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a b s t r a c t

In this paper, the effects of tapering and introducing axisymmetric indentations on the crash

performances of thin-walled tubes are investigated. The crash performances of the tubes are evaluated

using two metrics: the crush force efficiency (CFE, the ratio of the average crushing load to the peak

load), and the specific energy absorption (SEA, absorbed energy per unit mass). The optimum values of

the number of the axisymmetric indentations, the radius of the indentations, the taper angle and the

tube thickness are sought for maximum CFE and maximum SEA using surrogate based optimization. In

addition, multi-objective optimization of the tubes is performed by maximizing a composite objective

function that provides a compromise between CFE and SEA. The CFE and SEA values at the training

points of surrogate models (metamodels) are computed using the finite element analysis code LS-DYNA.

Polynomial response surfaces, radial basis functions, and Kriging are the different surrogate models

used in this study. Surrogate based optimization of the tubes showed that the tubes with indentations

have better crush performance than tubes without indentations. It is found that maximum CFE requires

large number of indentations with high radius, small thickness, and medium taper angle, while

maximum SEA requires small number of indentations with low radius, large thickness and small taper

angle. It is also found that the globally most accurate surrogate model does not necessarily lead to the

optimum.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The driver and passenger safety are crucial elements in design
of automotive structures. The main goal of the designers in the
automotive industry is to design crashworthy vehicles. Energy
absorbing elements (e.g., shotguns, side rails) are mainly
responsible for providing the safety of both the passengers and
the critical vehicle components. These elements convert the crash
energy into strain energy through structural deformation.
Although many different types of energy absorbers exist, the
thin-walled tubes are the most common energy absorbing
elements.

Crushing behavior of thin-walled tubes has been investigated
by many researchers. These studies have mainly focused on tubes
with cylindrical and square cross-sections [1,2], while other types
of cross-sections are also investigated [3]. The tubes can be
straight or tapered. For straight tubes, the tube side-walls are
parallel to the tube axis. The straight tubes tend to buckle, which
reduces the energy absorbing capability [4]. Therefore, tapered
ll rights reserved.

x: +90 312 292 4091.
tubes are preferred over straight tubes, since they provide
constant mean load-deflection response and are good at with-
standing oblique impacts as well as axial loads [5]. The energy
absorption characteristics of tapered tubes under impact loading
were investigated by Nagel and Thambiratnam [6]. They studied
the effect of the number of tapered sides and the wall thickness
on the energy absorption behavior. In addition to tapering the
tubes, several other design strategies have been suggested in
literature including introducing geometrical discontinuities or
imperfections in the form of indentations, grooves, dents, holes
corrugations [7–15]. All these aforementioned studies have been
focused on analyzing the effect of tapering or geometrical
discontinuities only. This paper aims to analyze the effect of
tapering and geometrical discontinuities on the crash perfor-
mance of tubes.

The crush forces generated during the axial impact is one of
the important parameters to be considered in designing the
energy absorbers. For an energy absorber, it is not sufficient to
maximize the absorbed energy, but the amount of the crush force
must also be decreased for the safety of both the passengers and
the crashworthiness of the vehicle components. The initial peak
crush force should be reduced as much as possible. Therefore,
both peak crush force and energy absorption values should be
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dx.doi.org/10.1016/j.tws.2010.08.010
mailto:acar@etu.edu.tr
dx.doi.org/10.1016/j.tws.2010.08.010


E. Acar et al. / Thin-Walled Structures 49 (2011) 94–105 95
investigated in determining the efficiency of a crush absorber. For
example, Jin and Altenhof [16] studied the efficiency of the round
and square extrusions under a cutting deformation by calculating
the crush force efficiency (CFE) and specific energy absorption (SEA).
CFE can be defined as the ratio of the mean crush force to the peak
crush force. SEA may be defined as the energy absorption per unit
mass, which is an important parameter for the applications in which
the weight of the structure is also crucial. Therefore, specific energy
absorption value should be controlled and the energy absorber
should be examined with respect to its weight efficiency [17].

The main objective of this study is to investigate the effect of
various geometrical parameters such as wall thickness, semi-
apical angle (i.e., taper angle), and properties of geometrical
discontinuities on the energy absorption characteristics of thin-
walled structures. This analysis can be performed using experi-
mental and numerical techniques. Since experiments are expen-
sive and time consuming, finite element simulations are generally
used in automotive industry. In this study, a commercially
available explicit dynamic finite element (FE) analysis code
LS-DYNA [18] is used to simulate the collapse behavior of the
thin-walled tubes under axial impact loading. The finite element
models were validated by the previously established solutions
from literature, which allowed several designs to be analyzed
without having to build and test several prototypes.

In this study, the optimum values of the geometrical
parameters and the properties of geometrical discontinuities are
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Fig. 1. The geometry of the thin walled tube (without axisymmetric indentations)

having circular cross-section. The dimensions are in millimeters.
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Fig. 2. The geometry of the thin walled tube (with axisy
sought for maximum crush force efficiency and maximum specific
energy absorption. The main challenge in crashworthiness
optimization is the extremely high computational costs of crash
simulations. To overcome the computational challenge, research-
ers have focused on using surrogate models (or metamodels) that
can mimic the behavior of the simulation model as closely as
possible while being computationally very efficient to evaluate.
Crashworthiness optimization for whole vehicles or their compo-
nents using surrogate models has been performed by several
researchers (e.g., [19–26]). Focusing mainly on energy absorption
performances of thin-walled tubes, Refs. [27–33] used surrogate
models to perform crashworthiness optimization of the tubes. In
this study, surrogate based optimization of the tubes are
performed to determine the optimum values of the number of
the axisymmetric indentations, the radius of the indentations, the
taper angle and the tube thickness for maximum CFE and
maximum SEA. In addition; multi-objective optimization of the
tubes is performed by maximizing a composite objective function
that provides a compromise between CFE and SEA.

The paper is structured as follows. The next section provides
the problem description of the crash performance optimization of
the tapered thin-walled tubes with axisymmetric indentations.
Section 3 presents the details of the finite element analysis of the
tubes. Section 4 discusses surrogate model construction. The
results of the optimization problem are given in Section 5,
followed by the concluding remarks given in Section 6.
2. Problem description

The thin-walled tubes having circular cross sections have been
modeled with and without axisymmetric indentations as shown
in Figs. 1 and 2, respectively. The tubes have a largest diameter of
150 mm, and a length of 180 mm. For the crash performance
of tubes, the following design problem is considered. The tubes
are impacted with a 1500 kg rigid wall with an initial velocity
of 9 m/s (see Fig. 3). This would generate an initial kinetic energy
of 45 kJ in accordance with ECE R-29 requirements for trucks.

The tubes should be designed for maximum crash perfor-
mance, which is evaluated by two metrics (CFE and SEA). The
variables that can be tailored by a designer are chosen as
the followings: (1) the tube wall thickness, t; (2) the taper angle,
(a); (3) the radius of axisymmetric indentations, Ri; and (4) the
number of indentations, Ni. Thus, optimization problem for
maximum CFE (or maximum SEA) can be stated as

Find t,a,Ni,Ri

Min -CFEðor-SEAÞ

Such that 1mmrtr2:5mm
2 Ni = 4

mmetric indentations) having circular cross-section.
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Fig. 3. The tube impacted with a rigid wall.

Fig. 4. Finite element mesh of the tubes without indentations.

Table 1
True stress–true plastic strain values for mild steel.

rt (MPa) 331 347 390 427 450 469 501 524 533 533

ep 0 0.018 0.0374 0.056 0.075 0.093 0.138 0.18 0.23 0.5
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Instead of maximizing for either CFE or SEA, a multi-objective
optimization problem can be formulated by defining a composite
objective function that can provide a compromise between CFE
and SEA. The composite objective function to be maximized can
be defined as

f ¼w
CFE

CFE0
þð1�wÞ

SEA

SEA0
ð2Þ

where f is the composite objective function to be maximized, w is
a weight factor used to adjust the relative importance CFE and SEA
to each other, and CFE0 and SEA0 are the normalization constants
for the CFE and SEA, respectively. Here, the values of these
normalization constants are taken as the maximum CFE and SEA
values obtained at the training points.

The optimization problems defined in this section are solved
by using ‘‘fmincon’’ built-in function of MATLAB [34] that uses
sequential quadratic programming. To ensure the global conver-
gence, the optimization runs used 100 different starting points.
3. Finite element simulations

The finite element crash simulations of this study have been
performed by using explicit, nonlinear finite element code
LS-DYNA. Thin walled tubes were fixed at one end and impacted
by a rigid wall having an initial velocity of 9 m/s and a mass of
1500 kg in axial direction. The schematic of the finite element
mesh is shown in Fig. 4.

The finite element models of the tubes are created by using the
commercial pre-processor software ANSA [35]. The size of the
quadrilateral elements is chosen to be 5�5 mm2. The tubes are
modeled with 4-noded Belytschko–Lin–Tsay shell elements
having five integration points through the thickness. Belytscko–
Lin–Tsay shell element is used, because it requires less mathe-
matical calculations compared to other types of shell elements.

The material models used are the ‘‘Material type 20 rigid

material’’ for the rigid wall and the ‘‘Material type 24 elasto-plastic

material.’’ For Material type 24, the plastic region is included with
true stress–true strain curve. Mild steel properties are used for the
tubes. Poisson’s ratio, density and Young’s modulus are taken as
0.3, 7850 kg/m3 and 210 GPa, respectively. True stress and true
plastic strain values for mild steel are shown in Table 1. Strain rate
effects are included in the elasto-plastic material definition,
where the strain rate parameters C and P for the mild steel in
the Cowper–Symonds model are taken 0.04 1/s and 5, respec-
tively, as in earlier studies [36,37].

For contact definitions, ‘‘automatic single surface’’ contact
algorithm is used. The self-contact of the tubes, and the contact
between the tube and the rigid wall are defined by using this type
of contact. The static and dynamic friction coefficients for the
tubes are taken as 0.3 and 0.2, respectively. The friction coefficient
between the tube and the moving rigid wall is taken to be 0.3.
Comparison of the FE model results for frusta with those from
previously established solutions [6,12] is provided in Table 2.
4. Constructing surrogate models

When calculation of the responses that appear in the objective
function or constraint function formulations requires computa-
tionally expensive simulations, optimizing the design becomes
challenging. In such conditions, surrogate models can offer a
practical remedy. Surrogate models aim at regression and/or
interpolation fitting of the response data at some specified
training points that are selected using one of the many designs
of experiments (DOE) techniques given the bounds on the input
variables. By computing the responses at the training points, a
corresponding pool of response values is generated. Then, the
matrix of input and output values are used to fit a surrogate
model, which in turn can be used to estimate the value of
response at any arbitrary point within the bounds of the input
variables.

4.1. Design of experiments

The first step of constructing a surrogate model is to select a
DoE type. Two main families of design of experiments exist [38]:
(i) classic designs and (ii) space filling designs. The most
commonly used classic experimental designs include fractional
factorial design (FFD), central composite design (CCD) and
Box–Behnken designs [38]. Popular space filling designs include
maximum entropy designs [39], minimax and maximin designs
[40], Latin hypercube sampling (LHS) designs [41] and orthogonal
arrays [42]. In this study, FFD design of experiments is used for



Table 2
Comparison of the FE model results for frusta with those from previously established solutions [6,12].

Semi-apical angle, a (deg)

5 7.5 10 14

Nagel and Thambiratnam [6] Crush distance (mm) 87.97 88.30 84.30 98.56

Total energy absorption (kJ) 1.08 2.42 2.40 2.29

Mamalis et al. [12] Crush distance (mm) 89.50 83.50 89.00 90.50

Total energy absorption (kJ) 1.04 2.67 2.50 2.07

Present study Crush distance (mm) 88.57 84.36 80.64 95.2

Total energy absorption (kJ) 1.08 2.45 2.52 2.24

Specify the bounds for the design variables (t, α, Ni, Ri)

Generate the training points using a DOE type 

Perform FEA simulations at training points to compute CFE and SEA

Construct metamodels of different types (PRS, RBF, KR0, KR1) 

Perform optimization using the accurate metamodels. 
(for maximum CFE, maximum SEA, maximum composite function) 

Satisfied with the accuracy of 
meta models?

Add
points

No

Yes

Validate the optimum designs. 
Satisfied ? 

Yes

Pick the best validated optimum

No

Fig. 5. Flowchart for performing surrogate-based optimization of the tubes.
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the tubes without indentations and LHS design of experiments is
used for the tubes with indentations. Brief details of these DoEs
are provided in Appendix A.
4.2. Surrogate models

After selecting the DoE type (that is, determining the locations
of the training points), the CFE and SEA values at the training
points are computed using LS-DYNA. Next, different types of
surrogate models are constructed using the DoE information and
the computed CFE and SEA values. Polynomial response surface
(PRS) approximations, radial basis functions (RBF) and Kriging
(KR) models are used as different types of surrogate models. A
brief overview of the mathematical formulation of PRS, RBF and
KR is provided in Appendix B. Then, the constructed surrogate
models are used for optimization. Finally, the surrogate model
predictions at the optimum tube configurations are validated
using LS-DYNA. A flowchart showing the steps followed while
performing surrogate-based optimization of the tubes is shown in
Fig. 5.
5. Optimization results

In this section, the optimization results for designs with and
without axisymmetric indentations are provided. The optimum
results obtained using different surrogate models are compared.
Finally, FEA of the optimum designs are performed to check
surrogate model predictions.
5.1. Tubes without axisymmetric indentations

For the tubes without axisymmetric indentations, tube wall
thickness (t) and taper angle (a) are used as design variables.
These design variables are the input variables for the surrogate
models. The lower and upper bounds of these input variables are
specified as 1 mmrtr2.5 mm, and 01rar151, respectively.
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Full factorial design with three levels is used to generate training
points (Table 3, columns 2 and 3). Then, FEA simulations are
performed to compute CFE and SEA at the training points (Table 3,
columns 4 and 5).

Second-order PRS (PRS2), RBF, and Kriging models with zeroth-
and first-order trend models (KR0 and KR1) are constructed for
CFE and SEA prediction. The constructed surrogate models are
depicted in Figs. 6 and 7. Notice that RBF, KR0 and KR1 surrogate
models pass through all training points, while PRS2 does not.

The accuracies of the constructed surrogate models are
evaluated using leave-one-out generalized mean square cross
validation error metric, GMSE. The GMSE is calculated as follows.
If there are N training points, a surrogate model type is constructed
N times, each time leaving out one of the training points. Then, the
difference between the exact value of the response yk at the omitted
training point xk and the predicted value of the response using the
surrogate model is calculated. Finally, GMSE is calculated from

GMSE¼
1

N

XN

k ¼ 1

ðyk�ŷ
ðkÞ
Þ
2

ð3Þ

Table 4 provides the comparison of the GMSE of the surrogate
models. Also, the GMSE values are normalized with respect to the
Table 3
Training points and responses evaluated. The maximum CFE and SEA at the

training points is depicted in bold fonts.

No. Taper angle, a (deg) Thickness, t (mm) CFE SEA (kJ/kg)

1 0.0 1.00 0.1674 9.17

2 0.0 1.75 0.2726 14.89

3 0.0 2.50 0.3439 18.54

4 7.5 1.00 0.2440 10.70

5 7.5 1.75 0.3697 16.60

6 7.5 2.50 0.4559 20.64
7 15.0 1.00 0.2890 10.20

8 15.0 1.75 0.3787 14.19

9 15.0 2.50 0.3368 19.52

Fig. 6. Constructed surrogate models for CFE prediction. The bold black dots in
GMSE of the most accurate model, and given in Table 4. It is seen
from Table 4 that the RBF model is the most accurate model for
the CFE prediction, while KR1 is the most accurate model for the
SEA prediction.

Then, optimization for maximum CFE is performed using each
surrogate model separately. Table 5 lists the optimum tube
configurations (see columns 2 and 3) and CFE predictions
(see column 4) by surrogate models. Amongst the four optimum
configurations obtained, three of them (namely RBF, KR0, KR1)
are very close to the 6th training point having a CFE value
of 0.4559. Thus, no extra FEA is required for a confirmation
run. This CFE value will be compared to the optimum CFE value of
the tubes with axisymmetric indentations in Section 5.2 to
evaluate the effect of introducing indentations on CFE of the
tubes.

Then, optimization for maximum SEA is performed using each
surrogate model separately. The optimum tube configurations
(see columns 2 and 3) and SEA predictions (see column 4) are
provided in Table 6. It is found that the optimum SEA value
corresponding to all surrogate models are close to that of the 6th
training point (20.64). Again, no extra FEA is required for a
confirmation run. This SAE value will be compared to the
optimum SEA value of the tubes with axisymmetric indentations
in Section 5.2 to evaluate the effect of introducing indentations on
SEA of the tubes.

Instead of optimizing the tubes for either maximum CFE or
maximum SEA, the tubes are also optimized for the composite
objective function (see Eq. (2)) that provides a compromise
between the CFE and SEA. We consider the case when CFE and SEA
are equally important, so the weight factor in Eq. (2) is taken as
w¼0.5. The values of CFE0 and SEA0 in Eq. (2) are taken as 0.4559
and 20.64, respectively, corresponding to the maximum CFE and
SEA evaluated at the data points (see Table 3). The optimization
results are listed in Table 7. Since the maximization of CFE and
SEA both yielded optima close to the 6th training point, it is not
surprising to find that the maximization of the composite
objective function also yields optimum values close to the 6th
training point.
the plots show the training points: (a) PRS2, (b) RBF, (c) KR0 and (d) KR1.



Fig. 7. Constructed surrogate models for SEA prediction. The bold black dots in the plots show the training points. (a) PRS2; (b) RBF; (c) KRO; (d) KRI.

Table 4
Accuracies of different surrogate models constructed for CFE and SEA predictions for the tubes without indentations.

PRS2 RBF KR0 KR1

Accuracies of surrogate models for CFE prediction

Generalized mean square cross validation errors 0.076 0.065 0.085 0.070

Errors normalized with respect to the most accurate 1.17 1.00 1.32 1.08

Accuracies of surrogate models for SEA prediction

Generalized mean square cross validation errors 1.30 1.75 2.96 1.10

Errors normalized with respect to the most accurate 1.19 1.60 2.70 1.00

Table 5
Optimization results for the tubes without indentations for maximum CFE.

Surrogate model a (deg) t (mm) CFE prediction

PRS2 7.79 2.5 0.4180

RBF 7.50 2.5 0.4559

KR0 7.39 2.5 0.4560

KR1 7.57 2.5 0.4561

Table 6
Optimization results for the tubes without indentations for maximum SEA.

Surrogate model a (deg) t (mm) SEA prediction

PRS2 7.99 2.5 20.62

RBF 7.57 2.5 20.65

KR0 8.76 2.5 20.69

KR1 7.55 2.5 20.65
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5.2. Tubes with axisymmetric indentations

For the tubes with axisymmetric indentations, the number of
indentations (Ni) and the indentation radius (Ri) are used as
additional design variables along with the tube wall thickness (t)
and taper angle (a). These four variables are the input variables
for the surrogate models, and their lower and upper bounds are
provided in Table 8.

LHS design of experiments is used to generate 81 training
points, and PRS2, RBF, KR0 and KR1 surrogate models are
constructed. Then, the accuracies of surrogate models for CFE
and SEA prediction are compared. Table 9 shows that the most
accurate surrogate model for CFE is RBF, while the most accurate
surrogate model for SEA is KR1 as in the case of the tubes without
indentations.

First, optimization for maximum CFE is performed using each
surrogate model separately. The optimum tube configurations
(see columns 2 through 5) and CFE predictions are provided in
Table 10. Notice that the maximum CFE of the tubes with
indentations (0.8017) is 76% larger than the maximum CFE
obtained for the tubes without indentations (0.4559).

Next, optimization for maximum SEA is performed using each
surrogate model separately. The optimum tube configurations
(see columns 2 through 5) and SEA predictions (see column 6) are
provided in Table 11. Notice that the maximum SEA of the tubes
with indentations (22.45) is only 9% larger than the maximum
SEA of the tubes without indentations (20.64). This shows that
introducing axisymmetric indentations is more effective for
increasing CFE than SEA.

Then, the optimization of the tubes is performed to maximize
the composite objective function of CFE and SEA (see Eq. (2)). The
weight factor in Eq. (2) is taken as w¼0.5, and the values of CFE0

and SEA0 used in Eq. (2) are taken as 0.7715 and 21.16,



Table 7
Optimization results for tubes the tubes without indentations for maximum composite objective function with w¼0.5.

Surrogate model a (deg) t (mm) CFE prediction SAE prediction Composite objective function prediction

PRS2 7.87 2.5 0.4180 20.62 0.958

RBF 7.53 2.5 0.4559 20.65 1.000

KR0 7.62 2.5 0.4558 20.65 1.000

KR1 7.57 2.5 0.4561 20.65 1.000

Table 8
Lower and upper bounds of the design variables for the tubes with axisymmetric indentations.

a (deg) t (mm) Ni Ri (mm)

Lower bound 0 1.0 1 3.0

Upper bound 15 2.5 5 9.0

Table 9
Accuracies of different surrogate models constructed for CFE and SEA prediction for tubes with axisymmetric indentations.

PRS2 RBF KR0 KR1

Accuracies of surrogate models for CFE prediction

Generalized mean square cross validation errors 0.076 0.073 0.081 0.082

Errors normalized with respect to the most accurate 1.04 1.00 1.11 1.12

Accuracies of surrogate models for SEA prediction

Generalized mean square cross validation errors 0.863 0.792 0.794 0.623

Errors normalized with respect to the most accurate 1.39 1.27 1.28 1.00

Table 10
Optimization results for the tubes with axisymmetric indentations for maximum CFE.

Surrogate model a (deg) t (mm) Ni Ri (mm) CFE prediction

PRS2 10.00 1 5 3 0.7258

RBF 8.684 2.255 4 4.672 0.8017
KR0 9.975 1.684 4 4.582 0.7895

KR1 10.01 1.656 4 4.457 0.7835

Table 11
Optimization results for the tubes with axisymmetric indentations for maximum SEA.

Surrogate model a (deg) t (mm) Ni Ri (mm) SEA prediction

PRS2 0 2.5 1 3 22.39

RBF 6.023 2.5 1 4.088 22.45

KR0 3.788 2.302 1 4.114 21.61

KR1 4.473 2.5 1 3.298 22.30

Table 12
Optimization results for the tube with axisymmetric indentations for maximum composite objective function with w¼0.5.

Surrogate model a (deg) t (mm) Ni Ri (mm) Composite objective function prediction

PRS2 6.576 2.5 1 3.827 0.8455

RBF 11.38 2.5 2 3.625 0.9707

KR0 9.926 2.136 2 3.879 0.9314

KR1 6.023 2.176 2 3.465 0.9389
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respectively. These values (that is, CFE¼0.7715 and SEA¼21.16)
correspond to the maximum CFE and SEA values evaluated at the
data points. The optimization results are listed in Table 12. It is
seen that RBF model provides the largest composite objective
function prediction.
The optimum tube configurations leading to the maximum CFE,
the maximum SEA, and the maximum composite objective
functions are depicted in Fig. 8. It is seen that the number of
indentations and taper angle are large for maximum CFE, while a
single indentation with small taper angle is required for maximum
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Fig. 8. The geometry of the thin walled tube for (a) maximum CFE, (b) maximum SEA, and (c) maximum composite objective function with w¼0.5.

Fig. 9. Crash behavior of the tubes with and without indentations.
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SEA. A compromised configuration can be achieved by having two
indentations with a larger taper angle. The crash behaviors of the
tubes with and without indentations for maximum CFE are shown
in Fig. 9, which shows the superiority of the tubes with
indentations over the tubes without indentations in terms of CFE.

Finally, Pareto optimal sets for the tubes with indentations are
obtained by solving the multi-objective optimization problem for
various values of the weight factor w in Eq. (2) between 0 and 1. The
Pareto optimal fronts obtained using different surrogate models are
depicted in Fig. 10. It is seen that the Pareto front of PRS2 is shallow,
while the other fronts are sharp, showing a clear knee point.
5.3. Checking performances of surrogate based optima using FEA

In this section, FEA simulations of the optimum tube config-
urations obtained using surrogate based optimization are per-
formed to compute the actual performances of the tubes.

Recall that the prediction of the maximum CFE of the tubes
with indentations was 0.8017, while the FE analyses show that
the maximum CFE is 0.7923 (see Table 13). Comparing this value
to the maximum CFE obtained for the tubes without indentations
(0.4559), it is seen that the CFE improvement due to introducing
indentations is 74%. It is also seen that the tube configuration with
maximum CFE is obtained from KR0, even though RBF model
provided the maximum CFE predictions as well as RBF was the
most accurate surrogate model for CFE prediction.

Similarly, the prediction of the maximum SEA of the tubes with
indentations was 22.45, while the FE analyses show that the
maximum CFE is 22.22. Comparing this value to the maximum CFE
obtained for tubes without indentations (20.64), it is seen that the
CFE improvement due to introducing indentations is 8%. It is see
that even though KR1 was the most accurate model for SEA
prediction, the tube configuration with maximum SAE is obtained
from RBF. The overall conclusion is that the globally most accurate
surrogate model does not necessarily lead to the optimum design.
6. Conclusion

Crash performances of the thin-walled tubes with and without
axisymmetric indentations were optimized in this paper. The
design variables were selected as the number of indentations, the
radius of the indentations, the taper angle and the tube thickness.



Fig. 10. The Pareto optimal fronts obtained using different surrogate models.

Table 13
Finite element analysis of the optimum tube configurations obtained via surrogate

based optimization.

Maximize for Surrogate model
predictions

Finite element analysis
results

CFE SEA Composite CFE SEA Composite

Evaluating performance of PRS2

CFE 0.7258 7.85 0.6559 0.7099 8.34 0.6572

SEA 0.4077 22.39 0.7933 0.4507 17.90 0.7151

Composite 0.5314 21.20 0.8455 0.6809 22.12 0.9640

Evaluating performance of RBF

CFE 0.8017 13.84 0.8467 0.7125 9.93 0.6964

SEA 0.5698 22.45 0.8999 0.6051 22.22 0.9173

Composite 0.7793 19.70 0.9707 0.6916 17.94 0.8722

Evaluating performance of KR0

CFE 0.7895 11.09 0.7737 0.7923 14.61 0.8588

SEA 0.5402 21.61 0.8608 0.6348 20.67 0.9001

Composite 0.7545 18.73 0.9314 0.7871 18.82 0.9548

Evaluating performance of KR1

CFE 0.7835 11.13 0.7709 0.7708 11.97 0.7824

SEA 0.573 22.30 0.8983 0.5724 22.07 0.8927

Composite 0.7694 18.63 0.9389 0.7882 18.90 0.9575
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The specific energy absorption, SEA, and crush force efficiency,
CFE, of the tubes were optimized using surrogate models.
In addition, multi-objective optimization of the tubes was
performed by maximizing a composite objective function that
provides a compromise between CFE and SEA. From the results
obtained in this study, the following conclusions were drawn:
�
 For both the tubes with and without indentations, RBF was
found to be the most accurate surrogate model for CFE
prediction, while KR1 was the most accurate surrogate model
for SEA prediction.

�
 The maximum CFE obtained for the tubes with indentations

was 76% larger than the maximum CFE obtained for the tubes
without indentations based on the surrogate model predic-
tions. The validation of the optimum tube configurations via
FEA showed that the actual improvement of CFE was 74%.

�
 The maximum SEA obtained for the tubes with indentations

was only 9% larger than the maximum SEA obtained for the
tubes without indentations based on the surrogate model
predictions. The validation of the optimum tube configurations
via FEA revealed that the actual increase of SEA was 8%.

�
 Overall, introducing indentations was found to be more

effective for improving CFE than SEA.

�
 Maximum CFE required large number of indentations, small

thickness, and medium taper angle, while maximum SEA
requires small number of indentations, large thickness and
small taper angle.

�
 Even though RBF was the most accurate model for CFE

prediction, the tube configuration with maximum CFE is
obtained from KR0. Similarly, although KR1 was the most
accurate model for SEA prediction, the tube configuration with
maximum SAE is obtained from RBF. So, we concluded that the
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globally most accurate surrogate model does not necessarily
lead to the optimum design.
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Appendix A. Brief details of FFD and LHS design of
experiments

In this study, FFD is used for the tubes without indentations
and LHS is used for the tubes with indentations. Brief details of
these designs of experiments are provided below.
A.1. Full factorial design

Full factorial design consists of two or more factors, each with
discrete possible values or ‘‘levels’’, and whose experimental units
take on all possible combinations of these levels across all factors
(variables). When k number of levels is used for n variables, the
total number of experiments is kn. If there are three variables and
two-levels are used for all variables, then the total number of
experiments is eight as shown in Fig. A1. In this study, three-level
designs are used for both two and four variable cases.
Fig. A1. Full factorial design for three variables with two levels.

. A2. Latin hypercube sampling for two design variables with eight design

nts.
A.2. Latin hypercube sampling

In the LHS method, the range of values for each variable is
divided into m segments of equal probability. The whole design
space consisting of n variables is partitioned into mn cells each
having equal probability. For example, for the case of two
variables and eight segments, the design space is divided into
64 cells as illustrated in Fig. A2. The next step is to choose m cells
as design points from the mn cells. First, a random sample is
generated, and its cell number is calculated. The cell number
indicates the segment number the sample belongs to, with
respect to each of the variables. For example, a cell number
(2, 1) indicates that the sample lies in Segment 2 with respect to
the first variable and in Segment 1 with respect to second
variable. At each successive step, a random sample is generated
and is accepted only if it does not agree with any previous sample
on any of the segment numbers with respect to each of the
variables. The shaded cells in Fig. A2 are the final selected design
points.
Appendix B. Surrogate models used

In this study, polynomial response surface approximations
(PRS), radial basis functions (RBF) and Kriging (KR) models are
used as different types of surrogate models. A brief overview of
the mathematical formulation of these surrogate models taken
from [43] is provided in the followings.
B.1. Polynomial response surface (PRS) approximations

The most commonly used PRS model is the second-order
model in the form of a second-degree algebraic polynomial
function as [44]

f̂ ðxÞ ¼ b0þ
XL

i ¼ 1

bixiþ
XL

i ¼ 1

biix
2
i þ

XL�1

i ¼ 1

XL

j ¼ iþ1

bijxixj ðB:1Þ

where f̂ is the response surface approximation of the actual
response function, f, L is the number of variables in the input
vector x, and b0, bi, bii, bij are the unknown coefficients to be
determined by the least squares technique.
B.2. Radial basis functions (RBF)

RBF methods were originally developed to approximate multi-
variate functions based on scattered data [45]. For a data set
consisting of the values of input variables and response values at n

sampling points, the true function f(x) can be approximated as

~f ðxÞ ¼
Xn

i ¼ 1

lifð:x�xi:Þ ðB:2Þ

where x is the vector of input variables, xi is the vector of input

variables at the ith sampling point, :x�xi:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xiÞ

T
ðx�xiÞ

q
is the

Euclidean norm representing the radial distance, r from design point

x to the sampling point or center xi, f is a radially symmetric basis

function, and li, i¼ 1,n are the unknown interpolation coeffi-
cients. Eq. (B.2) represents a linear combination of a finite number of
radially symmetric basis functions. Some of the most commonly

used RBF formulations include: fðrÞ ¼ r2 logðrÞ (thin-plate spline);

fðrÞ ¼ e�ar2
, a40 (Gaussian); fðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

(multiquadric); and

fðrÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

(inverse multiquadric). The parameter c in the
multiquadrics is a constant. If the r values are normalized to the
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range of (0,1), then 0ocr1. The choice of c¼ 1 is found to be
suitable for most function approximations. The feature that makes

these functions excellent candidates for f is not simply their radial
symmetry but their smoothness and certain properties of their
Fourier transform [44]. In this study, we have chosen the multi-
quadric formulation of RBF because of its prediction accuracy and its
commonly linear and possibly exponential rate of convergence with
increased sampling points.

Given the design coordinates of n sampling points and
associated responses, the unknown coefficients in Eq. (B.2) are
found by minimizing the residual or the sum of the squares of the
deviations expressed as

R¼
Xn

j ¼ 1

f ðxjÞ�
Xn

i ¼ 1

lif :xj�xi:
� �" #2

ðB:3Þ

Expressed in matrix form, Eq. (B.3) appears as

½A�fkg ¼ ff g ðB:4Þ

where ½A� ¼ f:xj�xi:
� �

, j¼ 1,n, i¼ 1,n; fkgT ¼ fl1,l2,. . .,lng
T , and

ff gT ¼ ff ðx1Þ,f ðx2Þ,. . .,f ðxnÞg
T . The coefficient vector k is obtained by

solving Eq. (B.4).
B.3. Kriging (KR)

The basic assumption of KR is the estimation of the response in
the form

f ðxÞ ¼ pðxÞþZðxÞ ðB:5Þ

where f is the response function of interest, p is a known
polynomial that globally approximates the response, and Z(x) is
the stochastic component that generates deviations such that the
Kriging model interpolates the sampled response data. The
stochastic component has a mean value of zero and covariance of

COV½ZðxiÞ,ZðxjÞ� ¼ s2R½Rðxi,xjÞ� ðB:6Þ

where R is N�N correlation matrix if N is the number of training
points, R(xi,xj) is correlation function between the two training
points xi and xj. Mostly, the correlation function is chosen as
Gaussian, that is,

RðyÞ ¼
YL

k ¼ 1

expð�ykd2
k Þ ðB:7Þ

where L is the number of variables, dk ¼ xi
k�xj

k is the distance
between the kth components of the two training points xi and xj,
and yk are the unknown parameters to be determined.

Once the correlation function has been selected, the response f

is predicted as

f̂ ðxÞ ¼ b̂þrTðxÞR�1
ðf�b̂ pÞ ðB:8Þ

where rT(x) is the correlation vector of length N between a prediction
point x and the N sampling points, f represents the responses at the N

points and p is an L-vector of ones (in the case that p(x) is taken as a
constant). The vector r and scalar b̂ are given by

rTðxÞ ¼ ½Rðx,x1Þ,Rðx,x2Þ,. . .,Rðx,xNÞ�T , b̂¼ ðpTR�1pÞ�1pTR�1f ðB:9Þ

The variance of the output model (which is different than the
variance of the sampled output) can be estimated as

ŝ2
¼
ðf�b̂ pÞT R�1

ðf�b̂ pÞ

N
ðB:10Þ
The unknown parameters yk can be estimated by solving the
following constrained maximization problem [46]

Max FðHÞ ¼
�½N lnðŝ2

Þþ ln9R9�
2

s:t: H40 ðB:11Þ

where H is the vector of unknown parameters yk, and both ŝ and
R are functions of H. In this work, we use a MATLAB Kriging
toolbox developed by Lophaven et al. [47].
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