineering with Computers, 17, 129–150.

SMITH, M. (1993) Neural Networks for Statistical Modeling, New
York: Von Nostrand Reinhold.

STEIN, M.L. (1999) Interpolation of Spatial Data: Some Theory for
Kriging, Springer Series in Statistics, New York: Springer-Verlag.

VENKATARAMAN, S. and R.T. HAFTKA (2004) Structural optimization
complexity: what has Moore’s law done for us? Structural and
Multidisciplinary Optimization, 28, 375–387.

WANG, J.M., D.J. FLEET and A. HERTZMANN (2005) Gausssian process
dynamical models, in Proceedings of the 18th Advanced Neural
Information Processing Systems Cenference, December, Vancouver,
Canada, 1441–1448.

WANG, X.F., G. XI and Z.H. WANG (2006) Aerodynamic optimization
design of centrifugal compressor’s impeller with Kriging model,
Journal of Power and Energy, 220, 589–597.

ZERPA, L., N.V. QUEIPO, S. PINTOS and J. SALAGER (2005) An op-
timization methodology of alkaline–surfactant–polymer flooding
processes using field scale numerical simulation and multiple sur-
rogates, Journal of Petroleum Science and Engineering, 47, 197–
208.

The author

Erdem Acar

Erdem Acar received his BS and MS degrees in Aerospace
Engineering at the Middle East Technical University in 1999
and 2002, respectively, and his PhD degree in the same field at
the University of Florida in 2006. He served as postdoctoral
research associate at the Center for Advanced Vehicular Sys-
tems of the Mississippi State University from 2006 to 2008.
He began his academic career in 2008 at the TOBB Uni-
versity of Economics and Technology of Turkey, where he
is currently an Associate Professor working at the Depart-
ment of Mechanical Engineering. He is actively engaged in
teaching and research. His primary areas of teaching include
structural analysis and reliability assessment of mechani-
cal systems. He is the author of a book entitled “Aircraft
Structural Safety.” His research efforts are focused on design
optimization of mechanical systems, with strong emphasis
on reliability-based design optimization and surrogate-based
design optimization. He has published around fifty refereed
journal and conference papers in the above areas. He is an as-
sociate member of the AIAA Non Deterministic Approaches
Technical Committee.

428 Expert Systems, November 2013, Vol. 30, No. 5 C© 2012 Wiley Publishing Ltd


