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Most reliability-based optimization studies focus on variables that are available in the design stage.However, it has

been shown that inclusion of postdesign measures, such as structural tests and health monitoring, can lead to better

design choices. More recently, a new reliability-based design framework that can include both predesign and

postdesign uncertainty-reduction variables has been proposed in an earlier work. The present study elaborates on

that study by including the system reliability considerations. A representative wing and tail system is considered in

this study, and the wing and the tail are designed together with their corresponding structural tests. The number of

coupon tests, the number of structural element tests, and the additional company knockdown factors for each

component are selected as design variables to perform system reliability-based optimization for minimum direct

operating cost. It is found that the optimum company knockdown factor for the wing is larger than that of the tail,

because a small fraction of the wingmaterial ismoved to tail for optimal reliability allocation. It is also found that the

optimum number of structural element tests for the wing is larger than or equal to that of the tail. Finally, the

optimum number of coupon tests for the wing is found to be smaller than that of the tail.

Nomenclature

A = load-carrying area of the most critical part of the
wing or tail structure

Anom = nominal value of A
Cc = cost of coupon tests
Ce = cost of element tests
Ctest = overall cost of tests
DOC = direct operating cost (life-cycle cost)
kf = additional company knockdown factor at the

structural level (nominal value is taken as 0.95)
Na = number of aircraft in a fleet (taken as 1000)
Nelem = number of different types of structural elements

tested (taken as 100)
Nmat = number of materials for which coupon testing is

done (taken as 80)
nc = number of coupon tests (nominal value is taken

as 50)
ne = number of element tests (nominal value is taken

as 3)
p = cost savings by reducing the structural weight by

one unit
Pf = probability of failure of a component
�Pf�W&T = probability of simultaneous failure of the wing and

the tail
PFS = probability of failure of the representative system

composed of a wing and a tail

Subscripts

T = tail
W = wing

I. Introduction

T HE safety of aircraft structures can be achieved by designing the
structure against uncertainty and by taking steps to reduce the

uncertainty. In traditional reliability-based optimization, all uncer-
tainties that are available at the design stage are considered in
calculating the reliability of the structure (e.g., [1–14]). However, the
effects of postdesign measures (e.g., structural tests, health
monitoring activities) that can effectively reduce uncertainties are
usually not included. It has been argued that it would be beneficial to
include the effects of these uncertainty-reduction measures in the
design process [15–18]. In this paper, the main focus is placed on the
structural tests as a representative example of uncertainty-reduction
measures.

There are few papers in the literature that address the effect of tests
on structural safety. Jiao and Moan [19] investigated the effect of
proof tests on structural safety using Bayesian updating. They
showed that the proof testing reduces the uncertainty in the strength
of a structure, thereby leading to substantial reduction in probability
of failure. Jiao and Eide [20] explored the effects of testing,
inspection and repair on the reliability of offshore structures. Beck
and Katafygiotis [21] addressed the problem of updating a proba-
bilistic structural model using dynamic test data from the structure by
using Bayesian updating. Similarly, Papadimitriou et al. [22] used
Bayesian updating within a probabilistic structural analysis tool to
compute the updated reliability of a structure using test data. They
found that the reliabilities computed before and after updating were
significantly different.

In an earlier paper [23], the aforementioned studies on the effect of
tests on structural safety [19–22] were extended in simulating all
possible outcomes of future tests, which would allow the designer to
design the tests together with the structure. In [24] a new reliability-
based optimization framework was proposed that can include both
predesign and postdesign uncertainty-reduction variables to design
an aircraft structure together with its structural tests. The number of
coupon tests was used as the predesign variable, the number of
structural element tests as postdesign variable. In addition, it was
assumed that in addition to satisfying a constraint on the probability
of failure, the designer needs to satisfy the FAA (Federal Aviation
Administration) regulations for deterministic design. To reconcile
the two requirements, the fact that companies often apply additional
knockdown factors to design allowables beyond the FAA
requirements was used. The company knockdown factor was used
as another design variable that modulates the tradeoff between cost
and safety. It has been shown in [24] that the number of coupon and
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element tests as well as the company knockdown factor can be
selected in an optimal way to minimize the direct operating cost
without jeopardizing the structural safety. However, in that study a
sizing optimization problem is considered, and it is assumed that
structural design of the aircraft is driven by the design of the most
critical component, while the system reliability considerations has
been left out, and this paper aims to fill this gap.

In this paper, sizing optimization of a representative wing and tail
system is considered. The reliability-based optimization framework
developed in [24] is extended to take system reliability consid-
erations into account. It is assumed that the optimization of the wing
and the tail are driven by their most critical components. The wing
and the tail are designed together with their corresponding structural
tests. The number of coupon tests, the number of element tests and
the additional knockdown factor for each component are selected as
design variables to perform system reliability-based optimization for
minimum direct operating cost. The paper is organized as follows.
Section II presents the formulation of the optimization problem for
minimum direct operating cost. Section III presents a list of
assumptions, simplifications and limitations of this work. Section IV
discusses the safety measures taken during aircraft structural design.
Section V first presents a simple uncertainty classification that
divides uncertainties into two categories: errors and variability.
Section V then discusses modeling of errors and variability through-
out the design and testing of an aircraft, and probability of failure
calculation. Finally, the system reliability-based optimization results
and the concluding remarks are given in the last two sections of the
paper, respectively.

II. Optimization for Minimum Direct Operating Cost

As noted earlier, the main objective of the paper is to perform
reliability-based design of a representative wing and tail system
together with structural tests. The design variables of the opti-
mization problem are chosen as the additional company knockdown
factor kf, the number of coupon tests nc, and the number of element
tests ne. Since these variables may change from the wing to the tail,
there exist six designvariables �kf�W , �nc�W , �ne�W , �kf�T , �nc�T , and
�ne�T , where the subscriptsW and T correspond to the wing and the
tail, respectively. The reliability-based design of a representative
wing and tail system for minimum direct operating cost (DOC) can
be performed by solving the following optimization problem:

Find

�kf�W; �nc�W; �ne�W; �kf�T; �nc�T; �ne�T (1a)

Minimize

DOC ��kf�W; �nc�W; �ne�W; �kf�T; �nc�T; �ne�T � (1b)

Subject to

PFS��kf�W; �nc�W; �ne�W; �kf�T; �nc�T; �ne�T � � �PFS�nom (1c)

0:8 � �kf�W � 1:0; 0:8 � �kf�T � 1:0

30 � �nc�W � 100; 30 � �nc�T � 100

1 � �ne�W � 5; 1 � �ne�T � 5 (1d)

The �PFS�nom term in the constraint is the value of PFS when the
design variables take their nominal values (i.e., �kf�W�
�kf�T � 0:95, �nc�W � �nc�T � 50, and �ne�W � �ne�T � 3). These
nominal values are taken from an earlier work [24].

The cost model used in this study is also taken from [24]. The cost
model is based on the paper by Kaufmann et al. [25]. The direct
operating cost of the aircraft structure is defined as

DOC � pW � Ctest (2)

Here, p is the total cost savings attained by reducing the structural
weight W by one unit, and Ctest is the cost of tests. Since this study

focuses mainly on the coupon tests and the element tests, the term
Ctest can be rewritten as

Ctest � Cc � Ce (3)

where Cc is the cost of coupon tests, Ce is the cost of element tests.
Equations (2) and (3) can be combined to yield

DOC � pW � Cc � Ce (4)

The total direct operation cost of the wing and tail system can be
written as

DOC��kf�W; �nc�W; �ne�W; �kf�T; �nc�T; �ne�T �
� DOCW ��kf�W; �nc�W; �ne�W �
� DOCT ��kf�T; �nc�T; �ne�T � (5)

whereDOCW andDOCT are the direct operation cost of thewing and
the tail, and they can be formulated as

DOCW ��kf�W; �nc�W; �ne�W � � pWW��kf�W; �nc�W; �ne�W�
� Cc��nc�W � � Ce��ne�W � (6)

DOCT ��kf�T; �nc�T; �ne�T � � pWT��kf�T; �nc�T; �ne�T�
� Cc��nc�T � � Ce��ne�T � (7)

whereWW andWT are the structural weights of the wing and the tail.
Details of each term in the cost equation are provided below.

A. Weight Penalty p

Curran et al. [26] proposed that the economical value of weight
savings is 300=kg. Similarly, Kim et al. [27] referred to a recent
report by the U.S. National Materials Advisory Board [28] that
estimated that a 1 lb weight reduction amounts to a total savings of
$200 for a civil transport aircraft. Jenkinson et al. [29] noted that
operating cost of carrying an additional 1 lb over the lifetime of a
300–600-seat civil aircraft is around $1000. In this study, the weight
penalty is varied between 100=lb and 1000=lb, and its effect on the
optimization results is explored.

B. Structural Weights of the Wing and the Tail

Jenkinson et al. [29] provided component weight estimations for
typical civil aircraft normalized with the maximum takeoff weight
(MTOW), and noted that the structural weight of a typical wing was
about 10 to 12% of the MTOW, and the structural weight of a tail is
about 1.5 to 3% of the MTOW. In this paper, the ratio of the wing
weight to the MTOW and the ratio of tail weight to the MTOW are
taken asWW=MTOW� 10% andWT=MTOW� 2%, respectively.

In this paper, a typical civil transport aircraft with an MTOW of
300,000 lb is considered. Theweights of thewing and the tail are then
taken as 30,000 lb and 6000 lb, respectively. Since the test costs can
be attributed tofleet of aircraft rather than a single one, total structural
weight of the fleet is considered. Therefore, theweight termsWW and
WT in Eqs. (6) and (7) can be written as

WW ��kf�W; �nc�W; �ne�W � �
A��kf�W; �nc�W; �ne�W �

Anom

� Na � 30; 000 lb (8)

WT ��kf�T; �nc�T; �ne�T � �
A��kf�T; �nc�T; �ne�T �

Anom

� Na � 6000 lb

(9)

Here, A is the load-carrying area, andAnom is the value of Awhen the
designvariables take their nominal values. It is assumed that a typical
airliner has a production line of 1000 aircraft before it is discontinued
or substantially redesigned, so Na � 1000.
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C. Test Costs

The costs† for the coupon tests and element tests are taken as $300
for each coupon in a coupon test, and $150,000 for each element
tests. Accordingly, the respective costs are given (in dollars) as

Cc�nc� � 300 � Nmat � nc (10)

Ce�ne� � 150; 000 � Nelem � ne (11)

where Nmat is the number of different materials tested for a single
aircraft model, and Nelem is the number different types of structural
elements tested. In this study, these values are taken as Nmat � 80,
andNelem � 100, respectively. Note that the cost function in Eq. (11)
has theweakness of disregarding the detrimental effects of the failure
in tests. The effects include increased product development cycle,
delay in production and delivery, and even order cancellation and
loss of prestige. Since there are no published data in literature, these
effects are not included in the cost function.

The flowchart of the reliability-based design optimization
(RBDO) problem is given in Fig. 1. Optimization framework starts
with determining the design variables of the problem. Here, the
design variables are �kf�W , �kf�T , �nc�W , �nc�T , �ne�W , and �ne�T .
Then the lower and upper limits for the design variables are specified
in Eq. (1d). Then the objective function and constraints are specified.
Here, the objective function is the direct operating cost and the
constraint is on the probability of failure of the wing and the tail
system. The evaluations of the load-carrying areas and the
probability of failure of the wing and tail system are computationally
expensive. Therefore, response-surface models are constructed for
these responses. For that purpose, first training points are generated
in the design variable space using design of experiments meth-
odology. Then the responses (load-carrying areas and the system
probability of failure) are computed at the training points. The
training points and the corresponding responses constitute the
training set. The training set is then used to generate the response-
surface approximations. The cost parameters and the constructed
response surfaces are used in solving the optimization problem for
minimum direct operating cost.

III. Assumptions, Simplifications, and Limitations

The major assumptions, simplifications, and limitations of this
study can be listed as follows:

1) A representative wing and tail system is considered and the
focus is placed on the most critical parts of the wing and tail. It is
assumed that each of these critical regions can be characterized by a
load-carrying area.

2) The critical regions are assumed to be designed against a static
point stress failure. Other failure mechanisms (e.g., fatigue,
corrosion, etc.) are not considered.

3) It is assumed that both the wing and the tail structures are
stressed equally for the nominal design. The nominal probabilities of
failure of the wing and the tail are assumed to be equal.

4) It is assumed that the errors in load calculation for the wing and
the tail, and the errors in structural failure assessment for thewing and
the tail are perfectly correlated. All other errors and variabilities for
the wing and the tail are assumed to be uncorrelated.

5) Safety measures for protection against uncertainties are
restricted to the use of a load safety factor and conservative material
properties, while other measures such as redundancy are left out.

6) Uncertainty analysis is simplified by classifying uncertainties
into two parts: errors and variability. It is very rare to have data on the
probability distribution of errors. The errors are assumed to follow
uniform probability distribution with known bounds based on
experience. The uniform distribution is based on the principle of
maximum entropy. The bounds of errors and probability distri-
butions of variabilities are selected based on previous work
[17,19,20].

7) Aircraft companies are assumed to follow conservative design
practices at each stage of design process. It is assumed that these
conservative practices can be simulated by using an additional
knockdown factor, kf , over FAA regulations. The nominal value of
kf is taken as 0.95 (for both the wing and tail).

8) It is assumed that a typical airliner has a production line of 1000
aircraft before it is discontinued or substantially redesigned. In
addition, 1 out of 1000 aircraft is assumed to experience limit load
throughout its service life.

9) The structural test pyramid that has many layers (e.g., coupon
tests, element tests, part tests, subassembly tests, assembly tests, and
certification test) is simplified to a three-level test pyramid composed
of coupon tests, element tests, and certification test only.

10) The nominal value for the material coupon tests (for both the
wing and the tail) is assumed to be 50.

Determine the design variables (DVs): (k f)W, (nc)W, (ne)W, (kf)T, (nc)T, (ne)T

Specify the lower and upper bounds of DVs 

Optimization successful? 

Yes 

Specify cost function 
parameters 
(p, Cc, Ce) 

No 

Generate a design of experiments for DVs within their limits 

For each design in the DOE, compute load carrying areas (AW

and AT) and system reliability index (βS)  

Construct response surfaces for AW, AT and βS

Solve RBDO problem for minimum direct operating cost 

Optimum DVs 

Fig. 1 Flowchart for RBDO.

†Based on private communications with structural engineers in Turkish
Aerospace Industries, Boeing, and NASA.
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11) The nominal value for the structural element tests (for both the
wing and the tail) is assumed to be 3.

If these assumptions and simplifications are not valid, then the
problem will be complex. For instance, if the optimization was not
driven only by the most critical components, then the number of
design variables will be increased, thereby larger number of training
pointswill be needed to construct the response-surfacemodels, so the
computational cost will be larger. Similarly, if failure mechanisms
other than static failure (e.g., fatigue, corrosion, etc.) are considered,
then the problem will be more difficult to solve. For the case of
fatigue, for instance, a new limit-state function needs to bewritten for
fatigue failure, and reliability calculations for the wing and the tail
need to take multiple failure modes into account. This can be
achieved through Monte Carlo simulations, but the computational
cost will increase. In addition, new design variables such as the
number of inspections and types of inspections to be performed need
to be introduced, and this will further increase the problem com-
plexity and the computational cost. Another issue is the level of
safety. If the reliability level is increased to 10	9, then Monte Carlo
simulation (MCS) will become unaffordable. In that case, instead of
MCS method more efficient techniques such as the guided tail
modeling method [30] could be used. Nevertheless, the optimization
framework demonstrated in Sec. II will still be valid.

IV. Safety Measures

As noted earlier, the safety of aircraft structures is achieved by
designing these structures to operate well in the presence of
uncertainties and taking steps to reduce the uncertainties. The
following gives brief description of these safety measures.

A. Safety Measures for Designing Structures Under Uncertainties

In transport aircraft design, FAA regulations mandate the use of a
load safety factor of 1.5 (FAR 25.303 [31]). That is, aircraft
structures are designed to withstand 1.5 times the limit load without
failure. Limit load is the maximum load anticipated on the aircraft or
component during its service life.

To account for uncertainty in material properties, FAA regulations
mandate the use of conservative material properties (FAR 25.613
[32]). The conservative material properties are characterized as A-
basis and/or B-basis material property values. Detailed information
on these values is provided in [33] (Chapter 8). In this paper, B-basis
values are used. The B-basis value is determined by calculating the
value of a material property exceeded by 90% of the population with
95%confidence. The basis values are determined by testing a number
of coupons selected randomly from amaterial batch. In this paper, the
nominal number of coupon tests is taken as 50.

Other safety measures, such as redundancy, are not discussed in
this paper.

B. Safety Measures for Reducing Uncertainties

Improvements in accuracy of structural analysis and failure
prediction of aircraft structures reduce errors and enhance the level of
safety. These improvements may be due to better modeling tech-
niques developed by researchers, more detailed finite element
models made possible by faster computers, or more accurate failure
theories. Similarly, the variability in material properties can be
reduced through quality control and improved manufacturing
processes. Variability reduction in damage and ageing effects is
accomplished through inspections and structural health monitoring.
The reader is referred to the papers by Qu et al. [15] for effects of
variability reduction, Acar et al. [16] for effects of error reduction,
and Acar et al. [17] for effects of reduction of both error and
variability.

In this paper, the main focus is placed on error reduction through
aircraft structural tests, while the other uncertainty-reduction
measures are left out for future studies. Structural tests are conducted
in a building-block procedure ([33], chapter 2). First, individual
coupons are tested to estimate the mean and variability in failure
stress. The mean structural failure is estimated based on failure

criteria (such as Tsai-Wu) and this estimate is further improved using
element tests. Then components, subassemblies, and assemblies are
tested, followed by a full-scale test of the entire structure. In this
paper, the simplified three-level test procedure depicted in Fig. 2 is
used. The coupon tests, structural element tests, and the final
certification test are included.

At the first level of testing, coupons (i.e., material samples) are
tested to estimate the failure stress. FAR 25.613 [32] mandates
aircraft companies to perform enough tests to establish design values
of material-strength properties (A-basis or B-basis value). As the
number of coupon tests increases, the errors in the assessment of the
material properties are reduced. However, since testing is costly, the
number of coupon tests is limited to about 100 to 300 for A-basis
calculation and at least 30 for B-basis value calculation. In this paper,
B-basis values are used and the nominal number of coupon tests is
taken as 50.

At the second level of testing, structural elements are tested. The
main target of element tests is to reduce errors related to failure
theories (e.g., vonMises, Tsai-Wu) used in assessing the failure load
of the structural elements. In this paper, the nominal number of
structural element tests is taken as 3.

At the uppermost level, certification testing of the overall structure
is conducted [Federal Aviation Regulation (FAR) 25.307 [34]]. This
final certification testing is intended to reduce the chance of failure in
flight due to errors in the structural analysis of the overall structure
(e.g., errors in finite element analysis and errors in failure mode
prediction). Note that no physical tests have been performed in this
work, but the possible tests outcomes are simulated assuming that the
probability distribution of the failure stress is known.

V. Uncertainty Classification, Modeling, and
Probability of Failure Calculation

A. Uncertainty Classification

A good analysis of different sources of uncertainty in engineering
simulations is provided by Oberkampf et al. [35,36]. To simplify the
analysis, we use a classification that distinguishes between errors
(uncertainties that apply equally to the entire fleet of an aircraft
model) and variability (uncertainties that vary for the individual
aircraft) as used in previous studies [37,38]. The distinction,
presented in Table 1, is important because safety measures usually
target either errors or variability. While variabilities are random
uncertainties that can be readily modeled probabilistically, errors are
fixed for a given aircraft model (e.g., Boeing 737-400) but they are
largely unknown. Since errors are epistemic, they are often modeled
using fuzzy numbers or possibility analysis [39,40]. The errors are
modeled probabilistically by using uniform distributions, because

Fig. 2 Simplified three-level tests.
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these distributions correspond to minimum knowledge or maximum
entropy.

B. Uncertainty Modeling

Detailed discussion on uncertainty modeling can be found in
Appendix A. The variabilities in loading, geometry and material
properties are modeled with proper probability distributions. The
loading is assumed to follow type I extreme distribution, since the
maximum load over lifetime is considered. Uniform distribution is
used to model uncertainty in geometry. The failure stress is assumed
to follow normal distribution.

The errors in load calculation, structural analysis, geometric
properties, and failure stress are also modeled. To model the errors
related to the failure stress, it is required to simulate the coupon tests,
the element tests, and the certification test. At the coupon level, there
exist errors in estimating material-strength properties from coupon
tests, due to the limited number of coupon tests. At the element level,
there exist errors in structural element strength predictions due to the
inaccuracy of the failure criterion used. The effects of structural
element tests are considered by using Bayesian updating. Discussion
on Bayesian updating of the failure stress distribution using the
results of element tests is provided inAppendixB.At the certification
level, there exist errors in failure prediction of the overall structure.

After all the errors and variability are carefully introduced, the
simulation of error and variability can be easily implemented through
separable MCS framework [37]. The details of the separable MCS
method can be found in Appendix C.

C. Probability of Failure Calculation for Wing and Tail

As noted earlier, the effect of element tests on failure stress
distribution is modeled using Bayesian updating. If Bayesian

updating were used directly within an MCS loop of probability of
failure calculation, the computational cost would be very high.
Therefore, Bayesian updating is performed aside in a separate MCS
(a brief description of the procedure is given in Fig. 3 with an
illustrative example), before startingwith themainMCS loop (a brief
sketch of the procedure is provided in Table 2). Since the failure
stress distribution may have a general shape, Johnson distribution is
used to model it, which can be represented using four quantiles. The
procedure followed for Bayesian updating can be described briefly as
follows. First, the four quantiles of the mean failure stress are
modeled as normal distributions. Then these quantiles are used tofit a
Johnson distribution to the mean failure stress. Finally, Bayesian
updating is used to update the mean failure stress distribution as in
our earlier work [24].

In the main MCS loop, first the coupon tests are simulated and the
B-basis allowable stress is calculated. Using the B-basis value, a
load-carrying area is computed. Then the effect of structural elements
tests is considered (using the Bayesian updating procedure explained
above), and the precalculated quantiles of the updated mean failure
stress is used. After that, B-basis allowable stress at the element level
is calculated. Comparing the B-basis values computed at the coupon
level and element level, the load-carrying area values are revised.
Finally, using the revised areas, the probability of failure for thewing
and the tail,PfW andPfT , are computed. 100,000 samples are used in
the separable MCS.

D. System Probability of Failure Calculation

Recall that a representative wing and tail system is considered in
this study. It is assumed that the errors in load calculation for thewing
and the tail, and the errors in structural failure assessment for thewing
and the tail are perfectly correlated. All other errors and variabilities
for the wing and the tail are assumed to be uncorrelated. The

Table 1 Uncertainty classification

Type of uncertainty Spread Cause Remedies

Error (mostly epistemic) Departure of the average fleet of an
aircraft model (e.g., Boeing 737–400)
from an ideal

Errors in predicting structural failure,
construction errors, deliberate changes

Testing and simulation to improve the
mathematical model and the solution

Variability (aleatory) Departure of an individual aircraft from
fleet level average

Variability in tooling, manufacturing
process, and flying environment

Improvement of tooling and
construction; quality control

The steps above are repeated for 20,000 times, and the mean and standard deviation as well as the correlation 
coefficient between the quantiles are computed. Note that for the illustrative example, the four quantiles of the
initial distributions are 0.913, 0.962, 1.038, and 1.087, respectively.  Since the test results are all conservative,
the four quantiles are increased to the larger values 1.014, 1.050, 1.080, and 1.096, respectively.

Generate the prior distribution of the mean failure
stress from a finite number of coupon tests.
(In the figure aside, the mean failure stress is assumed to
be centered around 1.0 with plus/minus 10%. Note that
Bayesian updating scheme will update the mean failure
stress, while the standard deviation of the failure stress 
will be used in B-basis value calculation)

Simulate the element tests.  
(For illustration purpose, three test results are assumed to
be 1.05, 1.10, and 1.15, respectively.) 

Compute the quantiles of the updated distribution.
(For the figure aside, the four quantiles of the distribution 
after the third test are computed as 1.014, 1.050, 1.080,
and 1.096, respectively.) 

Update the mean failure stress distribution through 
Bayesian updating using the results of element tests.
(In the figure aside, three test results 1.05, 1.10, and 1.15
are used to update the mean failure stress distribution).

Fig. 3 Illustration of the Bayesian updating scheme to update the mean failure stress distribution.
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correlation coefficient between the load-carrying areas of the wing
and the tail is computed within the separable MCS framework, and
used in the system reliability calculation that discussed in detail next.
Note that the correlation coefficient for the nominal case is computed
as 0.752.

The failure probabilities of the wing and the tail are denoted by
PfW and PfT , and the corresponding reliability indices are denoted
by �W and �T , respectively. To compute the system failure
probability, first the probability of simultaneous failure of the wing
and the tail �Pf�W&T is computed. To simplify the computation, it is
assumed that marginal distributions of the limit-state functions for
thewing and the tail are normal. Then the probability of simultaneous
failure of the wing and the tail is easily computed from [41]

�Pf�W&T � PfWPfT �
Z
�

0

’2�	�W;	�T ; �� d� (12)

where � is the correlation coefficient, ’2�
� is the bivariate joint
probability density function of the standard normal distribution.
Finally, since the wing and tail system is a series system, the system
failure probability is computed from

PFS � PfW � PfT 	 �Pf�W&T (13)

VI. Results

In this section, first the details of response-surface construction for
the load-carrying areas and the system reliability index in terms of
design variables are presented. Then the reliability-based design
optimization of the wing and tail system together with the number of
their structural tests is performed for minimum direct operating cost.
The optimal number of tests and knockdown factors for thewing and
the tail are computed.

A. Response-Surface Generation for Load-Carrying Area

and Reliability Index

Response-surface models (quadratic polynomial with all terms
included) are constructed to relate the number of structural tests,
additional company knockdown factors to structural weight, and
structural safety to be used in the optimization. Overall 100 training
points are generated [within the bounds given in Eq. (1d)] using the
Latin hypercube sampling design of experiments. The load-carrying
areas of the wing AW and tail AT (surrogates for the structural
weights) and the system reliability index�S (surrogate for the system
probability of failure) are computed using separable Monte Carlo
simulations, as discussed earlier. The accuracies of the constructed
response-surface models are evaluated by using leave-one-out cross-
validation errors. That is, response-surface models are constructed
100 times, each time leaving out one of the training points. The
difference between the exact response at the omitted point and that
predicted by each variant response-surface model defines the cross-
validation error. Table 3 provides the root-mean-square error
(RMSE), the mean absolute error (MAE), the maximum absolute
error (MAXE), and the mean of the response. Comparison of the
error metrics with the mean of response reveals that the constructed
response surfaces are quite accurate. Note also that the correlation
coefficients computed for the 100 training points ranged between
0.620 and 0.808.

B. RBDO of the Representative System for Minimum Cost

Using the response-surface models constructed, the RBDO
problem stated in Eq. (1) is solved by using fmincon function of
MATLAB® based on the sequential quadratic programming algo-
rithm. To increase the chance offinding the global optimum,multiple
starting point strategy is used. The solution of the optimization
problem yields real numbers for the number of tests, but they should
be integer numbers. To resolve this issue, the following approach is
followed. After the optimum solution is obtained as real numbers for
the designvariables, the numbers of coupon tests for thewing and the
tail are rounded to the nearest integers. For instance, if the optimum
values are found as �nc�W � 70:71 and �nc�T � 60:15, then they are
rounded to �nc�W � 71 and �nc�T � 60, respectively. For the
numbers of element tests, on the other hand, the nearest two integers
are considered, which yields four combinations. For instance, if the
optimum numbers of element tests for thewing and the tail are found
as �ne�W � 3:71 and �ne�T � 2:15, respectively, then the following
four ��ne�W; �ne�T � combinations are considered: (3, 2), (4, 2), (3, 3),
and (4, 3). Then for each of these combinations, the optimization
problem in Eq. (1) is reduced to a two-variable optimization problem

Table 2 Monte Carlo procedure for the main code (computing probability of failure of the wing and the tail)

1) Compute the B-basis allowable stress based on the results of coupon tests.
2) Calculate the average load-carrying area using the results of coupon tests (see Appendix A).
3) Generate random quantiles for the updated mean failure stress (updating was performed in a separate Bayesian updating code, see Fig. 3).
4) Calculate the B-basis allowable stress at the element level using the quantiles (see Appendix B).
5) Revise the load-carrying area based on the values of the B-basis values calculated from the coupon tests (step 1), and element tests (step 4).
6) Using the revised area, compute the probability of failure for wing and tail (see Appendix C), and the correlation coefficient between the

revised areas of the wing and the tail.

Table 3 Evaluating accuracies of response-surface

models using leave-one-out cross-validation errors

Response Mean of response RMSE MAE MAXE

AW 1.31 0.002 0.001 0.006
AT 1.31 0.002 0.001 0.005
Rel. index, �S 5.26 0.015 0.012 0.057

Table 4 RBDO results when p� 100=lb

kf nc ne Weight,a lb Pf , 10
	7 pW , $M Cc, $M Ce, $M DOC, b$M

Nominal values

Wing 0.95 50 3 30,000 0.745 3,000 1.2 45 3,046.2
Tail 0.95 50 3 6,000 0.745 600 1.2 45 646.2
System —— —— —— 36,000 1.471 3,600 2.4 90 3,692.4

Optimum values

Wing 0.9692 80 3 29,206 1.251 2,920.6 1.9 45 2,967.5
Tail 0.8831 100 1 6,405 0.242 640.5 2.4 15 657.9
System —— —— —— 35,611 1.471 3,561.1 4.3 60 3,625.4

aOverall weight savings�389 lb (per airplane).
bOverall cost savings�67 million.
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[in terms of �kf�W and �kf�T only], and the optimum values of �kf�W
and �kf�T are calculated. Finally, the combination with the best
performance (i.e., withminimum direct operating cost) is declared as
the optimum.

The RBDO results for p� 100=lb are provided in Table 4. The
optimumnumber of coupon tests for thewing and the tail are found as
�nc�W � 80 and �nc�T � 100, respectively. The optimum number of
element tests for the wing and the tail are found as �ne�W � 3 and
�ne�T � 1, respectively. Table 4 shows that 405 lb of the wing
material (about 1.4% of the wing material) is moved to the tail. This
operation reduces the reliability of the wing and increases the

reliability of the tail, while the system reliability is maintained. The
optimization results in an overall weight savings of 389 lb (per
airplane) and an overall cost savings of $67 million (for the entire
fleet with Na � 1000 airplanes).

The RBDO results corresponding to the penalty parameters
p� 200=lb, 300=lb, 500=lb, and 1000=lb are provided in Tables 5–
8, respectively. In addition, the summary ofRBDO results for various
penalty-parameter values is given in Table 9, and the graphical
depictions of these results are provided in Fig. 4. The variation of the
optimum number of coupon tests and element tests as well as the
optimumvalues of the knockdown factors for thewing and the tail are

Table 5 RBDO results when p� 200=lb

kf nc ne Weight,a lb Pf , 10
	7 pW , $M Cc, $M Ce, $M DOC,b $M

Nominal values

Wing 0.95 50 3 30,000 0.745 6,000 1.2 45 6,046.2
Tail 0.95 50 3 6,000 0.745 1,200 1.2 45 1,246.2
System —— —— —— 36,000 1.471 7,200 2.4 90 7,292.4

Optimum values

Wing 0.9731 77 3 29,088 1.378 5,817.5 1.8 45 5,864.3
Tail 0.8901 100 3 6,328 0.227 1,265.6 2.4 45 1,313.0
System —— —— —— 35,416 1.471 7,083.1 4.2 90 7,177.3

aOverall weight savings�584 lb (per airplane).
bOverall cost savings�115 million.

Table 6 RBDO results when p� 300=lb

kf nc ne Weight,a lb Pf , 10
	7 pW , $M Cc, $M Ce, $M DOC,b $M

Nominal values

Wing 0.95 50 3 30,000 0.745 9,000 1.2 45 9,046.2
Tail 0.95 50 3 6,000 0.745 1,800 1.2 45 1,846.2
System —— —— —— 36,000 1.471 10,800 2.4 90 10,892.4

Optimum values

Wing 0.9748 76 4 29,008 1.376 8,702.4 1.8 60 8,764.2
Tail 0.8894 100 3 6,333 0.225 1,899.9 2.4 45 1,947.3
System —— —— —— 35,341 1.471 10,602.3 4.2 105 10,711.5

aOverall weight savings�659 lb (per airplane).
bOverall cost savings�181 million.

Table 7 RBDO results when p� 500=lb

kf nc ne Weight,a lb Pf , 10
	7 pW , $M Cc, $M Ce, $M DOC,b $M

Nominal values

Wing 0.95 50 3 30,000 0.745 15,000 1.2 45 15,046.2
Tail 0.95 50 3 6,000 0.745 3,000 1.2 45 3,046.2
System —— —— —— 36,000 1.471 18,000 2.4 90 18,092.4

Optimum values

Wing 0.9756 75 4 28,992 1.394 14,495.9 1.8 60 14,557.7
Tail 0.8918 100 4 6,309 0.227 3,154.3 2.4 60 3,216.7
System —— —— —— 35,301 1.471 17,650.2 4.2 120 17,774.4

aOverall weight savings�699 lb (per airplane).
bOverall cost savings�318 million.

Table 8 RBDO results when p� 1000=lb

kf nc ne Weight,a lb Pf , 10
	7 pW , $M Cc, $M Ce, $M DOC,b $M

Nominal values

Wing 0.95 50 3 30,000 0.745 30,000 1.2 45 30,046.2
Tail 0.95 50 3 6,000 0.745 6,000 1.2 45 6,046.2
System —— —— —— 36,000 1.471 36,000 2.4 90 36,092.4

Optimum values

Wing 0.9756 75 4 28,992 1.394 28,991.8 1.8 60 29,053.6
Tail 0.8918 100 4 6,309 0.227 6,308.7 2.4 60 6,371.1
System —— —— —— 35,301 1.471 35,300.5 4.2 120 35,424.7

aOverall weight savings�699 lb (per airplane).
bOverall cost savings�668 million.
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depicted in Figs. 4a–4c, and the overall cost savings with respect to
the weight penalty parameter is shown in Fig. 4d.

The general observations obtained from theRBDO results given in
Tables 4–9 and Fig. 4 can be summarized as follows:

1) The optimum reliability allocation for minimum cost is
obtained by moving a small fraction of the wing material to the tail.
This operation increases the wing failure probability, decreases the
tail failure probability while the system reliability is maintained. The
optimum value of the probability of failure of the wing is larger than
that of the tail.

2) Since thewingmaterial is moved to the tail during optimization,
the optimum company knockdown factor for the wing is larger (i.e.,
the safety factor is smaller) than that of the tail.

3) Since the probability of failure of the wing is larger than that of
the wing, the optimum number of element tests for the wing is larger
than or equal to that of the tail to compensate for that.

4) The optimum number of coupon tests for the wing is smaller
than the tail, and they are almost independent of the weight penalty
parameter. The optimum number of coupon tests for the wing is
around 75 to 80 and for the tail 100.

5) As the weight penalty parameter p increases, the economical
value of the structural weight increases; hence, the structural weight
reduction of the system and the overall cost savings increase.

VII. Conclusions

In most RBDO studies, only the variables that are available at the
design stage is considered. Recently, a new reliability-based design
framework that can include both predesign and postdesign
uncertainty-reduction variables has been proposed. The present
study elaborates on that by taking a first step toward performing
system reliability-based aircraft structural design together with tests.

In this paper, a representativewing and tail systemwas considered
and sizing optimization of the system based on the design of themost
critical components of thewing and the tail was performed. Thewing
and tail system was designed together with the corresponding
number of structural tests for the wing and the tail. The number of
coupon tests and the number of structural element tests to be
performed for thewing and the tail as well as the additional company
knockdown factors for the wing and the tail are selected as design
variables to perform system reliability-based optimization for
minimum direct operating cost.

The solution of the reliability-based optimization problem
revealed that the direct operating cost of the system could be reduced
(without sacrificing the overall system safety) by moving a fraction
of the material of the wing to the tail. This operation led to reduced
safety of the wing and increased safety of the tail, while the system
safety was maintained. Consequently, the optimum company

Table 9 Summary of RBDO results for various penalty-parameter values

p, =lb �kf�W �kf�T �nc�W �nc�T �ne�W �ne�T Weight savings, lb Cost savings, $M

100 0.969 0.883 80 100 3 1 389 67
200 0.973 0.890 77 100 3 3 584 115
300 0.975 0.889 76 100 4 3 659 181
500 0.976 0.892 75 100 4 4 699 318
1000 0.976 0.892 75 100 4 4 699 668

Fig. 4 Variation of the optimum number of coupon tests, the optimum number of element tests, the optimum knockdown factor and the overall cost

savings with the weight parameter p.
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knockdown factor for the wing was larger than that of the tail. It was
also found that the optimumnumber of structural element tests for the
wing was larger than or equal to that of the tail. In addition, it was
found that the optimum number of coupon tests for the wing was
smaller than that of the tail.

The current structural design practices for the wing and the tail do
not differ much in terms of the number of tests and the additional
company knockdown factors used. That is, the same number of tests
is conducted for the structural elements of the wing and the tail.
Similarly, the degree of conservatism in the wing structural design
and the tail structural design are the same. The results of this study, on
the other hand, showed that the wing can be designed with less
conservative practices but a larger number of structural element tests,
comparedwith the tail. This approachwill lead to a lighter wing and a
heavier tail with lighter aircraft overall having the same system
reliability.

Appendix A: Details of Modeling Errors and Variability

I. Errors in Estimating Material-Strength Properties

from Coupon Testing

Coupon tests are conducted to obtain the statistical character-
ization of material-strength properties, such as failure stress, and
their corresponding design values (A-basis or B-basis). With a finite
number nc of coupon tests, the statistical characterization involves
errors. Therefore, the calculated values of the mean and the standard
deviation of the failure stress will be uncertain. We assume that the
failure stress follows normal distribution, so the calculatedmean also
follows normal distribution. In addition, when nc is larger than 25,
the distribution of the calculated standard deviation tends to be
normal. Then the calculated failure stress can be expressed as

��cf�calc � Normal�� ��cf�calc; Std��cf�calc� (A1)

where calculated mean and the calculated apparent standard
deviation can be expressed as

� ��cf�calc � Normal
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where ��f and Std��f� are, respectively, the true values of the mean
and standard deviation of failure stress. Note that Eqs. (A1–A3)
describe a random variable coming from a distribution (normal)
whose parameters are also random.

The allowable stress at the coupon level, �ca, is computed from the
failure stress calculated at the coupon level, � ��cf�calc, by using a
knockdown factor kd as

�ca � kd� ��cf�calc (A4)

The knockdown factor kd is specified by the FAA regulations
(Federal Aviation Regulations). For instance, for the B-basis value of
the failure stress, 90% of the failure stresses (measured in coupon
tests) must exceed the allowable stress with 95% confidence. The
requirement of 90% probability and 95% confidence is responsible
for the knockdown factor kd in Eq. (A4). For normal distribution, the
knockdown factor depends on the number coupon tests and the
coefficient of variation (COV) of the failure stress as

kd � 1 	 kB�ccf�calc (A5)

where �ccf�calc is the COVof failure stress calculated from coupon
tests, and kB is called the tolerance limit factor [33]. The tolerance
limit factor kB is a function of the number of coupon tests nc as given
in [33] (Chapter 8, page 84) as

kB � 1:282� exp

�
0:958 	 0:520 ln �nc� �

3:19

nc

�
(A6)

The variation of the tolerance coefficient with the number of
coupon tests is depicted in Fig. A1. Note that Eq. (A6) is valid for
normal distribution.

II. Errors in Structural Element Strength Predictions

The second level in the testing sequence is structural element
testing, where structural elements are tested to validate the accuracy
of the failure criterion used. Here, we assume that structural element
tests are conducted for a specified combination of loads corre-
sponding to critical loading. For this load combination, the failure
surface can be boiled down to a single failure stress ��ef, where the
subscript e stands for structural element tests. Themean failure stress
of the elements � ��ef�calc can be predicted from themean failure stress
of the coupons � ��cf�calc through

� ��ef�calc � �1 	 eef�� ��cf�calc (A7)

where eef is the error in the failure theory used. Note that the sign in
front of the error term is negative, sincewe consistently formulate the
error expressions such that a positive error implies a conservative
decision. The initial distribution of � ��ef�calc is obtained by estimate of
eef and using the results of coupon tests � ��cf�calc. The information
from element tests is used by performing a Bayesian procedure to
update the failure stress distribution (see Appendix B for details). In
practice, simpler procedures are often used, such as selecting the
lowest failure stress from element tests. Therefore, our assumption
will tend to overestimate the beneficial effect of element tests.

If Bayesian updatingwere used directlywithin themainMCS loop
for design load-carrying area determination, the computational cost
would be very high. Instead, Bayesian updating is performed outside
from theMCS loop for a range of possible test results. It is important
to note that the error definition used in the Bayesian updating code is
different from the error definition used in the MCS code. In the
Bayesian updating code, the error is measured from the calculated
values of the failure stress,� ��ef�calc, such that the true and the
calculated values of the failure stress are related through
� ��ef�true � �1� error�� ��ef�calc. In the MCS code, on the other hand,
the error is measured from the true value of the failure stress such that
the true and the calculated values of the failure stress are related
through � ��ef�calc � �1 	 eef�� ��ef�true. Therefore, while the Bayesian
updating is implemented, a random error ef generated in the main
MCS code is transferred to error � �1=�1 	 eef�� 	 1 while running
theBayesian updating code. This complication reflects the fact that in
the MCS loop we consider many possible element analysis and test
results, while the engineer carrying the element tests has a unique set
of computations and test results.

Fig. A1 Variation of the tolerance coefficient with the number of

coupon tests.
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The allowable stress based on the element test is calculated from

�ea � kd� ��ef�calc (A8)

Here, the updated value of the mean failure stress � ��ef�updatedcalc is used,
which corresponds to the most likely value of the mean failure stress
[having the maximum probability density function (PDF)].

Combining Eqs. (A4), (A7), and (A8), we have

�ea � �1 	 eef��ca (A9)

III. Errors in Structural Strength Predictions

Because of the complexity of the overall structural system, there
will be errors in failure prediction of the overall structure that we
denote as ef. If we follow the formulation we used in expressing
� ��ef�calc in terms of � ��cf�calc, the calculated mean failure stress of the
overall structure, � ��f�calc, can be expressed in terms of the calculated
mean failure stress of the structural element, � ��ef�calc, through

� ��f�calc � �1 	 ef�� ��ef�calc (A10)

The allowable stress at the structural design level, �a, can be
related to the allowable stress computed at the element level, �ea,
through the following relation:

�a � kf�1 	 ef��ea (A11)

where kf is an additional knockdown factor used at the structural
level as an extra precaution. Here, kf is taken 0.95. Combining
Eqs. (A9) and (A11), we can obtain

�a � �1 	 eef��1 	 ef�kf�ac (A12)

IV. Errors in Design

Before starting the structural design, aerodynamic analysis needs
to be performed to determine the loads acting on the aircraft.
However, the calculated design load value, Pcalc, differs from the
actual design loadPd under conditions corresponding to FAA design
specifications (e.g., gust-strength specifications). Since each
company has different design practices, the error in load calculation,
ep, is different from one company to another. The calculated design
load Pcalc is expressed in terms of the true design load Pd as

Pcalc � �1� eP�Pd (A13)

In addition to the error in load calculation, an aircraft company
may also make errors in stress calculation. We consider a small
region in a structural part, characterized by a thickness t andwidthw,
that resists the load in that region. The value of the stress in a
structural part calculated by the stress analysis team, �calc, can be
expressed in terms of the load values calculated by the load team
Pcalc, the designwidthwdesign, and the thickness tof the structural part
by introducing the term e� representing error in the stress analysis:

�calc � �1� e��
Pcalc

wdesignt
(A14)

In this paper, we assume that the aircraft companies have the
capability of predicting the stresses very accurately so that the effect
of e� is negligible and is taken as zero. The calculated stress value is
then used by a structural designer to calculate the design thickness
tdesign. That is, the design thickness can be formulated as

tdesign �
SFPcalc

wdesign�a
� �1� eP�
�1 	 ef��1 	 eef�

SFPd
wdesignkf�ca

(A15)

Then the designvalue of the load-carrying area can be expressed as

Adesign � tdesignwdesign �
�1� eP�

�1 	 ef��1 	 eef�
SFPd
kf�ca

(A16)

V. Errors in Construction

In addition to the above errors, there will also be construction
errors in the geometric parameters. These construction errors
represent the difference between the values of these parameters in an
average airplane (fleet average) built by an aircraft company and the
design values of these parameters. The error in width, ew, represents
the deviation of the design width of the structural part, wdesign, from
the average value of the width of the structural part built by the
company, wbuilt-av. Thus,

wbuilt-av � �1� ew�wdesign (A17)

Similarly, the built thickness valuewill differ from its design value
such that

tbuilt-av � �1� et�tdesign (A18)

Then the built load-carrying area Abuilt-av can be expressed using
the first equality of Eq. (A16) as

Abuilt-av � �1� et��1� ew�Adesign (A19)

Table A1 presents the statistical properties for the errors, which are
modeled with uniform distributions, following the principle of
maximum entropy. The bounds of errors are taken from earlier
studies [24,38].

VI. Total Error etotal

The expression for the built load-carrying area of a structural part
computed based on coupon test results, Abuilt-av-c, can be
reformulated by combining Eqs. (A16) and (A19) as

Abuilt-av-c � �1� etotal�
SFPd
kf�ca

(A20)

where

etotal �
�1� eP��1� et��1� ew�
�1 	 ef��1 	 eef�

	 1 (A21)

Here, etotal represents the cumulative effect of the individual errors on
the load-carrying capacity of the structural part.

VII. Redesign Based on Element Tests

In addition to updating the failure stress distribution, element tests
have an important role of leading to design changes if the design is
unsafe or overly conservative. That is, if very large or very small
failure stress values are obtained from the element tests, the company
may want to increase or reduce the load-carrying area of the
elements. There is no published data on redesign practices, and sowe
used the following approach [24]. We assumed that if the B-basis
value obtained after element tests, �ea, is more than 5% higher than
the B-basis value obtained from coupon tests, �ca, then the load-
carrying area is reduced by �ca=�ea ratio. If the B-basis value
obtained after element tests is more than 2% lower than the B-basis
value obtained from coupon tests, the load-carrying area is increased

Table A1 Distribution of error terms and their bounds

Error factors Distribution type Mean Bounds

Error in load calculation eP Uniform 0.0 �10%
Error in width ew Uniform 0.0 �1%
Error in thickness et Uniform 0.0 �3%
Error in failure prediction ef Uniform 0.0 �10%
Error in failure prediction eef Uniform 0.0 �10%

ACAR 2139



by �ca=�ea amount. This lower tolerance reflects the need for safety.
Otherwise, no redesign was performed. The built load-carrying area
can be revised by multiplying Eq. (A20) by a redesign correction
factor cr as

Abuilt-av � crAbuilt-av-c � �1� etotal�cr
SFPd
kf�ca

(A22)

For no redesign,

cr � 1 (A23a)

For redesign,

cr �
1:01

CF
(A23b)

Since redesign requires new elements to be built and tested, it is
costly. Therefore, we do not have a redesign over redesigned
elements. To protect against uncertainties in the test of the redesigned
element we have an additional 1% reduction in the calculated
allowable value [see the term 1.01 in Eq. (A23b)].

VIII. Variability

In the previous sections, we analyzed the different types of errors
made in the design and construction stages, representing the
differences between the fleet-average values of geometry, material
and loading parameters and their corresponding design values. For a
givendesign, these parameters vary fromone aircraft to another in the
fleet due to variability in tooling, construction, flying environment,
etc. For instance, the actual value of the thickness of a structural part,
tbuilt-var, is defined in terms of its fleet-average built value, tbuilt-av, by

tbuilt-var � �1� vt�tbuilt-av (A24)

We assume that vt has a uniform distribution with 3% bounds
(see Table A2). Then the actual load-carrying area Abuilt-var can be
defined as

Abuilt-var � tbuilt-varwbuilt-var � �1� vt��1� vw�Abuilt-av (A25)

where vw represents effect of the variability on the fleet-average built
width.

Table A2 presents the assumed distributions for variabilities. The
loading is assumed to follow type I asymptotic distribution, since we
consider the maximum load over lifetime. We assume that one of the
aircraft in the fleet will experience the limit load over its service life.
We assume that a typical airliner has a production line of 1000
aircraft. Thus, the distribution parameters of the loading are
computed such that the probability of an aircraft experiencing limit
load over its service life is equal to 1/1000, and the coefficient of
variation of the loading is 10%. Since the loading is normalized with
respect to the failure stress, the limit load is equal to 1=SF � 2=3 for
our problem. The distribution parameters are found as a� 28:73 and
b� 0:4263, when the cumulative distribution function of the type I
asymptotic distribution is defined as

FX�x� � expf	 exp�	a�x 	 b��g (A26)

IX. Certification Test

After a structural part has been built with random errors in stress,
load, width, allowable stress and thickness, it is loaded with the
design axial force of SF times Pcalc, and if the stress exceeds the
failure stress of the structure �f, then the structure fails and the design
is rejected; otherwise it is certified for use. That is, the structural part
is certified if the following inequality is satisfied:

� 	 �f �
SFPcalc

�1� vt��1� vw�Abuilt-av
	 �f � 0 (A27)

The representative system passes certification when the most critical
structural parts of both the wing and the tail satisfy Eq. (A27). The
details of the Monte Carlo procedure are as follows:

1) Compute the allowable stress based on coupon tests, �ca.
2) Calculate the built average load-carrying area using the results

of coupon tests,

Abuilt-av-c � �1� etotal�
SFPd
kfwdesign

1

�ca

3)Generate randomnumbers for the quantiles of the updatedmean
failure stress.

4) Calculate the B-basis value using the quantiles �ea.
a) Compute the bounds for mean failure stress:

lb�
1 	 beef 	 2cf=

�����
nc
p

�1 	 eef�
ub�

1� beef � 2cf=
�����
nc
p

�1 	 eef�

b) Compute the PDF of the mean failure stress using Johnson
distribution with quantiles computed in step 3, and select themean
failure stress value with the highest PDF within the bounds as
� ��ef�updatedcalc .

c) Compute B-basis value �ea � �1 	 kB�ccf�calc�� ��ef�updatedcalc .
5) Compute a correction factor (CF) for the B-basis value,

CF� �ea=�ca. Limit the value of CF to [0.9, 1.1]. That is, if
CF< 0:9, then CF� 0:9. If CF> 1:1, then CF� 1:1.

6) Revise the built average load-carrying area based on the value
of CF.

a)CF< 0:98, then redesign is needed,wewill increase the load-
carrying area by CF. Hence, the new load-carrying area is
Abuilt-av � �1:01=CF�Abuilt-av-c. Here, the factor 1.01 is used to
avoid a second redesign of elements.

b) If0:98 � CF � 1:05, then no redesign is needed. So the load-
carrying area is Abuilt-av � Abuilt-av-c.

c) If CF> 1:05, then redesign is needed, we will decrease the
load-carrying area by CF. Hence, the new load-carrying area is
Abuilt-av � �1:01=CF�Abuilt-av-c. Here, again the factor 1.01 is used
to avoid a second redesign of elements.
7) Using Abuilt-av, compute the probability of failure.

Appendix B: Bayesian Updating of the Failure Stress
Distribution from the Results of Element Tests

The initial distribution of the element failure stress is obtained by
using a failure criterion (e.g., Von Mises for metals, Tsai-Wu for
composites) using the results of coupon tests. We consider a typical
situation relating to updating analytical predictions of strength based
on tests. We assume that the analytical prediction of the failure stress
of a structural element, ��ef�calc, applies to the average failure stress

Table A2 Distribution of random variables having variability

Variables Distribution type Mean Scatter

Actual service load a Pact type I asymptotic a� 28:73 b� 0:4263
Actual built width wbuilt-var Uniform wbuilt-av 1% bounds
Actual built thickness tbuilt-var Uniform tbuilt-av 3% bounds
Failure stress �f Normal 1.0 8% COV
vw Uniform 0 1% bounds
vt Uniform 0 3% bounds

aFor the loading, a and b are not the mean and scatter of the distribution.
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� ��ef�true of an infinite number of nominally identical structural
elements. The error eef of our analytical prediction is defined by

� ��ef�true � �1� eef���ef�calc (B1)

Here, we assume that the designer can estimate the bounds be
(possibly conservative) on the magnitude of the error, and we further
assume that the errors have a uniform distribution between the
bounds. Note here that it is more convenient to define the error to be
measured from the calculated values of the failure stress as shown in
Fig. B1.

As in our earlier work [23], we neglect the effect of coupon tests
and assumed the initial distribution of the mean failure stress
fini� ��ef� uniform within the bounds be as

fini� ��ef� �
(

1
2be��ef�calc

if

���� ��ef
��ef�calc

	 1

����� be
0 othewise

(B2)

Then the distribution of the mean failure stress is updated using the
Bayesian updating with a given ��f�1;test as

fupd� ��ef� �
f1;test� ��ef�fini� ��ef�R1

	1 f1;test� ��ef�fini� ��ef� d ��ef
(B3)

where f1;test is the likelihood function reflecting possible variability
of the first test result ��ef�1;test. The likelihood function can be
formulated either using Eq. (B4),

f1;test� ��ef� � Normal���ef�1;test; ��ef; Std��cf�� (B4)

or using Eq. (B5):

f1;test� ��ef� � Normal���ef�1;test; ��ef; ��efccf� (B5)

Note that the standard deviation of the element failure stress
Std��ef� is taken equal to the standard deviation obtained from
coupon tests Std��cf�. Here, we do not have a strong preference on
Eqs. (B4) and (B5), so we choose to use the second formulation
[Eq. (B5)], as in our earlier work [23].

It should be noted that f1;test� ��ef� is not a probability distribution
in ��ef; it is the conditional probability density of obtaining test result
��ef�1;test, given that the mean value of the failure stress is ��ef.
Subsequent tests are handled by the same equations, using the
updated distribution, as the initial one.

Bayesian updating is performed aside from the MCS loop. In this
separate loop, we first simulate the coupon tests by drawing random
samples for the mean and standard deviation of the calculated failure
stress ��cf andStd��cf�, and thereby ccf. Thenwe simulatene number
of element tests, ��ef�test. The element test results along with the
mean and the standard deviation are used to define the likelihood

function [Eq. (B5)] in Eq. (B3). The initial distribution fini� ��ef� in
Eq. (B3) is uniformly distributed within some bounds as given in
Eq. (B6):

fini� ��ef� �
(

1
2be ��cf

if

���� ��ef��cf
	 1

����� be
0 otherwise

(B6)

We found that applying the error bounds be before the Bayesian
updating or after the updating do not matter. Applying the error
bounds before Bayesian updating means calculating the initial
distributionfini� ��ef� fromEq. (B6) and then usingEq. (B3). To apply
the error bounds after the Bayesian updating, however, we first
assume very large error bounds be, calculate the initial distribution
fini� ��ef� from Eq. (B6), and apply the error bounds be to the
distribution obtained using Eq. (B3).

Applying the error bounds after the Bayesian updating is more
useful whenwewant tofit distributions (e.g., Johnson distribution) to
the mean failure stress obtained through Bayesian updating. If we
apply the error bounds at the beginning, the distribution after
Eq. (B3) will be a truncated one and it will be difficult to fit a
distributionwith goodfidelity. However, if we apply the error bounds
at the end, the distribution after Eq. (B3) will be a continuous one and
we will most likely fit a good distribution.

The overall procedure is as follows. Within an MCS loop, we
generate random mean and standard deviation values for the failure
stress to be obtained through coupon tests. Then we assume large
error bounds to be used in Eq. (B6), simulate element tests and use
Eq. (B3) to obtain the distribution of themean failure stress. Thenwe
compute the four quantiles of the mean failure stress distribution.
Finally, we compute the mean and standard deviations of the
quantiles and wemodel these quantiles as normal distributions. Note
that the quantiles are the values of failure stress for cumulative
distribution function values of [0.067, 0.309, 0.691, 0.933].

The quantiles are functions of the number of coupon tests nc,
number of element tests ne, and the error in failure stress prediction
eef. At first, wewanted to build response-surface approximations for
the mean and standard deviation of the quantiles in terms of nc and
eef after each element test. So we would have 10 response-surface
approximations (five for themean andfive for the standard deviation)
in terms of nc and eef. Our numerical analysis revealed, on the other
hand, that nc do not have a noticeable effect on quantiles (see
Tables B1–B3 and Fig. B2), and the effect of the error can be
represented by just multiplying the quantiles with (1 	 eef) term (see
Table B4).

As noted earlier, the quantiles are assumed to have normal
distributions. Figure B3 show the histograms of the first and second
quantiles of themean failure stress (for 50 coupon tests after the third
element test when eef � 0) obtained through MCS with 20,000

Fig. B1 Error and variability in failure stress. The error is centered around the computed value, and is assumed to be uniformly distributed here. The

variability distribution, on the other hand, is normal with mean equal to the true average failure stress.
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Table B1 Quantile statistics of mean failure stress after element tests (30 coupon tests)

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 std (Q1) std (Q2) std (Q3) std (Q4)

test1 0.899 0.968 1.049 1.145 0.073 0.077 0.084 0.094
test2 0.925 0.975 1.032 1.096 0.053 0.055 0.058 0.063
test3 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.051
test4 0.945 0.982 1.021 1.065 0.038 0.039 0.041 0.043
test5 0.950 0.983 1.019 1.057 0.035 0.036 0.037 0.039

Table B2 Quantile statistics of mean failure stress after element tests (50 coupon tests)

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 std (Q1) std (Q2) std (Q3) std (Q4)

test1 0.897 0.966 1.047 1.143 0.073 0.078 0.084 0.093
test2 0.924 0.975 1.032 1.095 0.053 0.055 0.058 0.063
test3 0.937 0.979 1.025 1.075 0.044 0.045 0.047 0.050
test4 0.944 0.981 1.021 1.064 0.038 0.039 0.041 0.043
test5 0.950 0.983 1.019 1.057 0.035 0.035 0.037 0.039

Table B3 Quantile statistics of mean failure stress after element tests (80 coupon tests)

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 Std (Q1) Std (Q2) Std (Q3) Std (Q4)

test1 0.898 0.967 1.049 1.144 0.071 0.076 0.083 0.091
test2 0.924 0.975 1.032 1.096 0.052 0.055 0.058 0.062
test3 0.937 0.979 1.025 1.076 0.043 0.045 0.047 0.050
test4 0.944 0.982 1.021 1.065 0.038 0.039 0.040 0.042
test5 0.950 0.983 1.019 1.057 0.034 0.035 0.036 0.038

Fig. B2 Variation of themean and standard deviation of the first quartile of themean failure stress with number of coupon tests (after the third element

test).

Table B4 Effect of eef on quantile statistics of mean failure stress

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

eef �Q1
�Q2

�Q3
�Q4 Std (Q1) Std (Q2) Std (Q3) Std (Q4)

	0:10 0.835 0.881 0.923 0.968 0.039 0.041 0.043 0.045
	0:05 0.890 0.930 0.974 1.022 0.042 0.043 0.045 0.048

0 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.050
0.05 0.983 1.027 1.075 1.128 0.045 0.047 0.049 0.052
0.10 1.031 1.077 1.128 1.183 0.048 0.050 0.052 0.055

2142 ACAR



samples. We see that the quantiles do not exactly follow normal
distributions.

The results obtained in this separateMCS loop are used in themain
MCS loop for determining the built average load-carrying area. The
mean and standard deviations of the quantiles are used to fit a
Johnson distribution to the mean failure stress. The error bounds are
then applied to the Johnson distribution and random values from this
distribution are drawn whenever element tests are simulated. Note
also that the quantiles are strongly correlated to each other, so this
correlation is also included in our analysis while random quantiles
are generated in the main MCS loop using Gaussian copula. The
reader is referred to the work of Noh et al. [42] for further details of
reliability estimation of problems with correlated input variables
using a Gaussian copula.

Appendix C: Separable Monte Carlo Simulations

The prediction of probability of failure using conventional MCS
requires trillions of simulations for level of 10	7 failure probability.
To address the computational burden, separable Monte Carlo
procedure can be used. The reader is referred to Smarslok et al. [43]
for more information on the separable Monte Carlo procedure. This
procedure applies when the failure condition can be expressed as
g1�x1�> g2�x2�, where x1 and x2 are two disjoint sets of random
variables. To take advantage of this procedure, we need to formulate
the failure condition in a separable form, so that g1 will depend only
onvariabilities andg2 only on errors. The common formulation of the
structural failure condition is in the form of a stress exceeding the
material limit. This form does not satisfy the separability require-
ment, however. For example, the stress depends on variability in
material properties as well as design area, which reflects errors in the

analysis process. To bring the failure condition to the right form, we
instead formulate it as the required cross-sectional area A0req being
larger than the built area Abuilt-av. So the failure condition can be
defined in terms of the built area and the required area as

Abuilt-av <
Areq

�1� vt��1� vw�

 A0req (C1)

where Areq is the cross-sectional area required to carry the actual
loading conditions for a particular copy of an aircraft model, andA0req
is what the built area (fleet average) needs to be in order for the
particular copy to have the required area after allowing for variability
in width and thickness:

Areq � Pact=�f (C2)

The required area depends only on variability, while the built area
depends only on errors. When certification testing is taken into
account, the built area Abuilt-av is replaced by the certified area Acert,
which is the same as the built area for companies that pass
certification. However, companies that fail are not included. That is,
the failure condition is written as

Acert 	 A0req < 0 (C3)

The separableMonteCarlo simulation procedure is summarized in
Fig. C1.
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