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Abstract This paper investigates robust springback opti-
mization of a DP600 dual phase steel seven-flange die
assembly composed of different flange designs. The opti-
mum values of the die radius and the punch radius are
sought to minimize the mean and the standard deviation
of springback using surrogate based optimization. Spring-
back values at the training points of surrogate models are
evaluated using the finite element analysis code LS-DYNA.
In this work, four different surrogate modeling types are
considered: polynomial response surfaces (PRS) approxi-
mations, stepwise regression (SWR), radial basis functions
(RBF) and Kriging (KR). Two sets of surrogate models are
constructed in this study. The first set is constructed to relate
the springback to the design variables as well as the random
variables. It is found for the first set of surrogate models
that KR provides more accurate springback predictions than
PRS, SWR and RBF. The mean and the standard deviation
of springback are calculated using Monte Carlo simulations,
where the first set of surrogate models is utilized. The sec-
ond set of surrogate models is generated to relate the mean
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and the standard deviation of springback to the design vari-
ables. It is found for the second set of surrogate models that
PRS provides more accurate springback predictions than
SWR, RBF and KR. It is also found that introducing beads
increases the mean performance and the robustness. The
robust optimization is performed and significant springback
reductions are obtained for all flanges ranging between 7%
and 85% compared to the nominal design. It is also found
that a design change that decreases the mean springback
also reduces the springback variation. It is observed that
the optimization results heavily dependent on the bounds
of the die and punch radii. In addition, optimization with
multiple surrogates is investigated. Finding multiple candi-
dates of optimum with multiple surrogates and selecting the
one with the best actual performance is found to be a better
strategy than optimizing using the most accurate surrogate
model.

Keywords Dual phase steels · Finite element analysis ·
Monte Carlo simulations · Springback · Surrogate models ·
Robust optimization

1 Introduction

Automotive industry has increased the use of high strength
dual phase (DP) steels as an alternative to aluminum and
magnesium alloys due to their light weight, low cost and
durability. An important issue related to the dual phase
steels is springback. Springback is observed during sheet
metal forming process and defined as the deviation of
the manufactured geometry from the designed geometry.
Furthermore, springback variation is another difficult prob-
lem to overcome. Large variation in springback limits
the application of springback prediction and compensation
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techniques. Uncertainties in mechanical and geometrical
properties of the material and the process parameters are the
main reasons for springback variation. Accurate determina-
tion of the uncertainties in material properties and forming
process parameters provides reliable results and improves
the final product quality. Therefore, performing a robust
optimization study is a must. A design is called robust if
it is insensitive to the uncertainties. The aim of a robust
optimization study is to obtain maximum average perfor-
mance with minimum performance variation in the presence
of uncertainties.

The main challenge in a springback optimization study
(either a deterministic optimization study or a robust opti-
mization study) is the requirement to perform computa-
tionally expensive forming analyses through finite element
method. The most popular remedy to alleviate this problem
is to utilize surrogate models that can mimic the results of
finite element analyses. The examples of surrogate-based
deterministic springback optimization studies are the fol-
lowings. Naceur et al. (2006, 2008) and Wei et al. (2009)
applied the integration between finite element methods
(FEM) and polynomial response surface approximations
(PRS) to find out both material and process parameters
for springback minimization. Other than PRS, other sur-
rogate modeling techniques such as Kriging (Strano 2008)
and neural networks (Liew et al. 2004) are also utilized for
springback prediction.

The examples of surrogate-based robust springback opti-
mization studies are the followings. Wang et al. (2009)
investigated a systematic and robust approach, gathering
the FEM (finite element method) and stochastic statistics
to decrease the sensitivity of high strength steel (HSS)
stamping in the presence of uncertainties. They applied
a separate interval adaptive response surface methodology
in modeling sheet metal stamping. Also, they employed
Monte Carlo simulations (MCS) to simulate the stochastic
response of material/process variations to stamping qual-
ity and to provide optimal designs to reduce the sensitivity
of process uncertainties. They only focused on formability
of HSS. Li et al. (2005) applied a computer aided engi-
neering (CAE)-based six sigma robust design for sheet
metal forming process. They integrated statistical technol-
ogy and dual response surface approximate model together
to perform reliability optimization and robust improve-
ment. They investigated a deep drawing process to illus-
trate their method. Zhang and Shivpuri (2008) investigated
the reliability of optimal blank holder force (BHF) in the
presence of process uncertainties by minimizing the magni-
tude of wrinkling and fracture defects under probabilistic
constraints. They developed a response surface approxi-
mate model and used it in the probabilistic optimization.
They analyzed a conical cup drawing of aluminum killed
deep-drawing quality steel under process uncertainties. Du

et al. (2009) studied the robustness and robust mechanism
synthesis when random and interval variables are involved.
When the robustness is properly ensured and the minimiza-
tion of performance variations are obtained, robust design
leads to desired results without much performance variation
due to uncertainties.

The springback optimization studies in metal forming
of sheets made of conventional steel are well established.
The optimization studies on DP steels, on the other hand,
have started in the last years. Meinders et al. (2008) per-
formed deterministic springback optimization of DP965
steels using FEM and surrogate modeling techniques. They
used sequential approximate optimization algorithm, where
the accuracy of surrogate models are improved sequen-
tially until convergence during optimization. Ingarao et al.
(2009) investigated deterministic springback minimization
problem through integration between numerical simula-
tions, response surface methodology (RSM) and Pareto
optimal solutions search techniques. They examined the
design of a U-channel stamping operation utilizing two
different DP steels, DP1000 and DP600. They optimized
friction conditions and BHF as design variables in order
to reduce excessive thinning and avoid excessive geomet-
rical distortions due to springback occurrence. Marretta
et al. (2010) investigated an S-shaped U-channel stamp-
ing operation carried out on a lightweight aluminum alloy.
They developed a design tool for the prevention of exces-
sive part thinning and the control of springback phenomena.
They proposed a multi-objective optimization problem con-
sisting of integration among FEM numerical simulation,
RSM and MCS method to deal with sheet stamping process
variability.

There exist uncertainty analyses of springback of DP
steels in literature (Chen and Koc 2007; de Souza and
Rolfe 2010); however, robust springback optimization has
not been investigated yet. The main academic contribu-
tion of the present paper aims to fill this gap, while the
industrial contribution of the paper is explained in the next
paragraph.

COŞKUNÖZ METAL FORM Company is a lead-
ing die manufacturer supplying automotive parts for the
original equipment manufacturers (OEMs) such as Ford
Otosan, Mercedes, Renault, Tofaş-Fiat, etc. The company
works with quite a few different material suppliers includ-
ing domestic and international counterparts. This leads to a
significant variation of the material properties. The major
difficulty faced by the die engineers in COŞKUNÖZ is
to manufacture parts within a certain tolerance requested
by the OEMs. COŞKUNÖZ discovered that the variability
of mechanical properties results in a significant variation
in the springback behavior over different manufactured
parts. The variation of springback over different manufac-
tured parts restricts the use of springback compensation
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Table 1 The features of each
flange Flange # 1 2 3 4 5 6 7

Die radius (mm) 3 7 7 5 7 10 5

Punch radius (mm) 5 7 7 5 7 – 5

Bend angle (deg) 110 90 90 105 100 90 100

Flange type WFO SHF STF WFO WFO SF WFO

Stroke (mm) 40 40 40 40 40 35 40

Bead Yes – – Yes – – –

measures. COŞKUNÖZ has decided to conduct a research
with the authors as part of a university-industry collabo-
ration about predicting the springback behavior of several
flange types that can be often encountered in the automotive
industry. COŞKUNÖZ engineers and the authors designed
a seven-flange die assembly for that purpose based on their
experiences. Robust springback optimization of the seven-
flange die assembly is performed in this study. It should be
noted here that the seven-flange die assembly is designed
for research purpose, it is not an actual end product. How-
ever, it gives great insights about the springback behavior
of different flange design types that could be used by a
die design engineer. The methodology developed will be
used to improve design guidelines of the die design group
at COŞKUNÖZ. Die design is an iterative procedure. The
methodology developed can help to reduce the number of
iterations to achieve their final product.

In this paper, four different surrogate modeling types,
namely PRS (Myers and Montgomery 2002), stepwise
regression (SWR; Myers and Montgomery 2002), radial
basis functions (RBF; Buhmann 2003) and Kriging (KR;
Sacks et al. 1989; Lophaven et al. 2002), are constructed
for finite element analysis (FEA) springback prediction, and
the most accurate model is used in the robust optimization
study. Therefore, we determined the most suitable surro-
gate model for springback behavior of each flange. This
approach provides more reliable results other than utilizing
one surrogate model through prediction and optimization
process. Springback values at the training points of surro-
gate models are evaluated using a coupled explicit-implicit
solving algorithm (Finn et al. 1995).

The paper is organized as follows. The next section
provides the problem description of the robust springback
optimization of the seven-flange die assembly composed of
different flange designs. Section 3 presents the details of
the FEA of the forming process of the flanges. Section 4
discusses surrogate model construction and provides the
accuracies of the first set of surrogate models. Section 5
explains the optimization methodology followed and dis-
cusses the second set of surrogate models. The results of
the optimization problems are given in Section 6, followed
by concluding remarks given in Section 7.

2 Problem description

The design is composed of seven typical flange conditions
which includes a straight flange (SF, Flange #6), four wipe
flanges with outflanges (WFO, Flanges #1, 4, 5, 7), two
flanges contained stiffening beads or darts to reduce over-
all springback, a stretch flange (STF, Flange #3), a shrink
flange (SHF, Flange #2) and various flange radii. Table 1
provides an overview of the features for each flange.

Numbering of the flanges is shown in Figs. 1 and 2. The
flanges should be designed for minimum mean and stan-
dard deviation of springback which is defined by two angles
(θ1 and θ2). In order to determine the springback angles
after the forming process and to compare the FEA results to
the experiments, a measurement procedure given in Fig. 3
has been developed. Thereby, the measurement consistency
between the FEA results has been guaranteed.

For each flange, two angles have been measured between
the surfaces A–B and B–C. Then the averages of these
angles have been used to obtain the springback angles θ1

and θ2 as given in (1).

θi = θtarget − (Angle between the surfaces)average (1)

The variables of the problem are divided into two groups.
The first group consists of two design variables; (i) the die
radius, Rd ; (ii) the punch radius, Rp. The second group con-
sists of seven random variables; (i) the yield stress, σ y ; (ii)
the hardening exponent, n; (iii) the hardening coefficient,

Fig. 1 Appearance of the flanges before the forming process
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Fig. 2 Appearance of the
flanges after the forming process

K ; (iv–vi) the anisotropy coefficients, R0, R45, R90;
and (vii) the rolling direction, RD. The random variables
are selected by the authors and the die engineers of the
COŞKUNÖZ Company. Commonly used noise variables in
the literature are used.

COŞKUNÖZ die engineers mentioned that the human
error is one of the main reasons for uncertainty. Sometimes a
lousy worker does not pay attention to the rolling direction.
So we ended up having the rolling direction as a random
variable. The chance of using the true rolling direction is
taken as 50%, and this is a large probability. However, it
can be considered that all human errors (e.g., errors in tests,
interpretation of test results) are boiled down to a single
random variable.

In this study, three different optimization cases are con-
sidered for each flange (except Flange #6, there is only a
single case). The first case is the minimization of both the

mean and the standard deviation of θ1, second case is the
minimization of both the mean and standard deviation of θ2,
and the last case is the minimization of both the mean and
standard deviation of θ1 + θ2. For Flange #6, only optimiza-
tion of θ1 is considered. The robust optimization problems
can be formulated as given in (2–4).

find Rd , Rp

min w1
μθ1(Rd ,Rp)

μθ̄1
+ w2

σθ1(Rd ,Rp)
σθ̄1

s.t RL
d ≤ Rd ≤ RU

d

RL
p ≤ Rp ≤ RU

p

(2)

find Rd , Rp

min w1
μθ2(Rd ,Rp)

μθ̄2
+ w2

σθ2(Rd ,Rp)
σθ̄2

s.t RL
d ≤ Rd ≤ RU

d

RL
p ≤ Rp ≤ RU

p

(3)

Fig. 3 Springback angle
measurement procedure
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find Rd , Rp

min w1
μ(θ1+θ2)(Rd ,Rp)

μ(θ̄1+θ̄2)
+ w2

σ(θ1+θ2)(Rd ,Rp)
σ(θ̄1+θ̄2)

s.t RL
d ≤ Rd ≤ RU

d

RL
p ≤ Rp ≤ RU

p

(4)

where RL
d , RL

p , RU
d , and RU

p are the lower and upper bounds
of Rd and Rp, respectively. μ and σ refer to the mean
and standard deviation, θ̄1, θ̄2, and θ̄1 + θ̄2 are the nomi-
nal values for θ1, θ2, and θ1 + θ2, respectively. In (2–4),
both the mean and the standard deviation of springback(
μθ1 , σθ1 , μθ2 , σθ2, μθ1+θ2, and σθ1+θ2

)
are minimized. The

weighting factors w1 and w2 are chosen based on the impor-
tance of reducing the mean and the standard deviation of
springback and also satisfy w1 + w2 = 1. For example, if
minimizing the mean value of springback is more impor-
tant than minimizing the standard deviation, the weighting
factors are selected as w1 > w2.

Overall, 19 different optimization cases are considered
for all flanges and the optimization problems defined in
this section are solved by using “fmincon” built-in function
of MATLAB® (2009) that uses sequential quadratic pro-
gramming. To increase the probability of finding the global
optimum, a multiple starting point strategy is used.

3 Finite element simulations

Accuracy and precision of the FEA results depends on how
the physical process parameters are simulated. Moreover,
some numerical and mathematical parameters as contact
algorithm, number of integration points, element size, ele-
ment formulation and material model affect the accuracy
of the results (Lin et al. 2000). Yield locus of the material
is determined by using 3-paramater Barlat material model
in accordance with anisotropic behavior of the blank. The
true plastic stress- true plastic strain curve of the material is
determined according to Swift’s hardening rule given in (5).

σ = K
(
ε0 + ε p)n (5)

Here, σ is the true plastic stress, K is the hardening expo-
nent, ε0 is the initial strain corresponding to yield stress, ε p

is the true plastic strain and n is the hardening exponent.
Material properties of the DP600 steel used in experiments
are given in Table 2.

Forming simulations can be carried out by using explicit
or implicit formulations (Prior 1994). Explicit formulation
reduces the computation time, however, it leads to conver-
gence problems. It can be overcome by choosing the proper
numerical parameters, i.e., die velocity. The use of the real
value of the die velocity in finite element (FE) simulations
results in huge computational cost. On the other hand, the
value of the die velocity should not exceed a critical value
in order to avoid inertial effects. In this study, die velocity
is taken as 2,000 mm/s in FE simulations.

The finite element model of the blank is constructed
with 79,932 deformable quadrilateral shell elements. It is
required to use fine elements for high deformation regions
and around radii of the part to eliminate the hourglass effect.
Consequently, minimum element size of the quadrilateral
elements is determined as 0.5 mm × 0.5 mm. Fully inte-
grated shell element formulation is used for the deformable
blank and Belytschko-Tsay element formulation is used for
rigid parts. The punch, the die and the holder are modeled
as rigid and relatively coarser elements are used. Eleven ele-
ments are used through the shoulder radii of the punch and
the die. “ONE_WAY_SURFACE_TO_SURFACE” contact
algorithm is used for the contact definitions. To eliminate
contact instabilities, contact stiffness parameter, SLDFAC
set as 0.01. The static and dynamic friction coefficients are
taken as 0.125 and 0.06, respectively.

Seven integration points have been used to differentiate
the stress distribution through the thickness of the blank in
according to 0.8 mm blank thickness. For the given physi-
cal and numerical parameters, the computation time is 8 h
and 13 min with Xeon X5550 2.67 GHz 16 CPU. When 15
integration points have been used the computation time is
increased to 24 h 37 min.

The FEA results are compared with experimental results.
The experiments are conducted at COŞKUNÖZ METAL
FORM Company facilities. A hydraulic driven press
equipped with 200 tons is used. The velocity of the die
averages 30 mm/s. Two slots are equipped to the punch to
simplify blank positioning and to increase the repeat accu-
racy. The experiments are conducted for 40 DP 600 steel
blanks which were cut from the same batch. The tensile test
specimens are also acquired from the same plate. Blanks are
located as the rolling direction passes through the Flange
#1 and Flange #4. Only a single experiment is conducted.
Outer surfaces of the formed part are scanned using ATOS
3D Scanning Software and Systems (see Fig. 4).

Table 2 Material properties of the DP600 steel

K(MPa) n ε0 σY (MPa) E (GPa) υ R0 R45 R90

DP600 1207.8 0.222 0.006509 395 210 0.3 0.70 0.70 0.86
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Fig. 4 The experimental springback measurements using ATOS 3D
Scanning Software and Systems

The comparison of the FEA results and the experimental
results are given in Table 3. The difference between the two
sets of results can be evaluated by considering the accuracy
of both sets of results. As noted earlier, the experimental
springback measurements are performed using ATOS 3D
Scanning Software and Systems. The following procedure
is employed while computing the springback angle from
the measurements of the experimental data. First, surfaces
are created from the scanned data obtained from ATOS 3D.
Then, a measurement procedure similar to the one followed
in the case of finite element analysis is applied. A total of
eight points are required for each flange, except Flange #6
for which only four points are needed. The measured values
depend on the points chosen in the measurement process
(see Fig. 3). So, there is uncertainty associated with the
measured values. In addition, there is uncertainty in the
finite element results. Note here that the random variables
also reflect uncertainty in the properties of the specimens
used in experiments to compare with finite element models.
The standard deviation of the springback (borrowed from

the future Tables 10, 11 and 29) may provide a coarse esti-
mation. There is also the uncertainty associated with the
difference between the test article and the geometry of the
modeled article. Also, due to the nonuniformity in mate-
rial properties, the material properties of the test article
and the modeled article can be quite different. The abso-
lute errors of nine out of 13 predictions are smaller than or
equal to 1 degree, and in the light of the above discussions
the difference can be considered reasonable.

4 Surrogate modeling techniques

The approximation models for highly complicated and
expensive FEA can be constructed using surrogate mod-
els. The surrogate models create a functional relationship
between design variables (e.g., punch and die radius) and
responses (e.g., springback). Thus, usual engineering prac-
tices such as design space exploration, sensitivity analysis
and design optimization become practical. Construction of
a surrogate model begins with choosing a design of experi-
ment (DoE) for creating sampling data, then continues with
selecting a mathematical model to represent the data, and
ends with determining the best fitting model to the sampling
data (accuracy of the surrogate models).

Two sets of surrogate models are constructed in this
study. The first set is constructed to relate the springback
to the design variables as well as random variables. The
mean and the standard deviation of springback are calcu-
lated using MCS, where the first set of surrogate models is
utilized. The second set of surrogate models is generated to
relate the mean and the standard deviation of springback to
the design variables.

It must be noted that the problem can be solved with-
out generating a second set of surrogate models. The main
reason for using the second set of surrogate models is to
eliminate the noise induced by the Monte Carlo simulation.
Therefore, the second set of surrogate models helps in con-
vergence of the gradient-based optimizer used in this work.

Table 3 Comparison of the
FEA results and experimental
results of springback angles in
degrees

aThe standard deviation values
are borrowed from Tables 10, 11,
and 29

# Flange Experiments (Ave.) LS-DYNA Errors

θ1 θ2 θ1 θ2 θ1 θ2

1 0.0 1.0 0.6 (0.2)a 1.8 (0.3) 0.6 0.8

2 10.3 6.2 6.4 (0.6) 5.2 (0.2) −3.9 −1

3 9.7 4.3 7.6 (0.6) 6.4 (0.4) −2.1 2.1

4 0.9 3.2 0.6 (0.1) 4.2 (0.5) −0.3 1

5 5.7 3.9 3.7 (0.3) 4.3 (0.4) −2 0.4

6 10.4 – 9.8 (0.0) – −0.6 –

7 5.5 6.0 5.0 (0.4) 6.5 (0.3) −0.5 0.5
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If a second set of surrogate models is not to be generated,
then the MCS sample size can be increased to reduce the
MCS noise and this slight noise can be handled by using
a global optimizer (e.g., genetic algorithm, particle swarm
optimization, etc.).

4.1 Data sampling (set #1)

Among the DoE techniques, Latin hypercube sampling
(LHS) technique (Park 1994) is used to iteratively generate
samples to maximize minimum distance between sampling
points. This method is employed by using “lhsdesign” built-
in function of MATLAB® (2009) and “maximin” criterion
with a maximum of 20 iterations. 65 sampling points are
created for different material properties, die and punch
radii and the springback values (θ1, θ1) at these points are
computed using LS-DYNA for each flange. The minimum
and maximum values for process variables are provided in
Table 4.

In this study, all flanges are considered simultaneously,
because our preliminary investigations revealed that the
design variables for a specific flange do not affect the spring-
back of the other flanges. For Flanges #1, #4 and #6 there
are eight variables (one design variable and seven random
variables), whereas for the remaining flanges there are nine
variables (two design variable and seven random variables).
The use of 65 training points for 9 variables is not impres-
sive, but it is not unreasonable either. A quadratic response
surface approximation with all terms included has 55
coefficients for 9 variables. So the additional 10 points helps
to find these coefficients in least square sense. It must be
noted that the rule of thumb advocates the use of 90 training
points, but we had to settle for 65 points as the simulations
are very expensive as explained in the followings.

For any of the 65 training points, springback calculation
requires performing the followings: (a) geometry genera-
tion (around 1.5 h), (b) mesh generation (around 1.5 h),
(c) LS-DYNA model generation (around 0.5 h), (d) LS-
DYNA problem solving (around 8.5 h), (e) LS-DYNA post-
processing of the springback values (around 1 h). The over-
all time spent for a single training point is approximately

13 h. All these simulations are performed by a single
graduate student mostly using a single computer.

The sampling domains of the input random variables
affect the prediction accuracies of the mean and the standard
deviation of the output, and there are tradeoffs of accuracy.
If a narrow sampling domain of input random variables is
chosen, then the surrogate models would be more accurate
but there is a larger chance that the surrogate model would
perform extrapolation in MCS, and the extrapolation is dan-
gerous. On the other hand, if a wide sampling domain of
input random variables is chosen, then the surrogate models
would be less accurate but there is a smaller chance that the
surrogate model would perform extrapolation in MCS. In
this work, we started with mean +/−5*sigma domain and
found that the surrogate models were accurate enough, so
we did not need to shrink the domain.

Before generating the surrogate models, a simple sen-
sitivity analysis is performed to investigate the effects of
design and random variables on springback. The details of
the sensitivity analysis are provided in Appendix A. It is
found that the punch radius is more influential than the die
radius for θ1, whereas the opposite is true for θ2. Among the
random variables, the hardening coefficient and the harden-
ing exponent are found to be the most influential variables. It
is also observed that the anisotropy coefficient R90 has more
influence on springback compared to the other anisotropy
coefficients R0 and R45.

4.2 Surrogate models (set #1)

The next step, following the selection of DoE type, is the
computation of the springback values at the training points
using LS-DYNA. After performing these simulations, the
observed data which contains springback values is used
together with the DoE information to construct surrogate
models. In this study, four different surrogate types with
seven different models are considered: namely, PRS (PRS1,
first-order and PRS2, second-order), SWR (SWR1, first-
order and SWR2, second order), RBF (multiquadric model)
and KR (KR0, zeroth-order and KR1, first-order trend
model). For a brief overview of these surrogate models,

Table 4 Minimum and maximum values for process variables

Variable Design variables (different for each flange) Random variables (same for all flanges)

F#1 F#2 F#3 F#4 F#5 F#6 F#7

R∗
p R∗

d Rp Rd Rp Rp Rd Rp Rp Rd Rp σ ∗∗
Y K** n R0 R45 R90 RDa

Min. 2 3 3 3 3 4 3 3 3 3 3 230 950 0.140 0.7 0.7 0.8 0

Max. 4 10 10 10 10 6 10 10 12 10 10 430 1210 0.222 1.1 1.2 1.4 1

*Rp and Rd values are in mm, **σY and K values are in MPa, aRD stands for “Rolling Direction” (y = 0, x = 1)
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the reader should refer to Appendix B of Acar et al. (2011).
Then, these constructed surrogate models are used for per-
forming robust optimization. Finally, for each flange the
optimum values of the design variables, predicted by sur-
rogate models, are validated using MCS. In this study, a
surrogate-based robust optimization procedure is pursued.
Figure 5 depicts the flowchart for robust optimization of the
flanges.

In this study, we are satisfied with the accuracy of surro-
gate models built with 65 training points at the first stage,
and the accuracy of surrogate models built with 20 training
points at the second stage. Therefore, it was not required

to add points to the DOE (see Fig. 5). If we had not sat-
isfied with the accuracy of the surrogate models, the new
points could have been added by following the EGO strat-
egy proposed by Jones et al. (1998) such that the expected
improvement is maximized.

4.3 Accuracy of the surrogate models (set #1)

As noted earlier, PRS1, PRS2, SWR1, SWR2, RBF, KR0
and KR1 surrogate models are constructed for θ1 and θ2

prediction. The accuracy of the constructed surrogate mod-
els for each flange is assessed using the root mean square

Fig. 5 Flowchart for
performing surrogate-based
robust optimization of the
seven-flange die assembly
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Table 5 The most accurate surrogate models of set #1 for each flange

Flange # Prediction model for θ1 Prediction model for θ2

1 SWR1 PRS1

2 RBF KR1

3 RBF KR1

4 SWR1 SWR1

5 KR1 KR1

6 KR0 —

7 RBF KR1

of the leave-one-out cross validation error (RMSEX V ). To
calculate the RMSEX V , first a surrogate model type is con-
structed N times (where N is the number of training points),
while leaving out one of the training points as the validation
data each time. Then RMSEX V value is obtained using (6).

RMSEX V =
√√√
√ 1

N

N∑

i=1

(
yi − ŷ(i)

)2 (6)

where yi is the observed value at the retained training
point xi , and ŷ(i) is the predicted value. Then, RMSEX V

is normalized with the range of observed values �y (8).

�y = ymax − ymin (7)

ε = (RMSEX V /�y) × 100 (8)

where ymax and ymin are the maximum and minimum value
of the observed data among the 65 training points, respec-
tively. The most accurate surrogate models of set #1 for each
flange are listed in Table 5. It is observed that KR models
are more accurate than PRS, SWR and RBF for most of the
cases. The accuracy evaluation of the surrogate models con-
structed for θ1 and θ2 of Flange #1 is provided in Table 6.
The accuracy evaluation of the surrogate models of the other
flanges are given in Appendix B. Note here that if the finite
element analysis was computationally inexpensive, it would

Table 7 Statistical properties of the random variables. Normal distri-
bution parameters for random variables

Continuous random variables (all are normally distributed)

Variable Mean Standard deviation

σ y[MPa] 330 20

n 0.1810 0.0082

K [MPa] 1080 26

R0 0.90 0.04

R45 0.95 0.05

R90 1.10 0.06

Discrete random variables

RD = 0 with 50% probability

= 1 with 50% probability

be better to evaluate the accuracy of the surrogate models at
some test points.

5 Optimization methodology

The optimization procedure, described in Fig. 5, is used to
select the optimal values of the design variables. The upper
and lower bounds of the design variables Rd and R p were
provided earlier in Table 4. The random variables (σ Y , n,
K, R0, R45 and R90) are assumed to be normally distributed
and the distribution parameters are provided in Table 7. The
rolling direction RD is a discrete random variable repre-
sented with a probability mass function. This variable is also
taken into account in MCS.

Notice that the mean values of the material properties in
Table 7 do not coincide with the material properties listed
in Table 2. The material properties listed in Table 2 corre-
spond to the particular batch from which the specimens are
prepared. The mean and standard deviation of the material
properties in Table 7 is obtained from all available DP600
data the COŞKUNÖZ METAL FORM Company have. The
difference between the mean values in Tables 7 and 2
reflects the batch-to-batch variability in material properties.

Table 6 Accuracies of different
surrogate models constructed
for θ1 and θ2 (Flange #1)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 11.3 17.5 11.2 21.7 13.8 23.8 11.5

θ1 prediction RMSE/�y (%)

R2 0.80 0.52 0.80 0.26 0.70 0.11 0.79

Accuracies of surrogate models for 7.6 10.8 7.9 18.3 8.6 11.9 7.7

θ2 prediction RMSE/�y (%)

R2 0.82 0.63 0.81 −0.05 0.76 0.55 0.81
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5.1 Surrogate models (set #2)

To compute the μθ1 , σθ1 , μθ2 , σθ2, μθ1+θ2, and σθ1+θ2 val-
ues in (2–4), the most accurate surrogate models of the
first set are embedded into MCS (10,000 samples). Then,
a second set of surrogate models is constructed to relate
μθ1 , σθ1 , μθ2 , and σθ2 to the design variables. For that pur-
pose, a new set of training points (10 times the number of
variables) is generated using LHS. For each training point,
MCS with 10,000 samples is performed, where 10,000
different values are selected for each random variable using
their normal distribution parameters. It is assumed that all
random variables are uncorrelated, and this assumption may
lead to over prediction of the springback variation. The
springback values θ1 and θ2 are computed 10,000 times for
each training point and the mean and standard deviation of
θ1 and θ2 are evaluated. Finally, the second set of surrogate
models are constructed for μθ1, σθ1 , μθ2 , and σθ2 in terms of
design variables.

The accuracy of the mean and the standard deviation
computed through MCS can be assessed by the standard
error estimations of these statistics. The standard error
of the mean can be estimated from σ√

N
, while the stan-

dard error of the standard deviation can be estimated from

σ

√
1
2

(
1 −

√
N−3
N−1

)
assuming that the sample is drawn from

a normal distribution. Here σ is the standard deviation and
N is the number of samples in MCS. With 10,000 samples,
the standard error of the mean is 0.01 σ and the standard
error of the standard deviation is 0.0071 σ . So, the accura-
cies of the mean and the standard deviation will be dictated
by the accuracy of the surrogate models.

5.2 Accuracy of the surrogate models (set #2)

The ratio of RMSEX V to the range of response values (�y)
and the R2 values are used to select the most accurate sur-
rogate models (out of the second set of surrogate models)
for each response. The most accurate surrogate model types
for all flanges are listed in Table 8. It is seen that PRS

Table 8 The most accurate surrogate model of set #2 for each flange

Flange # μθ1 σθ1 μθ2 σθ2

1 PRS2 PRS1 PRS2 PRS1

2 PRS2 SWR1 PRS1 KR0

3 KR0 PRS2 PRS1 PRS1

4 PRS1 PRS2 KR1 PRS1

5 KR1 SWR2 KR0 PRS2

6 PRS1 PRS1 — —

7 RBF SWR1 KR0 KR0

Table 9 The accuracy of the second set of surrogate models in terms
of R2 values

Flange ID μθ1 μθ2 σθ1 σθ2

1 1.00 0.01 0.99 0.47

2 0.99 0.94 1.00 0.04

3 0.98 0.82 0.97 0.39

4 1.00 0.49 0.99 0.01

5 0.99 0.22 0.98 0.28

6 0.18 0.11 — —

7 0.98 0.38 0.94 0.08

models are more accurate than SWR, KR and RBF mod-
els for most of the cases. The accuracies of the second set of
surrogate models in terms of R2 values are given in Table 9.
The R2 values of the surrogate models in set#2 constructed
for the mean springback values are larger than the corre-
sponding surrogate models in set #1. The R2 values of the
surrogate models in set#2 constructed for the standard devi-
ation of the springback values, on the other hand, are not
that impressive.

After the surrogate models are generated for μθ1 , σθ1 ,
μθ2 , and σθ2 , the values of μθ1+θ2 and σθ1+θ2 are approx-
imated in terms of μθ1 , σθ1 , μθ2 , and σθ2 using the Taylor
series expansion as

μθ1+θ2
∼= μθ1 + μθ2 (9)

σθ1+θ2
∼=

√
σ 2

θ1
+ σ 2

θ2
(10)

Equations (9) and (10) are valid if θ1 and θ2 have a weak
correlation and the higher order terms in the Taylor series
expansion are negligible.

6 Optimization results

In this section, the optimum results for the seven flanges are
provided. Totally 19 optimization cases are considered for
optimization of θ1, θ2, θ1 + θ2. We do not have a strong
preference for reducing the mean or the standard deviation,

Table 10 Coefficients of the PRS models for θ1, and θ2 for Flange #1

θ1 θ2

μ σ μ σ

Constant 0.83576 0.17261 2.09130 0.32097

Rp 0.74096 −0.00109 1.21400 0.00187

R2
p −0.09226 — −0.14480 —
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Table 11 Optimization results for Flange #1. (w1 = w2 = 0.5)

θ1 θ2 θ1 + θ2

Nominal Optim. Optim. Nominal Optim. Optim. Nominal Optim. Optim.

(actual) (pred.) (actual) (actual) (pred.) (actual) (actual) (pred.) (actual)

μ 2.227 1.949 1.952 4.436 3.940 3.903 6.663 5.889 5.854

σ 0.173 0.170 0.173 0.336 0.325 0.326 0.377 0.367 0.369

Rd – – – – – – – – –

Rp 3.0 2.0 2.0 3.0 2.0 2.0 3.0 2.0 2.0

so the weight factors in (2–4) are taken as w1 = w2 =
0.5. The optimum results are obtained using the second set
of surrogate models (in terms of design variables). Then,
MCS of the optimum designs are carried out to validate the
prediction accuracy of the surrogate models.

6.1 Flange #1

For Flange #1, die (Rd) and punch (Rp) radii are depen-
dent, so only Rp is used as design variable. Rp is the input
variable for the surrogate models to predict θ1, and θ2 val-
ues. The lower and the upper bounds of the input variable
are specified as 2 mm ≤ Rp ≤ 4 mm. PRS2 is used for
μθ1 and μθ2 prediction while PRS1 is used for σθ1 and σθ2

prediction (see Table 8). Table 10 lists the coefficients of
the PRS models for θ1, and θ2 of Flange #1. Note that a
PRS model in terms of Rp has the following form;

PRS1 = Constant + Coeff∗ Rp (11)

PRS2 = Constant + Coeff1
∗ Rp + Coeff2

∗ R2
p (12)

Robust optimization for θ1 is performed using the surro-
gate models (PRS models) with the coefficients provided in
Table 10 (columns 2 and 3). As noted earlier, the weight
factors for the mean and the standard deviation of spring-
back are taken equal in robust optimization. That is, equal
importance has been given to minimize the mean springback
and standard deviation of springback. Table 11 presents
a comparison of the mean and the standard deviation of
springback for the nominal design (column 2) and the opti-
mum design (both the surrogate model prediction (column

3) as well as the MCS validation (column 4) at the found
optimum). If the surrogate model predictions did not involve
errors, we could conclude that the mean springback could
be reduced by about 12.5% and the standard deviation of
springback could be reduced by 2%. Due to the errors in
surrogate model predictions, on the other hand, the mean
springback is reduced by about 12.3% and the standard
deviation of springback is maintained at its nominal value.
The optimum value of the punch radius Rp is found to be
2 mm, which is the lower bound of Rp.

Then, robust optimization for θ2 is performed using PRS
models with the coefficients provided in Table 10 (columns
4 and 5). Optimum results for μθ2 , σθ2 and Rp are listed in
Table 11 (columns 5 to 7). It is observed that the mean
springback is reduced by about 12% and the standard devi-
ation of springback is reduced by about 3%. The optimum
value of the punch radius Rp is found to be 2 mm, as in the
case of θ1 minimization.

Finally, the optimization results for θ1+ θ2 are presented
in Table 11 (columns 8 to 10). It is found that the mean
springback is reduced by about 12% and the standard devi-
ation of springback is reduced by about 2%. The optimum
value of the punch radius Rp is found to be 2 mm, as in the
case of θ1 and θ2 minimization.

6.2 Flange #2

For Flange #2, die (Rd) and punch (Rp) radii are indepen-
dent, so both Rd and Rp are used as design variables. Rd and
Rp are the input variables for the surrogate models to predict
θ1 and θ2 values. The lower and upper bounds of the input

Table 12 Optimization results for Flange #2 (w1 = w2 = 0.5)

θ1 θ2 θ1 + θ2

Nominal Optim. Optim. Nominal Optim. Optim. Nominal Optim. Optim.

(actual) (pred.) (actual) (actual) (pred.) (actual) (actual) (pred.) (actual)

μ 4.260 1.754 2.286 6.015 1.535 1.581 10.276 5.321 5.457

σ 0.630 0.479 0.498 0.175 0.179 0.186 0.654 0.511 0.474

Rd 6.5 3.0 3.0 6.5 10.0 10.0 6.5 10.0 10.0

Rp 6.5 10.0 10.0 6.5 10.0 10.0 6.5 10.0 10.0
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Table 13 Design variables and
their lower (LB) and upper
bounds (UB) for Flanges #3
through #7

Flange #3 Flange#4 Flange #5 Flange #6 Flange #7

Rd Rp Rp Rd Rp Rp Rd Rp

LB 3 3 4 3 3 3 3 3

UB 10 10 6 10 10 12 10 10

variables specified as 3 mm ≤ Rd ≤ 10 mm, and 3 mm
≤ Rp ≤ 10 mm, respectively. PRS2 is used for μθ1 predic-
tion while SWR1 is used for σθ1 prediction. For μθ2 and σθ2

prediction, PRS1 and KR0 are used.
Then, robust optimization for θ1 is performed, where the

weight factors for the mean and the standard deviation of
springback are taken equal, as in the case of Flange #1.
Table 12 presents a comparison of the mean and the standard
deviation of springback for the nominal design (column 2)
and the optimum design (both the surrogate model predic-
tion (column 3) as well as the MCS validation (column 4)
at the found optimum). The mean springback is reduced by
about 46.3% and the standard deviation of springback could
be reduced by 21%. The optimum value of the die radius
Rd is found to be 3 mm, which is the lower bound of Rd .
The optimum value of the punch radius Rp is found to be
10 mm, which is the upper bound of Rp.

Then, robust optimization for θ2 is performed using
PRS1 and KR0 models. Optimum results for μθ2, σθ2 , Rd

and Rp are listed in Table 12 (columns 5 to 7). It is observed
that the mean springback is reduced by about 73.7% and
the standard deviation of springback is increased by about
6.3%. The optimum value of the die radius Rd is found to
be 10 mm, which is the upper bound of Rd . The optimum
value of the punch radius Rp is found to be 10 mm, as in the
case of θ1 minimization.

Finally, the optimization results for θ1+ θ2 are presented
in Table 12 (columns 8 to 10). It is found that the mean
springback is reduced by about 47% and the standard devia-
tion of springback is reduced by about 27.5%. The optimum
values of the die (Rd) and punch (Rp) radii are found to be
10 mm, as in the case of θ1 and θ2 minimization.

6.3 Flanges #3 through #7

For Flanges #3 through #7, design variables and their lower
and upper bounds are listed in Table 13. Table 14 presents
the optimization results for θ1, θ2, and θ1+ θ2 of Flanges
#3 through #7.

Robust optimizations for θ1 of Flanges #3 through #7 are
performed using the surrogate models listed in Table 8. The
weight factors for the mean value and the standard devia-
tion of springback are taken equal for robust optimization
cases of all flanges, as in the case of Flange #1 and #2. The
optimum results for Flange #3 through #7 are provided in
Appendix C. Overall, mean springback values

(
μθ1,μθ2

)
are

reduced in amounts varying between 7% and 85% compared
to nominal mean springback values. Standard deviation
of springback values are reduced slightly for some cases,
significantly for some other cases compared nominal stan-
dard deviation of springback values. It should be also
noted that the standard deviation of springback values are
increased slightly for some cases, too.

The optimum die and punch radius results for all flanges
are compiled together in Table 14. It can be concluded
that upper and lower bounds of the die and punch radii are
influential for most cases. For Flanges #1 through #4 opti-
mum die and punch radii are observed at upper or lower
bounds. On the other hand, optimization studies for Flanges
#5 and #7 showed that all of the optimum die radius val-
ues are found at between upper and lower bounds of their
own. Besides, optimum punch radius values are mostly
found at their upper bounds (except for θ2 minimization).
In addition, determining the lower bound for punch radius
is critical for θ1 minimization of Flange #6.

Table 14 Optimum die radius and punch radius results for all flanges (w1 = w2 = 0.5). It is indicated with (LB) or (UB) whenever a design
variable takes the lower or upper bound

Minimization for Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #6 Flange #7

Optimum die radius

θ1 — 3.0 (LB) 3.0 (LB) — 9.53 — 8.45

θ2 — 10.0 (UB) 10.0 (UB) — 8.75 — 8.38

θ1 + θ2 — 10.0 (UB) 10.0 (UB) — 9.53 — 8.45

Optimum punch radius

θ1 2.0 (LB) 10.0 (UB) 7.52 6.0 (UB) 10.0 (UB) 3.0 (LB) 10.0 (UB)

θ2 2.0 (LB) 10.0 (UB) 10.0 (UB) 4.0 (LB) 7.55 — 4.04

θ1 + θ2 2.0 (LB) 10.0 (UB) 10.0 (UB) 6.0 (UB) 10.0 (UB) — 10.0 (UB)
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Table 15 Optimization results obtained using nine combinations of multiple surrogates

θ2(w1 = w2 = 0.5)[◦]

Stage 1 KR1a RTF KPR2

Stage 2 KR0a PRS1 SWR2 KR0 PRS1 SWR2 KR0 PRS1 SWR2

Nom. Opt #1 Opt #2 Opt #3 Opt #4 Opt #5 Opt #6 Opt #7 Opt #8 Opt #9

Flange #5 μ 5.677 3.443 3.144 1.142 3.190 2.929 2.074 3.948 3.383 3.227

σ 0.371 0.410 0.289 0.379 0.281 0.177 0.458 1.174 0.800 1.222

Rd 6.50 8.75 10.00 10.00 9.97 10.00 10.00 9.33 10.00 10.00

Rp 6.50 7.55 3.00 5.19 4.43 3.00 3.26 4.76 3.00 4.43

athe most accurate surrogate models at the first and the second stages are KR1 and KR0, respectively

The general observations obtained from optimization
results can be described as follows. Two different types of
beading are investigated. Flange #1 has continuous bead-
ing through the web, whereas in Flange #4 the beads are
applied at the radii of the flanges. Flange #4 shows the best
mean performance as well as the smallest springback vari-
ation. So, this design is the most robust design. It can be
concluded that introducing beads increases the mean perfor-
mance and the robustness. Flange #2 and #3 (concave and
convex, respectively) showed the worst mean performances
as well as the largest springback variation. Even though
the concave and convex flanges improved the aerodynamic
characteristics and the appearance, they result in significant
springback and variation. It is observed that a design change
that decreases the mean springback also reduces the spring-
back variation. That is, the deterministic design and the
robust design are similar.

6.4 Using multiple surrogates

As pointed out by Glaz et al. (2009) and later by Acar et al.
(2011), in a surrogate based optimization framework, the
use of the most accurate surrogate model does not neces-
sarily lead to the optimum. In this section, instead of using
the most accurate surrogate model in optimization, the use

of multiple surrogates is explored. Since there exist two sets
of surrogate models in this work, the use of multiple surro-
gates is a bit problematic. Recall that we use seven different
surrogate models in each set, so there exist 49 possible com-
binations of multiple surrogates, and it becomes a tedious
work. To simplify the analysis, we use the surrogate mod-
els with the best, the average and the worst performance.
In addition, out of 19 optimization problems considered
for the seven-flange die assembly, we focus on θ2 mini-
mization Flange #5, because for this optimization problem
the design variables take optimal values within the bounds.
In most of the other cases out of 19 optimization prob-
lems, the design variables are pushed to the lower or upper
bounds.

For θ2 minimization of Flange #5, the surrogate mod-
els with the best, the average and the worst performance
are KR1, RBF and SWR2, respectively, among the first
set of surrogates. When, KR1 model is used in the first
stage, the surrogate models with the best, the average and
the worst performance are KR0, PRS1 and SWR2, respec-
tively, among the second set of surrogates. So we consider
these multiple surrogate models at two stages, and solve
the robust optimization problem using nine combinations
of these models. The optimization results obtained using
nine combinations of multiple surrogates are provided in

Table 16 Performance
evaluation of candidate
optimum designs using multiple
surrogates

Candidate optimum Rd [mm] Rp [mm] θ2(w1 = w2 = 0.5) [◦] Ave. [◦]

KR0 PRS1 SWR2

KR1 #1 8.75 7.55 3.443 4.075 2.735 3.417

#2 10.00 3.00 5.320 3.144 1.387 3.284

#3 10.00 5.19 4.673 3.154 1.142 2.990

RBF #4 9.97 4.43 3.190 3.041 2.205 2.812

#5 10.00 3.00 3.359 2.929 2.063 2.784

#6 10.00 3.26 3.314 2.946 2.074 2.778

SWR2 #7 9.33 4.76 3.948 4.141 3.779 3.956

#8 10.00 3.00 4.362 3.383 3.492 3.746

#9 10.00 4.43 4.094 3.496 3.227 3.605
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Table 17 Optimum die radius and punch radius results for all flanges obtained by using a single set of surrogate models (w1 = w2 = 0.5)

Minimization for Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #6 Flange #7

Optimum die radius

θ1 — 3.0 (LB) 3.0 (LB) — 7.05 — 10.0 (UB)

θ2 — 10.0 (UB) 10.0 (UB) — 9.42 — 8.57

θ1 + θ2 — 10.0 (UB) 10.0 (UB) — 7.45 — 10.0 (UB)

Optimum punch radius

θ1 2.0 (LB) 10.0 (UB) 7.99 6.0 (UB) 10.0 (UB) 3.0 (LB) 10.0 (UB)

θ2 2.0 (LB) 10.0 (UB) 10.0 (UB) 4.0 (LB) 4.48 — 5.47

θ1 + θ2 2.0 (LB) 10.0 (UB) 10.0 (UB) 6.0 (UB) 10.0 (UB) — 10.0 (UB)

Table 15. We consider all these designs as candidate opti-
mum designs. It is observed that the candidate optimum
designs #2, #5 and #8 are identical, so the use of multi-
ple surrogates leads to seven different candidate optimum
configurations.

The last step of surrogate-based optimization is the val-
idation of the optimum designs. For a deterministic opti-
mization problem, it requires performing a single finite
element analysis. For a robust optimization problem, the
validation will require performing many finite element anal-
yses within a Monte Carlo framework. In this study, there
exist two layers of surrogate models in robust optimiza-
tion, so the validation of optimum is also problematic. First
of all, it is computationally very expensive to evaluate the
actual performances of the candidate optimum designs that
require direct integration of finite element analysis into
a Monte Carlo simulation framework. As a remedy, the
performances of the candidate optimum designs are pre-
dicted using multiple surrogates and the average perfor-
mance of the candidate optimum over multiple surrogates
is assessed. Table 16 shows that the average performance
of the candidate #6 over multiple surrogates is better than
that of the candidate #1, which corresponds to the use of the
most accurate surrogate models at each stage. This result
underlines the fact that in surrogate-based optimization, the

use of multiple surrogates is a better strategy than using the
most accurate surrogate model in optimization.

6.5 Comparing the use of two sets of surrogates to a single
set of surrogate

One may argue that the use of the second set of surrogate
models built upon the first set of surrogate models increases
the overall error and leads to erroneous optimization results.
To investigate this issue of inaccuracy associated with the
second set of surrogates, the optimization problems are also
solved by using the first set of surrogates within an MCS
framework. To deal with the MCS noise, the set of random
variables are generated only once at the beginning and the
same random variables are used throughout the optimization.

The optimization results obtained by using a single set of
surrogate models are provided in Tables 17 and 18. Com-
paring the optimal values of the design variables given in
Table 17 to the results in Table 13, it is seen that the opti-
mal values of the design variables obtained using a single
set of surrogate models and two sets of surrogate models
are close. Similarly, comparing the optimal springback val-
ues in Table 18 to the results in Tables 10, 11 and 29, it
is observed that the values obtained using a single set of
surrogate models and two sets of surrogate models are close.

Table 18 Optimum springback results for all flanges obtained by using a single set of surrogate models (w1 = w2 = 0.5)

Minimization for Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #6 Flange #7

Mean values

θ1 1.952 2.286 3.798 0.606 0.332 1.458 1.394

θ2 3.903 1.581 3.465 4.869 4.245 — 1.642

θ1 + θ2 5.854 5.457 9.022 5.475 4.088 — 4.597

Standard deviations

θ1 0.173 0.498 0.701 0.087 0.262 0.00004 0.348

θ2 0.326 0.186 0.630 0.470 0.313 — 0.189

θ1 + θ2 0.369 0.474 0.737 0.478 0.531 — 0.435
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7 Conclusion

In this paper, robust optimization of DP600 steel seven-
flange die assembly was performed. The design variables
were selected as the die radius and the punch radius. The
random variables of the problem were the yield stress,
the hardening exponent, the hardening coefficient, the
anisotropy coefficients and the rolling direction. Mean and
standard deviation of the springback values were optimized
using surrogate models. Two sets of surrogate models were
constructed in this study. The first set was constructed to
relate the springback to the design variables as well as the
random variables. The mean and the standard deviation of
springback were calculated using MCS, where the first set
of surrogate models was utilized. The second set of sur-
rogate models was generated to relate the mean and the
standard deviation of springback to the design variables.
From the results obtained, the following conclusions were
drawn:

• Two different types of beading are investigated. Flange
#1 has continuous beading through the web, while the
beads are applied at the radii of Flange #4. Flange #4
showed the best mean performance as well as the small-
est springback variation. So, this design was the most
robust design. From the springback results obtained, it
was concluded that introducing beads increased both
the mean performance and the robustness.

• Flange #2 and #3 (concave and convex, respectively)
showed the worst mean performances as well as the
largest springback variation. Even though the concave
and convex flanges may improve the aerodynamic char-
acteristics and the appearance, they result in significant
springback and variation.

• Four different types of surrogate models were utilized,
namely PRS (PRS1, PRS2), SWR (SWR1, SWR2),
RBF and KR (KR0, KR1). It was found for the first
set of surrogate models that KR provided more accu-
rate springback predictions than PRS, SWR and RBF.
It was found for the second set of surrogate models that
PRS provided more accurate springback predictions
than SWR, RBF and KR.

• The surrogate based robust optimization was performed
and MCS were performed to validate the found opti-
mum. Considerable reductions were obtained for the
mean values of different springback angles in amounts
varying between 7% and 85% when compared to nom-
inal mean springback results.

• It is observed that a design change that decreases the
mean springback also reduces the springback variation.
That is, the deterministic design and the robust design
are similar.

• The standard deviation was not significantly changed
for the optimal design, and the small number of design
variables was responsible for this outcome. Increasing
the number of design variables could help reducing the
standard deviation of the springback.

• Since the springback of each flange in the seven-flange
die assembly required individual treatment, nineteen
different optimization problems were formulated and it
was observed for most cases that the optimizer pushed
the design variables to lower and upper bounds.

• The use of multiple surrogates in optimization was
evaluated and it was observed that finding multiple
candidates of optimum with multiple surrogates and
selecting the one with the best performance is a bet-
ter strategy than optimization with the most accurate
surrogate model.
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Appendix A: Sensitivity analysis

To investigate the effects of design and random variables
on springback, a simple sensitivity analysis is performed.
The variables as well as the springback values are nor-
malized between 0 and 1. A linear PRS is fitted to the
normalized springback in terms of normalized variables.
The coefficients of the linear terms are indications of the
sensitivity of springback to the variables. The coefficients
are listed in Table 19 for θ1 and in Table 20 for θ2. The abso-
lute values of the coefficients are listed in descending order
in Table 21 for θ1 and in Table 22 for θ2. It is found that
the punch radius is more influential than the die radius for
θ1, whereas the opposite is true for θ2. Among the random
variables, the hardening coefficient and the hardening expo-
nent are found to be the most influential variables. Finally,
the anisotropy coefficient R90 is observed to have more
influence than the other anisotropy coefficients R0 and R45.

Appendix B: Accuracy evaluation of the surrogate
models of Flanges #2 through #7

The accuracy evaluation of the surrogate models of Flange
#2 through #7 are listed in Tables 23, 24, 25, 26, 27, 28.
SWR models show the best performance for Flange #4 θ1

and θ2. RBF model is the most accurate model for Flange
#2 θ1, Flange #3 θ1, and Flange #7 θ1. Kriging models show
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Table 19 The sensitivity of θ1 to the design variables and the random variables

Variable Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #6 Flange #7

Rd 0.278 0.323 −0.137 −0.133

Rp 0.136 −0.329 −0.372 −0.417 −0.516 −0.216 −0.506

σ Y 0.148 −0.005 −0.016 0.037 0.042 0.163 0.047

N −0.285 −0.248 −0.243 −0.046 −0.249 −0.169 −0.211

K 0.268 0.349 0.323 0.171 0.113 −0.157 0.237

R0 −0.065 −0.106 −0.089 −0.051 −0.084 −0.059 −0.123

R45 0.046 0.007 −0.025 0.017 0.089 0.083 0.031

R90 0.141 0.188 0.146 0.072 0.106 0.278 0.152

RD −0.053 0.091 0.068 −0.107 0.075 0.015 0.033

Table 20 The sensitivity of θ2
to the design variables and the
random variables

Variable Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #7

Rd −0.756 −0.354 −0.552 −0.585

Rp 0.145 −0.289 −0.189 0.076 −0.041 0.096

σ Y −0.130 −0.022 −0.075 −0.152 −0.051 0.050

N −0.255 −0.037 −0.152 −0.452 −0.131 −0.105

K 0.294 0.111 0.116 0.360 0.240 0.244

R0 −0.028 −0.002 −0.053 −0.051 0.019 −0.101

R45 0.015 0.029 −0.044 0.002 −0.025 0.001

R90 0.084 0.074 0.066 0.105 0.151 −0.011

RD −0.046 −0.021 0.077 −0.060 0.053 0.030

Table 21 The sorted listings of
the sensitivity of θ1 to the
design variables and the random
variables

Variable Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #6 Flange #7

Rd 3 3 3 5

Rp 5 2 1 1 1 2 1

σ Y 3 9 9 7 9 4 7

N 1 4 4 6 2 3 3

K 2 1 2 2 4 5 2

R0 6 6 6 5 7 7 6

R45 8 8 8 8 6 6 9

R90 4 5 5 4 5 1 4

RD 7 7 7 3 8 8 8

Table 22 The sorted listings of
the sensitivity of θ2 to the
design variables and the random
variables

Variable Flange #1 Flange #2 Flange #3 Flange #4 Flange #5 Flange #7

Rd 1 1 1 1

Rp 3 2 2 5 7 5

σ Y 4 7 6 3 6 6

N 2 5 3 1 4 3

K 1 3 4 2 2 2

R0 7 9 8 7 9 4

R45 8 6 9 8 8 9

R90 5 4 7 4 3 8

RD 6 8 5 6 5 7
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Table 23 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #2)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 5.5 8.2 5.3 12.7 4.9 15.8 5.5

θ1 prediction RMSE/�y (%)

R2 0.92 0.82 0.92 0.57 0.94 0.33 0.92

Accuracies of surrogate models for 8.9 28.3 9.6 47.0 9.6 26.3 8.9

θ2 prediction RMSE/�y (%)

R2 0.89 −0.14 0.87 −2.14 0.87 0.02 0.89

Table 24 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #3)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 7.2 11.4 7.5 15.3 6.7 16.0 7.0

θ1 prediction RMSE/�y (%)

R2 0.88 0.71 0.87 0.48 0.90 0.43 0.89

Accuracies of surrogate models for 8.9 17.4 8.9 23.1 9.0 12.5 7.5

θ2 prediction RMSE/�y (%)

R2 0.72 −0.08 0.72 −0.88 0.71 0.45 0.80

Table 25 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #4)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 14.2 22.6 14.2 33.3 21.3 21.0 14.8

θ1 prediction RMSE/�y (%)

R2 0.43 −0.44 0.44 −2.11 −0.27 −0.24 0.39

Accuracies of surrogate models for 7.2 12.2 7.1 14.4 8.3 13.8 7.2

θ2 prediction RMSE/�y (%)

R2 0.85 0.56 0.85 0.38 0.79 0.43 0.84

Table 26 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #5)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 18.6 51.6 19.4 58.7 18.7 24.1 18.4

θ1 prediction RMSE/�y (%)

R2 0.53 −2.64 0.49 −3.72 0.52 0.21 0.54

Accuracies of surrogate models for 11.3 23.3 11.5 28.4 11.7 15.6 10.6

θ2 prediction RMSE/�y (%)

R 2 0.69 −0.31 0.68 −0.94 0.67 0.41 0.73

Table 27 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #6)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 28.6 52.9 28.2 77.8 44.4 28.0 28.7

θ1 prediction RMSE/�y (%)

R2 −0.08 −2.68 −0.05 −6.97 −1.60 −0.03 −0.08
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Table 28 Accuracies of
different surrogate models
constructed for θ1 and θ2
(Flange #7)

PRS1 PRS2 SWR1 SWR2 RBF KR0 KR1

Accuracies of surrogate models for 16.4 28.5 16.9 37.1 16.3 19.8 16.4

θ1 prediction RMSE/�y (%)

R2 0.49 −0.53 0.46 −1.61 0.50 0.26 0.49

Accuracies of surrogate models for 12.6 18.7 13.7 34.4 14.0 14.0 10.8

θ2 prediction RMSE/�y (%)

R2 0.60 0.13 0.53 −1.95 0.51 0.51 0.71

the best performance for Flange #2 θ2, Flange #3 θ2, Flange
#5 θ1 and θ2, Flange #6 θ1, Flange #7 θ2. PRS models do
not show superiority over other surrogate models for any of
the responses.

Appendix C: Optimization results for Flanges #2
through #7

Table 29 presents a comparison of the mean and the standard
deviation of springback for the nominal design (column 2,
3, and 9) and the optimum design (both the surrogate model
prediction (column 4, 7, and 10) as well as the MCS results
(column 5, 8, 11) at the found optimum).

For θ1 minimization of Flange #3, optimum results are
provided in Table 29 (rows 3 to 6, columns 3 to 5). The mean
springback is reduced by 39% and the standard deviation
of the springback is increased by about 16.4%. The opti-
mum values of the die and punch radii are found to be 3 mm
(lower bound of Rd) and 7.52 mm, respectively. For θ2 min-
imization of Flange #3, optimum results are presented in
Table 29 (rows 3 to 6, columns 6 to 8). It is observed that
the mean springback is reduced by 49.5% and the standard
deviation of the springback is increased by about 71.2%.
The optimum values of the die and punch radii are both
found to be 10 mm (upper bound of Rd and Rp). For θ1

+ θ2 minimization of Flange #3, optimum results are listed
in Table 29 (rows 3 to 6, columns 9 to 11). It is found that

Table 29 Optimization results for Flanges #3 through #7 (w1 = w2 = 0.5)

θ1 θ2 θ1 + θ2

Nominal Optim. Optim. Nominal Optim. Optim. Nominal Optim. Optim.

results (pred.) (actual) results (pred.) (actual) results (pred.) (actual)

Flange #3 μ 6.544 4.492 3.984 6.582 2.995 3.465 13.402 8.873 9.233

σ 0.616 0.644 0.717 0.638 0.245 0.630 0.718 0.355 0.746

Rd 6.50 3.00 3.00 6.50 10.00 10.00 6.50 10.00 10.00

Rp 6.50 7.52 7.52 6.50 10.00 10.00 6.50 10.00 10.00

Flange #4 μ 0.934 0.611 0.606 5.258 4.825 4.869 6.192 5.977 5.475

σ 0.087 0.088 0.087 0.481 0.475 0.470 0.489 0.475 0.478

Rd – – – – – – – – –

Rp 5.00 6.00 6.00 5.00 4.00 4.00 5.00 6.00 6.00

Flange #5 μ 2.475 0.388 0.355 5.677 3.443 4.831 8.152 4.155 3.931

σ 0.257 0.705 0.280 0.371 0.410 0.348 0.451 0.992 0.630

Rd 6.50 9.53 9.53 6.50 8.75 8.75 6.50 9.53 9.53

Rp 6.50 10.00 10.00 6.50 7.55 7.55 6.50 10.00 10.00

Flange #6 μ 1.458 1.458 1.458 – – – – – –

σ 0.00290 0.00001 0.00004 – – – – – –

Rd – – – – – – – – –

Rp 7.50 3.00 3.00 – – – – – –

Flange #7 μ 3.815 1.716 1.593 3.692 1.378 1.573 7.507 5.127 4.794

σ 0.349 0.356 0.383 0.266 0.326 0.234 0.439 0.473 0.493

Rd 6.50 8.45 8.45 6.50 8.38 8.38 6.50 8.45 8.45

Rp 6.50 10.00 10.00 6.50 4.04 4.04 6.50 10.00 10.00
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the mean springback is reduced by 31.1% and the standard
deviation of the springback is increased by about 4%. The
optimum values of the die and punch radii are both found to
be 10 mm (upper bound of Rd and Rp), as in the case of θ2

minimization.
For θ1 minimization of Flange #4, optimum results are

provided in Table 29 (rows 7 to 10, columns 3 to 5). The
mean springback is reduced by 35.1% and the standard devi-
ation of springback is maintained at its nominal value. The
optimum value of the punch radius is found to be 6 mm,
which is the lower bound of Rp. For θ2 minimization of
Flange #4, optimum results are presented in Table 29 (rows
7 to 10, columns 6 to 8). It is observed that the mean spring-
back is reduced by 7.4% and the standard deviation of the
springback is decreased by about 2.3%. The optimum value
of the punch radius is found to be 4 mm. For θ1 + θ2 mini-
mization of Flange #4, optimum results are listed in Table 29
(rows 7 to 10, columns 9 to 11). It is found that the mean
springback is reduced by 11.6% and the standard deviation
of the springback is decreased by about 2.3%. The optimum
value of the punch radius is found to be 6 mm (upper bound
of Rp), as in the case of θ1 minimization.

For θ1 minimization of Flange #5, optimum results are
provided in Table 29 (rows 11 to 14, columns 3 to 5).
The mean springback is reduced by 85.7% and the stan-
dard deviation of the springback is increased by about 9%.
The optimum values of the die and punch radii are found
to be 9.53 mm and 10 mm (upper bound of Rp), respec-
tively. For θ2 minimization of Flange #5, optimum results
are presented in Table 29 (rows 11 to 14, columns 6 to 8). It
is observed that the mean springback is reduced by 14.9%
and the standard deviation of the springback is reduced by
about 7.6%. The optimum values of the die and punch radii
are found to be 8.75 mm and 7.55 mm, respectively. For θ1

+ θ2 minimization of Flange #5, optimum results are listed
in Table 29 (rows 11 to 14, columns 9 to 11). It is found that
the mean springback is reduced by 51.8% and the standard
deviation of the springback is increased by about 39.7%.
The optimum values of the die and punch radii are found to
be 9.53 mm and 10 mm (upper bound of Rp), respectively,
as in the case of θ1 minimization.

For θ1 minimization of Flange #6, optimum results are
provided in Table 29 (rows 15 to 18, columns 3 to 5). The
mean springback is maintained at its nominal value and the
standard deviation of springback is reduced by about 98.6%.
The optimum value of the punch radius is found to be 3 mm,
which is the lower bound of Rp.

For θ1 minimization of Flange #7, optimum results are
provided in Table 29 (rows 19 to 22, columns 3 to 5). The
mean springback is reduced by 58.2% and the standard devi-
ation of the springback is increased by about 9.7%. The
optimum values of the die and punch radii are found to be
8.45 mm and 10 mm (upper bound of Rp), respectively.

For θ2 minimization of Flange #7, optimum results are pre-
sented in Table 29 (rows 19 to 22, columns 6 to 8). It is
observed that the mean springback is reduced by 57.4% and
the standard deviation of the springback is reduced by about
12%. The optimum values of the die and punch radii are
found to be 8.38 mm and 4.04 mm, respectively. For θ1 +
θ2 minimization of Flange #7, optimum results are listed in
Table 29 (rows 19 to 22, columns 9 to 11). It is found that
the mean springback is reduced by 36.1% and the standard
deviation of the springback is increased by about 12.3%.
The optimum values of the die and punch radii are found to
be 8.45 mm and 10 mm (upper bound of Rp), respectively,
as in the case of θ1 minimization.

As noted earlier, we assumed that the weight coefficients
are equal (w1 = w2 = 0.5). Predicted and actual optimum
result will change with values of the w1 and w2. For exam-
ple, if μθ1 is more important than σθ1 , then we would use
w1 > w2 in optimization and we would obtain a smaller
μθ1 value than the μθ1 value presented in Table 11. How-
ever, there is a trade-off. If w1 is larger than the w2, the σθ1

will be larger than the σθ1 value evaluated at equal weight
coefficients (w1 = w2 = 0.5). That is, determining the
weight coefficients is up to designer. Designer’s perfor-
mance expectation from a system is important to decide
whether w1 must be larger than w2 or not. The same assess-
ment can be made for the results of Flanges #2 through #7.
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