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Abstract. In this study, surrogate models are constructed to approximate the behavior of simulation 
models for springback angles, sidewall curl, and sheet thickness reduction in U-bending process. 
The surrogate-modeling techniques used here are: (i) polynomial response surface (PRS), (ii) 
Kriging (KR) and (iii) radial basis functions (RBF). While constructing surrogate models, the 
following procedure is pursued. First, a set of training points is generated using Latin hypercube 
sampling method, and finite element simulations are performed at these points. Then, surrogate 
models are constructed utilizing the training data. The accuracies of the surrogate models are 
evaluated by using the leave-one-out cross validation errors. First-order PRS is found to be most 
accurate surrogate model for prediction of the springback angles, side wall curl, and sheet thickness 
reduction.  

Introduction 

In automotive and aerospace industry, the formed parts should meet the tolerance requirements in 
order to have a successful assembly. Inaccuracy of the geometries results in assembly problem and 
these problems can be reduced by compensating the springback, which is defined as the discrepancy 
between the desired and the formed shape. The springback is affected by mechanical and 
geometrical properties of the material, and the tooling parameters. The material parameters are the 
yield strength, anisotropy, and the hardening exponent [1]. The tooling parameters include stroke, 
blank holder force (BHF), and friction [2]. There are various methods to predict the springback 
behavior such as experimental, analytical and finite element analysis (FEA). Commercial FEA 
programs have been widely used in springback prediction studies. However, the accuracy of the 
computational model strongly depends on the number of integration points (NIP), the element 
formulation, the time step, and the contact algorithm [3, 4]. In this study, a coupled explicit–implicit 
solving algorithm [5] is used for springback calculations.  
Solution of most engineering problems requires performing computationally expensive analyses 
(e.g., high fidelity finite element analysis for structural mechanics problems). Regular engineering 
practices such as evaluating the feasibility of many alternative design, exploration of design space, 
sensitivity analysis and design optimization become impractical as they involve performing huge 
number of simulations. When computational cost of the finite element simulations is expensive, the 
behavior of simulation models can be approximated by using surrogate models. Once constructed, 
surrogate models provide quick estimates to the solution of the problem. In this study, surrogate 
models are constructed to approximate the behavior of simulation models for springback angles, 
sidewall curl, and sheet thickness reduction in U-bending process. Three popular surrogate 
modeling techniques –polynomial response surface (PRS) [6], radial basis functions (RBF) [7], and 
Kriging (KR) [8] – are used to predict the above-mentioned outputs. A comprehensive review of 
several surrogate modeling, and design of experiments (DoE) techniques can be found in Ref. [9]. 
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In this work, 12 parameters are considered as the essential process variables affecting the occurrence 
of springback angles, sidewall curl, and sheet thickness reduction. These mentioned parameters are; 
the blank holder force (BHF), the ratio of the final value of BHF (BHF2) to the initial value of BHF 
(BHF1) (BHF2/BHF1), the friction coefficient (fs), the hardening coefficient (K), the hardening 
exponent (n), the ratio of clearance to the sheet thickness (c/t), the die radius (rd), the punch radius 
(rp), the sheet thickness (t), the anisotropy coefficients for three directions (0°, 45°, 90°) R0, R45, and 
R90. To construct the surrogate models, first a set of training points is generated using Latin 
hypercube sampling method [10]. Then, the springback analysis is performed by using FEA to 
compute the responses at the training points. Finally, the surrogate models are generated. The most 
accurate surrogate model is determined by comparing mean absolute error (MAE) values of the 
fitted surrogate models. The performance (MAE) of each predictive model is estimated using leave-
one-out cross-validation technique. 

U-channel Forming. The geometrical parameters of the U-bending process are given in Fig. 1. The 
process is similar to the problem given in Numisheet 93. However, the blank material is a dual 
phase steel (DP 600). Parameters of the forming process and the dimensions of the blank are 
provided in Table 1.  

 

 

Figure 1. Tool geometries of the U-channel forming process  
 
Table 1. Process parameters and dimensions of the blank 

Stroke 
[mm] 

Friction 
coefficient 

BHF [kN] 
Clearance (c) 
[mm] 

Blank 
dimensions 
[mm] 

Blank thickness 
[mm] 

Tool 
velocity 
[mm/s] 

70 0.12449 46.4 - 71* 1 35x350 0.8 20 
*BHF is linearly increasing 

 
FE analyses of the forming process and the springback have been performed by using the 
commercial FE code LS-DYNA. Since the blank is 0.8 mm in thickness, 7 integration points have 
been used in the FE analysis of the forming process. This NIP value is suitable when the 
computation time and accuracy are taken into account [11]. In the parametric analyses, several 
thickness values are used. When the thickness of the blank material is increased to 0.9 mm, more 
integration points should be used. This is due to the fact that unexpected deformations have been 
observed after springback simulation (Fig. 2.) when 7 integration points are used for 0.9 mm blank. 
Consequently, due to the variation of the blank thickness, NIP value is set to 11 in order to have 
consistent parametric analyses.  
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Figure 2. Comparison of NIP7 (left) and NIP11 (right) after springback simulation of a 0.9 mm 

thick DP600 blank 
 

Validation of the FEA. Three-parameter Barlat yield criterion is decided as the material model in 
accordance with the anisotropic behavior of the blank (see Table 2). For the given process, 10 
different parts were formed through rolling direction. Experiments were conducted at COSKUNOZ 
HOLDING A.S.  
 
Table 2. Mechanical properties of the DP600 steel blank 
σYS [MPa] E [GPa] ν K [MPa] n ɛo R0 R45 R90 
350 210 0.3 1076 0.189 0.002628 0.97 1.07 1.17 

 
Springback angles and sidewall curl radii of both the experimental and LS-DYNA simulation 
results were measured according to the Numisheet93 procedure given in Fig. 3.  
 

 
 

Figure 3. Procedure of the springback measurement 
 
Several numbers of integration points, element size, and die velocity are examined in order to 
validate the FE analysis. When the accuracy and the computation time are considered, the best 
agreement between the FE results and the experiments have been obtained by using 1 mm 
quadrilateral elements, seven integration points and 1000 mm/s die velocity. Comparison of the FE 
analysis results with the experimental results is given in Table 3.  
 
Table 3. Comparison of the FE analysis with the experiments 

Measurement Sidewall angle (θ1) Flange angle (θ2) Sidewall curl (ρ) 

Experiment (average) 99.29 81.72 209.02 
LSDYNA (FEA) 100.92 81.43 207.94 

Ondulation 
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Surrogate Model Construction. Instead of performing computationally expensive FE simulations 
directly for engineering practices such as design space exploration, sensitivity analysis and design 
optimization, building a mathematical relation for the interested problems (sidewall angle (θ1), 
flange angle (θ2) side wall curl (ρ), sheet thickness reduction (TR)) both cuts down the 
computational cost and facilitates the understanding of the relationship between inputs (process 
variables) and outputs (responses). For that purpose, first a bunch of training points is generated by 
choosing an experimental design. After that, response values at these training points are computed 
using FE analyses, and a training set is formed. Finally, different surrogate models are fitted using 
the training set. The constructed models provide prediction of the response at any random point.  

Design of Experiments (DoE). Latin hypercube sampling (LHS) method is used to generate 120 
training points in this study. Sampling points are created using the distribution type of the process 
variables, which is assumed uniform between the minimum and maximum values shown in Table 4.  
 
Table 4. Min. and max. values for process variables 
Variable Min. Max. 
BHF [kN] 40 50 
BHF2/BHF1 1.3 1.5 
fs 0.10 0.15 
K [MPa] 1000 1150 
n 0.12 0.20 
c/t 1 1.2 
rd [mm] 3 7 
rp [mm] 3 7 
t [mm] 0.7 0.9 
R0 0.89 0.985 
R45 0.975 1.173 
R90 0.9764 1.1823 

 
Surrogate Models. After choosing an experimental design type, θ1, θ2, ρ, and TR values at the 

training points are computed using LS-DYNA. Then, first-order PRS (PRS1), second-order PRS 
(PRS2), first-order stepwise regression (SWR1), second-order stepwise regression (SWR2), RBF, 
and KR surrogate model types with zeroth- and first-order trend models (KR0 and KR1) are 
constructed by using training points and the computed θ1, θ2, ρ, and TR values. The reader is 
referred to Appendix B of Ref. [12] for a brief description of the surrogate models used in this work. 

 
Accuracy of the Surrogate Models. The accuracy of the constructed surrogate models are 
evaluated by using mean absolute leave-one-out cross-validation error metric, MAE. To calculate 
the MAE, first a surrogate model type is constructed N times (where N is the number of training 
points), while leaving out one of the training points as the validation data each time. Then error 
value is obtained using Eq. (1). In Eq. (1) yi is the exact value of the response at the retained training 
point xi and ( )ˆ iy is the predicted value of the response using surrogate model. 

( )

1

ˆ1
100

i iN

i
i

y y
MAE

N y=

−
= ×∑              (1) 

Comparison of the MAE of the surrogate models are given in Table 5, which shows that the PRS1 
model is the most accurate for the θ1 prediction, SWR is the most accurate model for both ρ and TR 

predictions, and KR1 model is the most accurate model for the θ2 prediction. However, when the 
computation costs of model construction are considered, Kriging models are very time-consuming 
while PRS models provide very quick model construction and response prediction. In addition, 
prediction errors are very close for PRS1 and KR1. Due to these two reasons, PRS1 is selected as a 

prediction model for both θ1, and θ2. 

180 Materials and Manufacturing Technologies XIV

Co
py
ri
gh
t 
©
 2
01
2.
 T
ra

ns
 T
ec
h 
Pu
bl
ic
at
io
ns
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/21/2016 1:45 AM via TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY
AN: 517161 ; Hashmi, M. S. J., Yigit, Faruk.; Materials and Manufacturing Technologies XIV : Selected, Peer Reviewed Papers From the
14th International Conference on Advances in Materials and Processing Technologies (AMPT 2011), July 13-16, 2011, Istanbul, Turkey
Account: s6634933



 

Table 5. Accuracies of different surrogate models constructed for θ1, θ2, ρ, and TR 

 PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1 

Accuracies  of surrogate models for θ1 prediction 

Mean absolute cross validation errors 17,54 34,58 17,68 56,27 22,41 28,06 17,55 

Accuracies  of surrogate models for θ2 prediction 

Mean absolute cross validation errors 16,83 37,99 17,19 41,03 24,41 24,87 16,78 

Accuracies  of surrogate models for ρ prediction 

Mean absolute cross validation errors 19,67 59,67 18,34 58,21 25,74 23,86 19,71 

Accuracies  of surrogate models for TR prediction 

Mean absolute cross validation errors 8,73 14,50 8,60 18,95 16,59 25,41 8,68 

 
Sensitivity Analysis. Since PRS1 model is decided to be used, the most influential variables can be 
found out by examining the coefficients in the polynomials (for nonlinear models, global sensitivity 
analysis would be required). Input values are normalized between 0 and 1 while constructing 
polynomials, so coefficients of the variables can be compared to each other to decide whether a 
parameter is essential or not. Table 6 provides the definitions for variables shown as X1, X2, etc.  

  

Figure 4. Effects of the variables for θ1 
prediction 

Figure 5. Effects of the variables for θ2 
prediction 

  

Figure 6. Effects of the variables for ρ 
prediction 

Figure 7. Effects of the variables for TR 

prediction 

Table 6. Definitions for variables 
Variable  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

Definition BHF BHF2/BHF1 fs K n c/t rd rp t R0 R45 R90 
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As seen from Figure 4, fs (X3), K (X4), n (X5) are essential for θ1 prediction. Figure 5 shows that fs 

(X3), K (X4), n (X5), and rd (X7) are the most effective variables for θ2 prediction. In addition, 
Figure 6 depicts that prediction of ρ depends on the same variables used for θ1 prediction. For TR 
prediction, fs (X3), and rd (X7) are the most significant parameters (see Fig. 7). 
 

Summary 

In this work, three popular surrogate-modeling techniques (PRS, RBF, and KR) were used to 
determine the most accurate model for springback, sheet thickness reduction, and sidewall curl 
prediction in U-bending process. Mean absolute leave-one-out cross-validation error was computed 
to determine the accuracy of the surrogate models. First-order PRS model was found to be the most 
accurate model for the θ1 and the θ2 prediction, while first-order SWR was the most accurate model 
for the SWC and the TR.  
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