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Abstract: Classical tail modelling is based on performing a relatively small number of limit-state
calculations through Monte Carlo sampling, and then fitting a generalized Pareto distribution
to the tail part of the data. The limit-state calculations that do not belong to the tail part are
discarded. To reduce the amount of discarded data, this article proposes an efficient tail mod-
elling procedure based on guiding the limit-state evaluations towards the sampling points that
have high chances of yielding limit-state values falling into the tail region. The guidance of the
limit-state evaluations is achieved through a procedure that utilizes limit-state approximation
and distribution fitting. The accuracy of the proposed method is tested through a mathematical
problem and four structural mechanics problems, and it is found that the accuracy of reliabil-
ity estimations can be significantly increased compared to classical tail modelling techniques
for the same number of limit-state function evaluations. In addition, it is also found that the
improvement in accuracy can be traded off for reducing the number of limit-state evaluations.

Keywords: tail modelling, high reliability, guided Monte Carlo simulations

1 INTRODUCTION

The limit-state function of a mechanical system is
usually evaluated through performing computation-
ally expensive finite-element analyses. The simula-
tion techniques such as Monte Carlo method or
its advanced variants (e.g. importance sampling [1],
adaptive importance sampling [2], and directional
simulation[3]) require a large number of limit-state
evaluations; hence, they are not suitable for highly
safe mechanical systems. Alternatively, the analyt-
ical methods such as first-order reliability method
(FORM)/second-order reliability method (SORM) are
computationally efficient, but their accuracy dimin-
ishes as the limit-state function becomes non-linear.
In order to overcome the drawbacks of these tra-
ditional methods, the techniques based on tail
modelling have been successfully used by many
researchers including Castillo [4], Caers and Maes
[5], Kim et al. [6], and Ramu et al. [7] for reliability
assessment of highly safe mechanical systems.
Reliability estimation using tail modelling is based

on approximating the tail portion of the cumulative
distribution function (CDF) of the limit-state func-
tion. Classical tail modelling methods are based on

the following procedure [6]. First, a set of limit-state
evaluations through Monte Carlo simulations (MCS)
is performed. Then, a proper threshold value of the
CDF is selected that specifies the tail part. Finally, the
generalized Pareto distribution (GPD) is fitted to the
tail part (i.e. the portion above the threshold value).
In this procedure, only the tail part of the limit-state
function evaluations is used in finding the parameters
of theGPD,while the rest of thedata arediscarded.The
efforts spent for performing limit-state function eval-
uations that do not belong to the tail part are wasted.
Tailmodelling can be performedmore efficiently if the
amount of wasted data is reduced.
This article proposes an efficient tail modelling pro-

cedure based on guiding the limit-state evaluations
towards the sampling points that have high chances
of producing limit-state values falling into the tail
region. Therefore, the proposed method is named
as the guided tail modelling. The guidance of the
limit-state evaluations is achieved through a proce-
dure that utilizes the univariate dimension reduction
(UDR)method of Rahman and Xu [8] and distribution
fitting using extended generalized lambda distribu-
tions (EGLD). The unique contribution of the article
is that the large amount of discarded data, which is
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the by-product of the tail models presented in the pre-
vious studies, is significantly reduced through guided
tail modelling, thereby leading to more efficient and
more accurate reliability estimation of highly safe
mechanical systems.
Thearticle is organizedas follows. Section2presents

an overview of classical tail modelling. The pro-
posed guided tail modelling procedure is outlined
in section 3, and the method is demonstrated with
a well-known beam design problem in section 4.
Four additional example problems are provided in
section 5. The limitations of the proposed method are
discussed in section6, followedbyconcluding remarks
given in section 7.

2 OVERVIEW OF CLASSICAL TAIL MODELLING

The fundamental idea of the tail modelling technique
is based on the property of tail equivalence. Two
distribution functions F (x) and G(x) are called tail
equivalent if the following condition is satisfied [9]

lim
x→∞

1− F (x)

1− G(x)
= 1 (1)

Here, the tail model of F (x) is used for approximat-
ing the upper (or lower) tail of G(x). This approach
does not take into account the central behaviour of the
distribution. Rather, it focuses on the upper or lower
tail behaviour, which fits for the purpose of reliability
analysis of highly safe mechanical systems.
Now, consider the limit-state function y(x), where x

is the vector of random variables. For a large threshold
value of yt (see Fig. 1), the region above the thresh-
old (i.e. the tail portion) can be approximated using
GPD. The GPD approximates the conditional excess
distribution of Fz(z), where z = y − yt, via

Fz(z) =















1−
〈

1+ ξ

σ
z

〉−1/ξ

+
if ξ 6= 0

1− exp
(

− z

σ

)

if ξ = 0
(2)

Fig. 1 Tail modelling concept

where 〈A〉+ = max(0,A), z > 0, and Fz(z) is the GPD
with shape and scale parameters ξ and σ , respectively,
which need to be determined.
The conditional excess distribution canbe related to

the cumulative distribution F ( y) through

Fz(z) = F ( y) − F ( yt)

1− F ( yt)
= F ( y) − Ft

1− Ft
(3)

Then,F ( y)above the threshold (i.e. y > yt) is expressed
in terms of the conditional excess distribution,
Fz(z), via

F ( y) = Ft + (1− Ft)Fz( y − yt) (4)

Once the CDF F ( y) is obtained, the probability of
failure, Pf , can be estimated from reference [6]

Pf = 1− F ( y = 0) = (1− Ft)

〈

1− ξ

σ
yt

〉−(1/ξ)

+
(5)

The reliability index can be calculated from

β = 8−1(1− Pf ) (6)

where 8 is the CDF of a standard normal random
variable.
The classical tail modelling methods are based on

the following three-step procedure.

1. N samplesof the limit-state function y(x) are gener-
ated through MCS (or Latin hypercube sampling).
In structural mechanics problems, the samples of
the input random variables, x, are first generated
from the given distribution types. The samples
of the random limit-state function are then cal-
culated through the structural analysis (usually
through computationally expensive finite-element
analysis).

2. A threshold value, yt, is selected from the distribu-
tionof the limit-state function y(x).Theappropriate
value yt, that is, the specification of the beginning
of the upper tail, has been the subject of exten-
sive research, and empirical values for it have been
proposed [5,10,11]. For instance, Hasofer [11] sug-
gested using Nt ≈ 1.5

√
N , where Nt is the number

of data that belongs to the tail part, and N is the
total number of data.

3. The shape and scale parameters in the GPD (i.e. ξ
and σ ), are estimated by fitting the tail model with
the empirical CDF. Two methods are commonly
used for this purpose: the maximum likelihood
(ML) method and the least square (LS) method.
The reader is referred to reference [12] for details
of these twomethods.
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3 GUIDED TAIL MODELLING

As noted earlier, the classical tail modelling uses only
the tail part of the data in estimating the GPD param-
eters, while the other data are discarded. If there exists
a computationally inexpensive approximatemodel for
the limit-state function and the threshold value yt
is known, then limit-state evaluations can be guided
towards sampling points that have high chances of
yielding limit-state values falling into the tail region.
Therefore, the tail modelling can be performed more
efficiently since the amount of wasted data can be
reduced. For instance, the following simple procedure
can be employed. First, a large number of poten-
tial sampling points are generated via MCS. Next, the
approximate value of the limit-state function is com-
puted for all these potential sampling points. Then,
the points with approximate limit-state values larger
than the threshold yt are stored. Finally, the actual
limit-state function calculations are performed only
for these stored points since they have high chances of
producing actual limit-state values in the tail region.
In this study, the approximate model for the limit-

state function is constructed through an additive
decomposition technique used in the UDR method.
The threshold value yt is estimated via an efficient
distribution fitting technique that blends UDR and
EGLD. Before proceeding with outlining the proposed
tail modelling procedure, the brief details of UDR and
EGLD are provided below.

3.1 Limit-state function approximation using
UDR method

Aspart of theUDRmethod, anadditivedecomposition
technique is used such that amulti-dimensional limit-
state function y(X) is approximated using multiple
uni-dimensional functions as [8]

ŷ(X) =
N

∑

j=1
yu

j (Xj) − (N − 1)y0 (7)

where each term in the summation, yu
j , is a uni-

dimensional function that depends on the jth random
variable, Xj , that is

yu
j (Xj) = y(µ1, . . . ,µj−1,Xj ,µj+1, . . . ,µN ) (8)

whereas y0 is the value of y(X) calculated at the mean
values of all the random variables, µj , j = 1, . . . ,N

y0 = y(µ1, . . . ,µN ) (9)

For the uni-dimensional functions, yu
j (Xj), metamod-

els can be constructed using a small number of
simulations. A quadratic polynomial in one dimen-
sion has three coefficients, and so five sampling points

may provide a good approximation for yu
j . For highly

non-linear functions, however, the number of sam-
pling points may need to be increased. The locations
of the sampling points can be determined by using the
moment-based quadrature points proposed by Rah-
man and Xu [8]. If the random variable Xj is normally
distributed, the moment-based quadrature method
produces Gauss–Hermite points.When five points are
used for each uni-dimensional function, yu

j , overall
4N + 1samplingpointsareneeded (for symmetricdis-
tributions), since the third sampling point for all yu

j is
equal to y0.

3.2 Distribution fitting via UDR method and EGLD

The statisticalmoments of the limit-state function can
be calculated efficiently using the UDR method. After
the first four moments of the limit-state function are
calculated, these moments can be matched with the
moments of an EGLD, so that the distribution param-
eters of the fitted EGLD are assessed. The reader is
referred to references [13] to [16] for more informa-
tion regarding the EGLD and finding its distribution
parameters using the statistical moments.
After the distribution parameters of the EGLD are

found, the threshold value yt can easily be estimated
from the inverse CDF of the fitted EGLD via

yt = F −1
EGLD(Ft) (10)

where FEGLD is the CDF of the fitted EGLD, and Ft is the
selected threshold CDF value. For details of distribu-
tion fitting via UDR and EGLD, the reader is referred
to Acar et al. [17], where UDR method and EGLD are
used together for reliability prediction of mechanical
systems with moderate reliability levels (i.e. reliabil-
ity 60.99), and named this procedure of reliability
assessment as UDR+ EGLD.

3.3 Guided tail modelling procedure

After briefly describing how the limit-state function is
approximated and the threshold value yt is estimated,
theproposedguided tailmodellingprocedurecannow
be outlined as follows.

1. Perform 4n + 1 limit-state function (y) evaluations,
where n is the number of random variables. As
noted earlier in section 3.1, if y is highly non-linear,
more function evaluations such as 6n + 1 or 8n + 1
may be needed.

2. Fit uni-dimensional metamodels using 4+ 1 = 5
points corresponding to each random variable.

3. Use UDRmethod to calculate the first four statisti-
cal moments of the limit state.
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4. Approximate the distribution of the limit state via
EGLD, and estimate the threshold value, yt, corre-
sponding to a pre-specified threshold value of Ft
(here Ft = 0.95 is used).

5. Generate N sampling points, compute approxi-
mate limit-state function values at the sampling
points viaUDR, and store the ones greater than yt. If
UDR and EGLD did not include any errors, exactly
0.05N points forFt = 0.95wouldbe stored. If neces-
sary, additionalpoints canbecreatedorextrapoints
can be deleted in a proper way.

6. For the stored sampling points, compute the actual
limit-state function values, perform the tail mod-
elling (i.e. fit GPD), and calculate the probability of
failure.

Note that in the guided tailmodellingprocedure, the
use of 4n + 1 points, the use of EGLD for distribution
fitting or the use of Ft = 0.95 are not restrictive, but
a personal choice. These values can be altered by the
specialist.

3.4 Comparison of the guided tail modelling to the
classical tail modelling

In classical tail modelling, first a random sampling
or Latin hypercube sampling is performed over the
input random variables. The number of samples gen-
erated is limited due to restrictions in resources and
time. Assume that 1000 samples are generated. Then,
the actual limit-state evaluations are performed for all
these 1000 samples. Then, based on a pre-selected tail
threshold limit (e.g. 95 per cent), the threshold value
of the limit-state, yt, is computed. The limit-state val-
ues are sorted and the 950th value gives the threshold
value of the limit-state. Then, 951st through 1000th
values are used in order to fit a GPD (see equation (2)).
Finally, the probability of failure is computedusing the
fitted GPD (see equation (5)).
In the proposed guided tail method, first 4n + 1

samples are generated based on the UDR technique,
where n is the number of random variables. These
samples are used for two purposes:

(a) predicting the threshold value yt;
(b) constructing a UDR-based metamodel.

Since the pre-selected value of the tail threshold
limit is usually not larger than 95 per cent, UDR+
EGLD predict the threshold value of the limit-state, yt,
quite accurately. Once yt is predicted, the UDR-based
metamodel is used as follows. First, a very large num-
ber of sampling points are generated. For instance,
if the number of envisioned limit-state evaluations is
1000, then 20 000 sampling points are generated. Note
here that actual limit-state evaluations are not per-
formed yet. Then, the UDR-based metamodel is used
for identifying the sample points that are highly likely
to yield limit-state values falling into the tail region.

The actual limit-state function evaluations are per-
formed for these guided (or selected) points. Finally,
the actual limit-state values above the threshold value
of the limit-state, yt, are used in order to fit GPD, and
compute the reliability.
Note that the UDR-based metamodels are intended

todoclassification (whether falling into the tail region)
rather than doing regression, and therefore the pre-
dictive accuracy of UDR-based metamodels may not
be good. Therefore, if the UDR-based metamodels are
used within a Monte Carlo setting, this may result
in very large errors in reliability estimations. Even if
the predictive accuracy of a UDR-based metamodel is
acceptable, onemay still have large errors in reliability
estimations, because it has been shown that even very
small errors in limit-state function metamodels may
result in large errors in reliability estimations [18].

4 DEMONSTRATION OF THE GUIDED TAIL
MODELLING PROCEDURE

To illustrate the proposed approach, the well-known
cantilever beam design problem is considered. This
problem was first introduced by Wu et al. [2] and
has been analysed by many researchers [7,19,20].
The cantilever beam depicted in Fig. 2 has two fail-
ure modes: stress failure and excessive displacement.
The minimum weight design is sought by varying the
width w and thickness t of the beam. The applied
loads FX and FY as well as the elastic modulus E and
yield strength R are random. The random variables
are normally distributed with mean and coefficient
of variation values as listed in Table 1. The beam
widthw and thickness t aremodelled as deterministic
variables.

Fig. 2 Cantilever beam: geometry and loading

Table 1 Mean and coefficient of varia-

tion of the random variables for

Wu’s beam problem

Random
variable Mean

Coefficient of
variation (%)

FX (N) 500 20
FY (N) 1000 10
E (MPa) 2900 5
R (MPa) 400 5

Note that all random variables follow normal
distribution.
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The limit-state functions corresponding to stress
failure mode can be written as

ys = R −
(

600

wt2
FY + 600

w2t
FX

)

(11)

Similarly, the limit-state functions corresponding to
displacement failure mode can be written as

yd = D0 − 4L3

Ewt

√

(

FY

t2

)2

+
(

FX

w2

)2

(12)

where the beam length L is taken as 100 cm and the
critical displacementD0 is set to 2.2535 cm.
The minimum weight design of the beam with reli-

ability indices of both failure modes having a target
value of 3.0 was solved by Wu et al. [2] using FORM.
They found the optimum design with the geometric
features w = 2.4494 cm, t = 3.8884 cm, and reported
the reliability indices of the stress and displacement
failure modes as 3.0071 and 3.0097, respectively. To
check the accuracy of FORM solution, an MCS is
performed with 108 samples in this study and the
reliability indices for stress and displacement failure
modes are computed as 3.007 and 2.996, respectively.
These reliability index values are used while assessing
the accuracy of the guided tail modelling. To demon-
strate the guided tail modelling procedure, reliability
indexestimationof thedisplacement failuremode (the
stress failure mode is much simpler) is performed.
The results are provided in a step-by-step manner as
follows:

Step 1: Perform 4n + 1 limit-state function evalua-
tions.
The limit-state function of the displacement fail-

uremode includes three randomvariables, namely FX ,
FY , and E (hence, n = 3). Therefore, 4n + 1 = 13 limit-
state evaluations are performed as listed in Table 2.

Table 2 4n + 1 limit-state function evaluations

needed for one-dimensional metamodel

fitting and statistical moment computations

via UDR forWu’s beam problem

Simulation
number FX (N) FY (N) E (MPa) −yd

1 500 1000 2900 −5.168
2 785.7 1000 2900 −0.935
3 635.6 1000 2900 −3.227
4 364.4 1000 2900 −6.910
5 214.3 1000 2900 −8.447
6 500 1285.7 2900 −3.838
7 500 1135.6 2900 −4.560
8 500 864.4 2900 −5.727
9 500 714.3 2900 −6.280
10 500 1000 3314 −7.502
11 500 1000 3097 −6.275
12 500 1000 2703 −4.061
13 500 1000 2486 −2.834

These limit-state values will be used for fitting meta-
models for one-dimensional functions in the UDR,
and calculating the first four statistical moments of
the limit-state function. Since the upper tail is mod-
elled, the negative values of the limit-state function in
equation (12) are used.

Step 2: Fit uni-dimensional metamodels using five
points for each random variable.
To relate the displacement limit-state function to

the random variables, quadratic response surface
approximations are used. For the case of very non-
linear limit states, other types of metamodels such
as Kriging or radial basis functions can be used. The
uni-dimensional metamodel for FX is constructed
using simulation numbers 1–5.The constructedmeta-
model is shown in Fig. 3(a). Similarly, uni-dimensional
metamodels are constructed for FY using simulation
numbers 1, and 6–9, and for R using simulation num-
bers 1, and 10–13. The metamodels for FY and E are
depicted in Figs 3(b) and (c).

Step 3: Use UDR method to calculate the first four
statistical moments of the limit state.
UDR method of Rahman and Xu [8] is used for

calculating the first four moments of the limit-state
function. The computed moments are provided in
Table 3. The displacement failure limit-state func-
tion, equation (12), is a non-linear function, and so
the mean, standard deviation, skewness, and kur-
tosis values are calculated through MCS with a
million sampling points. Table 3 presents a com-
parison of the mean, standard deviation, skewness,
and kurtosis values calculated through UDR and
through MCS. Notice that UDR estimations are quite
accurate.

Step 4: Approximate the distribution of the limit-state
function via EGLD, and estimate the threshold value
yt, corresponding to a pre-specified threshold value
of Ft.
The computed statisticalmoments of the limit-state

function are used for approximating the distribution
of the limit-state function through EGLD. The fitted
EGLD is compared with the empirical PDF in Fig. 4.
The empirical PDF is obtained through MCS with a
million samples. Notice that the fitted CDF matches
well with the empirical PDF. Using the fitted distribu-
tion, the thresholdvalue yt, corresponding toFt = 0.95,
is computed as yt = −2.334. The threshold value com-
puted through MCS with a million sampling points is
found as yt = −2.339. Notice that the UDR prediction
is very close.

Step 5: Generate N sampling points, approximate
limit-state function values at the sampling points via
UDR, and store the ones greater than yt.
Here, it is assumed that the number of limit-state

function evaluations is limited to 1000 due to the
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Fig. 3 Metamodels for the responses in the displace-

ment limit-state function ofWu’s beam problem:

(a) metamodel for FX ; (b) metamodel for FY ; and

(c) metamodel for E

restrictions on time and computational resources.
Therefore, 0.05N = 1000, so 20 000 samples are gen-
erated. If UDR and EGLD approximations did not

Table 3 Statistical moments of yd: actual values vs.

the values computed through UDR for Wu’s

beam problem

Mean
Standard
deviation Skewness Kurtosis

UDR −5.0997 1.638 0.141 2.985
MCS −5.0994 1.640 0.094 2.991

Fig. 4 Tail modelling for limit-state function for the

displacement failure ofWu’s beam problem

include any errors, exactly 1000 points would be
stored. Here, it is found that 988 points are stored
on average. Combined with the earlier 13 simulations
(performed for theUDR), the total number of function
evaluations is 1001.

Step 6: For the stored sampling points, compute the
actual limit-state function values, perform the tail
modelling (i.e. fit GPD), and calculate the probability
of failure.
For the stored 988 points, actual limit-state func-

tion evaluations are performed. The fitted GPD and
the actual normal distribution are depicted in Fig. 5.
It is seen that the constructed GPD is in good match
with the empirical distribution obtained throughMCS
with sample size of 106. Having this fitted GPD, the
probability of failure and reliability index canbe calcu-
lated using equations (5) and (6). The reliability index
is computed as 2.971, while the actual value of the reli-
ability index is 3.007. Therefore, the error in reliability
index estimation is 1.2 per cent.

Note that the results reported above are computed
using a particular sample. To reduce the effect of ran-
dom sampling, the whole procedure is repeated 100
times with different samples, and the mean abso-
lute error in reliability index estimation is computed.
In addition, the classical tail modelling techniques
with 1000 samples and a threshold value of 0.95 are
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Fig. 5 Tail modelling for limit-state function for the

displacement failure ofWu’s beam problem

Table 4 Comparing the accuracies of classical tail mod-

elling and guided tail modelling for Wu’s beam

problem for target reliability index of 3.0

% Error in classical tail
modelling estimations

Failure mode ML LS Average
% Error in guided
tail modelling

Stress 7.2 9.2 7.1 1.3
Displacement 7.8 10.7 8.0 1.5

employed for 100 times with different samples and
the mean absolute error is computed. The compar-
ison of the accuracies of the classical tail modelling
techniques and the guided tail modelling is given in
Table4.Notice inTable4 that the reliability estimations
for both the stress failure mode and the displace-
ment failuremode are provided.While the classical tail
modelling techniques lead to errors of 7–11 per cent,
the error of the guided tail modelling is smaller than
2 per cent.
To investigate the effect of the increased reliability

index, the beam design problem is solved for target
reliability index values of 3.5 and 4.0. First, FORM is
used for computing the optimum values of the width
and the height of the beam, and thenMCSwith a sam-
ple size of 108 are performed to compute the reliability
indices more accurately. The beam designs and corre-
sponding reliability indices are provided in Table 5.

Table 6 Comparing the accuracies of classical tail mod-

elling and guided tail modelling for Wu’s beam

problem for target reliability index of 3.5

% Error in classical tail
modelling estimations

Failure mode ML LS Average
% Error in guided
tail modelling

Stress 12.5 16.4 11.0 2.4
Displacement 13.8 10.7 14.5 3.9

Table 7 Comparing the accuracies of classical tail mod-

elling and guided tail modelling for Wu’s beam

problem for target reliability index of 4.0

% Error in classical tail
modelling estimations

Failure mode ML LS Average
% Error in guided
tail modelling

Stress 13.5 18.3 11.8 5.7
Displacement 19.1 22.4 16.2 13.7

Notice that the FORM predictions are very close to
MCS results.
The comparisons of the accuracies of the classical

tail modelling techniques and the guided tail mod-
elling for reliability indices of 3.5 and 4 are provided in
Tables 6 and 7, respectively. As seen from these tables,
the accuracy of guided tail modelling is much better
than those of the classical tail models for about the
same number of limit-state function evaluations.
The improvement in the accuracy of reliability index

estimations through guided tail modelling can be
tradedoff for reducing thenumberof limit-state evalu-
ations. Instead of increasing the accuracy of reliability
index estimations compared to those of the classical
tail modelling, the number of limit-state evaluations
can be reduced without jeopardizing the accuracy.
Tables 8 and 9 compare the accuracies of guided
tail modelling with 100 envisioned limit-state evalu-
ations to the accuracies of the classical tail modelling
with 1000 limit-state evaluations for various reliability
index values. The actual number of limit-state evalua-
tions is slightly different from that of the envisioned
number of limit-state evaluations due to errors in
UDR-based metamodels. Tables 8 and 9 show that the
accuracy of the guided tail modelling is better than
that of the classical tail modelling, even though the
number of limit-state evaluations is about an order of
magnitude smaller.

Table 5 Beam design and corresponding reliability indices

Target
reliability
index

Width
(cm)

Height
(cm)

Stress
reliability
index
(FORM)

Displacement
reliability
index
(FORM)

Stress
reliability
index
(MCS)

Displacement
reliability
index (MCS)

3.5 2.5135 3.9136 3.5 3.668 3.5 3.654
4.0 2.5786 3.9400 4.0 4.349 4.004 4.341
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Table 8 Reduced actual limit-state evaluations via guided

tailmodelling for stress failuremodeofWu’sbeam

problem

Guided tail modelling
Classical tail
modelling

Reliability
index

Envisioned
number of
limit-state
evaluations∗

Actual
number of
limit-state
evaluations∗ % Error

% Error with
1000
limit-state
evaluations†

3.0 100 99 4.4 7.1
3.5 100 100 9.8 11.0
4.0 100 99 12.6 16.2

∗Note that an additional 13 limit-state evaluations are performed
for UDR prior to tail modelling.
†The smallest of ML, LS, and average is used for comparison (see
Tables 4, 6, and 7).

Table 9 Reduced actual limit-state evaluations via guided

tail modelling for displacement failure mode of

Wu’s beam problem

Guided tail modelling
Classical tail
modelling

Reliability
index

Envisioned
number of
limit-state
evaluations∗

Actual
number of
limit-state
evaluations∗ % Error

% Error with
1000
limit-state
evaluations†

2.97 100 102 5.1 7.8
3.67 100 102 10.1 10.7
4.35 100 101 15.7 16.2

∗Note that an additional 13 limit-state evaluations are performed
for UDR prior to tail modelling.
†The smallest of ML, LS, and average is used for comparison (see
Tables 4, 6, and 7).

The guided tail modelling reliability predictions are
dependent on the selected threshold value Ft for the
CDF. The sensitivity of the guided tail modelling pre-
dictions to Ft is investigated. Table 10 presents the
comparison of guided tailmodelling predictions using
Ft = 0.90 and Ft = 0.95 forWu’s beamproblem for var-
ious reliability levels. Table 10 shows that the use of
Ft = 0.95 leads tomore accurate reliability predictions
than Ft = 0.90, while the guided tail predictions using
Ft = 0.90 are still more accurate than those of the clas-
sical tail modelling (compare Table 10 to Tables 4, 6,
and 7). Note that with N = 1000 samples, the number

of samples in tail region Nt proposed by Hasofer [11]
is Nt ≈ 1.5

√
N = 47.4, which is close to 50 samples

corresponding to the use of Ft = 0.95.

5 RESULTS AND DISCUSSIONS

This section provides a mathematical example with a
highly non-linear limit-state function and two more
mechanics problems to evaluate the efficiency of the
guided tail modelling. The comparisons of the results
of the all example problems and related discussions
are provided in this section.

5.1 Additional example 1: a highly non-linear
limit-state function

This mathematical example problem is provided to
investigate the effectiveness of the proposed method
when the limit-state function is highly non-linear. The
well-known Goldstein–Price function [21] is used for
defining the limit-state function as

Y = ycrit − y(x1, x2) (13)

where the Goldstein–Price function is

y(x1, x2) = [1+ (x1 + x2 + 1)2(19− 14x1

+ 3x21 − 14x2 + 6x1x2 + 3x22)]
× [30+ (2x1 − 3x2)

2(18− 32x1

+ 12x21 + 48x2 − 36x1x2 + 27x22)] (14)

Here, the variables x1 and x2 are taken as ran-
dom variables with standard normal distributions.
Figure 6 depicts the highly non-linear behaviour of
the Goldstein–Price function when the random vari-
ables take values within the range of ± three standard
deviations away from the mean values.
The value of ycrit in equation (13) is adjusted to

obtain various values of reliability indices as listed in
Table 11. The reliability indices in the second column
of Table 11 are computed via MCS with a sample size
of 108. The comparison of the reliability estimation of
the classical tail modelling techniques and guided tail

Table 10 Comparison of guided tail modelling predictions using different threshold values Ft
forWu’s beam problem

Stress failure mode Displacement failure mode

Reliability
index

% Error in
guided tail
modelling
using
Ft = 0.90

% Error in
guided tail
modelling
using
Ft = 0.95

Reliability
index

% Error in
guided tail
modelling
using
Ft = 0.90

% Error in
guided tail
modelling
using
Ft = 0.95

3.0 1.8 1.3 2.97 2.2 1.5
3.5 4.3 2.4 3.67 6.5 3.9
4.0 11.2 5.7 4.35 16.6 13.7
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Fig. 6 Variation of the Goldstein–Price function over

x1, x2 ∈ [−3, 3]

modelling is also provided in Table 11. For the clas-
sical tail models, the threshold value of Ft = 0.95 is
used and 1000 limit-state calculations are performed.
For the guided tail modelling, two scenarios are con-
sidered. First, the envisioned number of limit-state
evaluations is kept at 1000, and it is found that the
accuracies of the reliability estimations are improved
compared to classical tailmodelling. Second, the envi-
sioned number of limit-state evaluations is reduced to
100, and it is observed that the accuracy of reliability
index estimations is not jeopardized much.
Note that the reliability estimations could also be

performed by using only the UDR and EGLD combi-
nation, without performing any additional tail mod-
elling. After the EGLD is fitted, the reliability could
easily be estimated [17]. The last column of Table 11
shows the reliability indexestimationsbyusingUDR+
EGLD. It is seen that the UDR+ EGLD predictions
are not accurate as the limit-state function is highly
non-linear.

5.2 Additional example 2: eight-variable I-beam
design problem

In this example, a simply supported I-beam (see Fig. 7)
under a concentrated load as discussed in reference

Fig. 7 Cross-section and loading on the eight-variable

I-beam

Table 12 Mean and standard deviation val-

ues of the random variables for the

eight-variable beam problem

Random variable Mean; standard deviation

P 6070; 200
L 120; 6
a 72; 6
S 170000; 4760
d 2.3; 1/24
bf 2.3; 1/24
tw 0.16; 1/48
tf 0.26; 1/48

Note that all randomvariables follownormaldistribution.

[22] is examined. The limit-state function for this
problem is formulated as the difference between the
strength, S, and load effect in terms of maximum
normal stress, σmax due to bending given by

Y = S − σmax (15)

where

σmax = Pa(L − a)d

2LI
; I = bfd

3 − (bf − tw)(d − 2tf )
3

12
(16)

In this problem, there are eight random variables fol-
lowing normal distribution with mean and standard
deviation values provided in Table 12. The main moti-
vation for analysing this problem is to investigate
the effects of increasing the number of input ran-
dom variables on the effectiveness of the guided tail
modelling.
With the values used in the original problem

definition, the reliability index for the beam is about
1.132, which is small for this study. Higher values of

Table 11 Comparing the accuracies of classical tail modelling and guided tail modelling for the highly

non-linear limit-state problem for various target reliability index values

% Error in classical
tail modelling (1000
simulation)

ycrit

Reliability
index ML LS Average

% Error in
guided tail
modelling
(1000
simulation)

% Error in
guided tail
modelling
(100
simulation)

% Error
in UDR+
EGLD

3×106 2.740 2.4 4.4 2.7 1.9 3.1 28
1×107 3.250 4.2 8.6 5.1 2.2 5.2 46
3×107 3.755 5.2 11.6 6.9 3.2 6.1 73
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Table 13 Comparing the accuracies of classical tail modelling and guided tail modelling for the

eight-variable I-beam problem for various target reliability index values

% Error in classical tail
modelling (1000
simulation)

1S
Reliability
index ML LS Average

% Error in guided
tail modelling (1000
simulation)

% Error in guided
tail modelling (100
simulation)

30 000 2.760 5.0 7.1 5.6 2.1 3.7
40 000 3.256 8.9 13.3 8.2 2.7 8.7
50 000 3.726 15.6 20.4 14.0 5.8 16.6

reliability index can be achieved easily by reducing
the applied stress or increasing the strength. Here,
the mean value of the strength S is increased by a
1S amount to attain higher reliability index values
as listed in Table 13. The reliability index values are
computed throughMCS with a sample size of 108.
The reliability index estimations attained by using

the classical tail modelling techniques and guided
tail modelling are given in Table 13. For the classical
tail models, the threshold value of Ft = 0.95 is used
and 1000 limit-state calculations are performed. For
the guided tail model, two alternatives are consid-
ered. First, the number of limit-state evaluations is
kept at 1000. It is found that the accuracies of the
reliability estimations are improved compared to clas-
sical tail modelling. Second, the number of limit-state
evaluations is reduced to 100. It is found that the
accuracy of reliability index estimations is not jeop-
ardized much, rather the accuracy is also improved
when1S = 30 000.

5.3 Additional example 3: a propped cantilever
beam under triangular distributed load

In this example, a propped cantilever beam (see Fig. 8)
under a triangular distributed load is examined. The
limit-state function for this problem is formulated
as the difference between the maximum allowable
deflection (vmax)allow and the maximum deflection of
thebeam vmax due to the applied triangular distributed
load given by

Y = (vmax)allow − |vmax| (17)

Fig. 8 Cross-section and triangular distributed loading

on the propped cantilever beam

Table 14 Mean and standard deviation values of

the random variables for the propped

cantilever beam problem

Random variable Mean; standard deviation

q0 (kN/m) 20; 2
L (m) 6; 0.3
E (GPa) 210; 10
d (cm) 25; 0.5
bf (cm) 25; 0.5
tw (cm) 2; 0.2
tf (cm) 2; 0.2

Note that all randomvariables follownormaldistribution.

The deflection of the beam at any location x can be
found from

v(x) = − q0x
2

120LEI
(4L3 − 8L2x + 5Lx2 − x3) (18)

It can be found that the maximum deflection
occurs at x = 0.5528L (that is, vmax = v(0.5528L)). The
moment of inertia (I ) of the beam can be found
from equation (16) as the cross-section of the beam
is the same as that of the eight-variable I-beam
(see section 5.2). Note that this example problem is
more complex than the previous example problems
analysed.
In this problem, there are seven random variables

followingnormaldistributionwithmeanand standard
deviation values provided in Table 14. The maxi-
mum allowable deflection (vmax)allow is altered within
4–5mm to attain reliability index values as listed in
Table 15. The reliability index values are computed
throughMCS with a sample size of 108.
The reliability index estimations attained by using

the classical tail modelling techniques and guided tail
modelling are given in Table 15. For the classical tail
models, the threshold value of Ft = 0.95 is used and
1000 limit-state calculations are performed. For the
guided tail model, two alternatives are considered.
First, the number of limit-state evaluations is kept at
1000. It is found that the accuracies of the reliability
estimations are improved compared to the classical
tail modelling. Second, the number of limit-state eval-
uations is reduced to 100, and it is found that the
reliability index estimations have similar accuracy to
the classical tail modelling.
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Table 15 Comparing the accuracies of classical tail modelling and guided tail modelling for the

propped cantilever beam problem for various target reliability index values

% Error in classical
tail modelling (1000

simulation)

vmax (mm)
Reliability
index ML LS Average

% Error in guided
tail modelling
(1000 simulation)

% Error in guided
tail modelling
(100 simulation)

4.0 2.980 8.4 9.0 7.4 2.4 6.9
4.5 3.503 13.4 16.8 12.5 4.1 14.2
5.0 3.974 17.5 22.9 15.3 9.6 18.2

Fig. 9 Loading and boundary conditions for the torque

arm. Dimensions are in centimetre [Courtesy of

reference [24]]

5.4 Additional example 4: torque arm
design problem

The limit-state functions for the example problems
provided so far in the article used functional relation-
ships between the input and output parameters. How-
ever, neither the UDR method nor the tail modelling
has this restriction. To demonstrate the effectiveness
of the guided tailmodellingwith limit-states without a
functional relationship between the input and output
parameters, the current example is included.
This example presents the design of an automobile

torque arm. The problem was originally presented by
Bennett and Botkin [23] and investigated by many
researchers including Picheny et al. [24]. The torque
arm is under a horizontal of Fx = −2789N and a ver-
tical load of Fy = 5066N (see Fig. 9). The loads are
transmitted from a shaft at the right hole, and the
left hole is fixed. The torque arm material has Young’s
modulus of E = 206.8GPa, and Poisson’s ratio of
ν = 0.29. Seven design variables (d1 through d7) alter
the shape of the torque arm as shown in Fig. 10.
The limit-state function for the torque arm problem

is formulated as

Y = σf − σmax (19)

where σf is the failure stress of the torque armmaterial
and σmax is the maximum von Mises stress devel-
oped at the torque arm. All the seven design variables
(d1 through d7), the applied loads (Fx and Fy) and the
failure stress are taken as randomvariables. The statis-
tical properties of the random variables are provided
in Table 16.
There is no functional relationship between the

input parameters and the stresses developed at the

Fig. 10 Design variables used to alter the shape of the

torque arm [Courtesy of reference [24]]

Table 16 Statistical properties of the random variables

for the torque arm problem

Random variable Distribution type Mean; standard deviation

d1 through d7 Normal 0; 0.1
Fx Normal −2789; 278.9
Fy Normal 5066; 506.6

S Lognormal 160; 16

control arm. The stresses at the control arm are com-
puted through finite-element analysis by using aMAT-
LAB finite-element toolbox developed by Maute [25]
and CALFEM [26]. Once the stresses at all elements
are computed, the maximum stress value is used in
equation (19).Themeshdensity is kept at a low level to
allow for repeated analysis required forMCS. Figure 11
depicts the stress distribution on the torque armwhen

Fig. 11 Von Mises stress distribution on the torque arm

when the design variables and the applied loads

are assigned to their mean values. Stresses are

in MPa

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

1247

 at TOBB Ekonomi ve Teknoloji Üniversitesi on May 23, 2011pic.sagepub.comDownloaded from 



E Acar

Table 17 Comparing the accuracies of classical tail modelling and guided tail modelling for the

torque arm problem for various target reliability index values

% Error in classical
tail modelling (1000

simulation)

Mean σf

Reliability
index ML LS Average

% Error in guided
tail modelling
(1000 simulation)

% Error in guided
tail modelling
(100 simulation)

160 2.976 5.8 10.8 7.4 1.4 5.9
170 3.439 13.7 14.9 11.0 2.4 9.7
180 3.879 18.0 21.0 13.9 5.7 12.1

thedesign variables and the applied loads are assigned
to their mean values.
Three different target reliability index values are

attained by changing the mean value of the failure
stress as listed in Table 17. The reliability index values
are computed throughMCS with a sample size of 108.
The reliability index estimations attained by using

the classical tail modelling techniques and guided tail
modelling are given in Table 17. For the classical tail
models, the threshold value of Ft = 0.95 is used and
1000 limit-state calculations are performed. For the
guided tail model, two alternatives are considered.
First, the number of limit-state evaluations is kept at
1000. It is found that the accuracies of the reliability
estimations are improved compared to classical tail
modelling. Second, the number of limit-state evalua-
tions is reduced to 100. It is found that the accuracy
of reliability index estimations is not jeopardized, but
the accuracy is also improved compared to classical
tail modelling for all the cases considered.

5.5 Comparison of the accuracy of the proposed
method with the accuracies of some other
reliability assessment methods

In this section, theaccuracyof theproposedguided tail
modelling is compared with the accuracies of other
advanced reliability assessment methods. Since the
main motivation of this article is to improve the accu-
racy and efficiency of the classical tail modelling, the
comparison with other reliability assessment meth-
ods is not intended to be a thorough one, and so
only three other reliability assessment methods are
used: the FORM [27], augmented advanced mean
valuemethod (AMV+ [28]), and aUDR-basedmethod
(UDR+ EGLD [17]). Other advanced reliability meth-
ods such as SORM [29], point estimate methods
[30], two-point adaptive non-linear approximation
method [31], expansion methods [32], and saddle-
point approximation method [22] are left out of the
comparison.
Tables 18 to 23 present the errors in the predic-

tions of the proposedmethod, classical tail modelling,
FORM,UDR+ EGLD, andAMV+ for all exampleprob-
lems provided in the article. The errors are computed
relative to reliability index values computed via MCS

with 100 million samples. The overall conclusion is
that when the limit-state function is linear or has
medium non-linearity, the proposed method is not
advantageous over the other reliability assessment
methods. However, when the limit-state function is
highly non-linear, the proposed method as well as
the classical tail modelling is more accurate than
other reliability assessment methods included in this
comparison.
In the comparison of these reliability assessment

methods, the number of function evaluations is also
important. The classical and the proposed guided tail
methods used 1000 function evaluations. The other
reliability assessmentmethods (FORM,UDR+ EGLD,
and AMV+) are computationally much more efficient
in that these methods used one or two orders of mag-
nitude less number of function evaluations for the
problems investigated.For thefirst additional example
(i.e. the highly non-linear limit-state) for the reliability
index value of 3.755, FORM required 71, UDR+ EGLD
required 9, and AMV+ required 81 function evalua-
tions. Note that the function evaluations required by
FORM and AMV+ depends on the stopping criteria
and tolerances used.

6 THE LIMITATIONS OF THE PROPOSED
METHOD

The effectiveness of the proposed guided tail mod-
ellingdependson theeffectivenessof theUDRmethod
and distribution fitting. For instance, if the higher-
order interactions between the random variables are
strong and the correlations are high, then the accuracy
of the UDR method is not very good. In that case, the
limit-state function approximations canbeperformed
by using multi-dimensional metamodels instead of
the additive decomposition of the UDR method. In
addition, the accuracy of yt prediction will also be a
concern, since the UDR will not work well in estimat-
ing high probabilities. The error in yt prediction can
be mitigated by choosing a smaller threshold value
such as 90 per cent. Note that great caution must be
takenwhile choosing thepropervalueof the threshold.
Choosing a very small threshold yields the distribution
not being in the tail region, and hence the theorem
of tail equivalence cannot be used. If a very large
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Table 18 Errors of various reliability assessmentmethods for the stress failuremode ofWu’s

beam problem

Reliabilty
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

3.007 1.3 7.1 0.0 0.1 0.0
3.500 2.4 11.0 0.0 2.5 0.0
4.004 5.7 11.8 0.1 6.5 0.1

Table 19 Errors of various reliability assessment methods for the displacement failure

mode ofWu’s beam problem

Reliability
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

2.996 1.5 7.8 0.5 1.3 0.8
3.654 3.9 14.5 0.4 0.1 0.8
4.341 13.7 16.2 0.2 4.3 0.8

Table 20 Errors of various reliability assessment methods for the first additional example

(a highly non-linear function)

Reliability
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

2.740 1.9 2.4 10.0 28 5.7
3.250 2.2 4.2 7.4 46 5.9
3.755 3.2 5.2 5.4 73 3.1

Table 21 Errors of various reliability assessment methods for the second additional

example (eight-variable I-beam design problem)

Reliability
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

2.760 2.1 5.0 2.3 5.3 2.3
3.256 2.7 8.2 1.8 10.4 1.8
3.726 5.8 14.0 1.5 19.1 1.5

Table 22 Errors of various reliability assessment methods for the third additional example

(propped cantilever beam under triangular distributed load)

Reliability
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

2.980 2.4 7.4 0.2 15.9 0.2
3.503 4.1 12.5 0.2 22.0 0.2
3.974 9.6 15.3 0.2 31.2 0.2

Table 23 Errors of various reliability assessment methods for the third additional example

(torque arm design problem)

Reliability
index

% Error of the
guided tail
modelling

% Error of the
classical tail
modelling

% Error
of the
FORM

% Error of
the UDR+
EGLD

% Error
of the
AMV

2.976 1.4 5.8 0.5 1.9 0.5
3.439 2.4 11.0 0.5 2.7 0.8
3.879 5.7 13.9 0.5 8.7 1.1
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threshold is chosen,on theotherhand, theuncertainty
in threshold causes large errors.
Similarly, the accuracy of the distribution fitting is

also important. The EGLD is suitable for approximat-
ing the uni-modal (i.e. single peaked) distributions. If
the distribution of the limit-state function is multi-
modal, then the threshold value can be computed by
using multi-dimensional metamodels within an MCS
framework.
The classical tail modelling does not require gener-

ating input random samples and propagating them to
obtain the output samples. Rather, it only focuses on
output samples. Forexample, if 1000 samplesare taken
in a non-destructive evaluation of a nuclear reactor,
then the tail modelling can be used effectively to esti-
mate the reliability of the reactor. In this case, neither
any information on the input random variables, nor
any assumption on uncertainty propagation is used.
The proposed guided tail modelling method, on the
other hand, does require probability distribution of
the input random variables for UDR and EGLD. This
is a major drawback of the proposed method against
classical tail modelling.

7 CONCLUSIONS

The classical tail modelling procedure is based on
performinga relatively smallnumberof limit-state cal-
culations through Monte Carlo sampling, then fitting
a GPD to the tail part of the data. The limit-state calcu-
lations that donot belong to the tail part are discarded.
This article proposed an efficient tailmodelling proce-
durebasedonguiding the limit-stateevaluationpoints
so that the limit-state values have high chances of
falling into the tail region, and hence the amount of
wasted data was reduced. The guidance of the limit-
state evaluation points was achieved through a proce-
dure that combines the use of the UDR method and
distribution fitting. The efficiency and accuracy of the
proposed method was tested through four structural
mechanics problems, and it was found that the accu-
racy of the reliability prediction can be significantly
improved by using guided tail modelling compared to
the classical tail models for about the same number
of limit-state evaluations. Alternatively, the improve-
ment of the accuracy canbe traded off for reducing the
number of limit-state evaluations. That is, the number
of limit-state evaluations can be reduced while keep-
ing the accuracy of the guided tail modelling at the
same level with that of the classical tail modelling.
The limit-state functions for the example problems

provided in this study were all explicit. However, nei-
ther the UDR method nor the tail modelling has this
restriction. Going over the procedures of the UDR
method and the tail modelling, one can see that these
methods can handle implicit limit states. In addition,
the capability of the proposed method for system

reliability estimation is not discussed in this study.
However, the system reliability calculation procedure
proposed by Ramu [12] using inverse reliability mea-
sure based tail modelling can be used easily within the
framework of guided tail modelling. System reliability
estimation using guided tail modelling is considered
to be the subject of a future study.
Even though the guided tail modelling provides effi-

cient andaccurate reliability estimations, the accuracy
of guided tail model reduces as the reliability index
increases.Theaccuracyof tailmodels canbe improved
by using inverse reliability measures in tail models as
proposed by Ramu [12]. In a future study, the pro-
posed guided tail modelling can be combined with
the inverse reliability measure-based tail models for
further accuracy improvement.
The major limitations of this study can be sum-

marized as follows: since the guided tail modelling
is based on the UDR method and distribution fitting,
the limitations of these two applies to the guided tail
modelling. For instance, if the higher-order interac-
tions between the randomvariables are strong and the
correlations are high, then the accuracy of the UDR
method is questionable. In that case, more accurate
models for limit-state function estimation and statisti-
calmoment estimation shouldbeused. Similarly, if the
distribution of the limit-state function ismulti-modal,
theEGLDthat canonlymimicuni-modaldistributions
will not be useful. In that case, more advanced distri-
bution fitting techniques should be utilized. Finally,
the classical tail modelling does not require generat-
ing input random samples and propagating them to
obtain the output samples, rather it only focuses on
output samples. However, the guided tail modelling
method does require probability distribution of the
input random variables for utilizing UDR and EGLD.
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