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Abstract: This paper presents the results of a study on the combined shape  
and sizing optimisation of automotive structures while examining the effects  
of different design constraints and associated uncertainties on reliability and 
efficiency of the optimum designs. Nonlinear transient dynamic finite element 
analysis is used for full- and offset-frontal crash simulations of a full vehicle 
model. Surrogate models are developed for the intrusion distance and peak 
acceleration responses at different vehicle locations based on the material  
and geometric characteristics of the rail component. The obtained solutions 
provide insight on the effect of uncertainties in optimum design of automotive 
structures. 
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1 Introduction 

The rising costs of fossil fuel along with the growing concerns over auto emissions  
have renewed efforts aimed at enhancing the auto fuel economy. One major contributor 
to the auto fuel efficiency is the vehicle’s weight. During the past several years,  
the US Department of Energy has sponsored many studies in the area of Automotive 
Lightweighting Materials (2007) under the Vehicle Technologies Program to investigate 
the application of materials such as aluminium, magnesium, advanced high-strength steel 
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and polymer composites in combination with improvements in structural design  
and manufacturing for reducing the weight of vehicle structures. Examples of some  
of the sponsored research activities include the Lightweight Front End Structures and 
Future Generation Passenger Compartment projects. Of course, the challenge in 
automotive lightweighting is to reduce the structural weight without compromising the 
crashworthiness standards as articulated in the US Federal Motor Vehicle Safety 
Standards (FMVSS) and Regulations (Federal Motor Vehicle Safety Standards and 
Regulations, 1998) or complicating the manufacturing process resulting in increased 
production cost. 

Through mathematical modelling and systematic modification of the structural shape 
and sizing parameters, it would be possible to optimise the vehicle structure for increased 
efficiency while satisfying the constraints on crashworthiness and passenger injury 
criteria. However, besides the objective function(s), the choice of design constraints and 
their treatment as deterministic or probabilistic could alter the resulting optimum design. 
Whereas in the deterministic approach, factors of safety are commonly used to safeguard 
against variability, in the probabilistic approach, the sources of stochastic uncertainty are 
treated as random variables with distinct probability distributions. Besides facilitating a 
more accurate assessment of structural reliability, the probabilistic approach also 
accommodates the formulation of the design problem as a Reliability-Based Design 
Optimisation (RBDO) problem that results in more consistent assessment of failure 
probability among different structural components or failure modes in comparison with 
the deterministic approach. 

In this paper, we examine the influence of design constraint formulation on optimum 
design of automotive structures. While using the FE simulation results of full-vehicle 
crash to guide the computational design efforts, we will concentrate on the design of only 
the front rail components, which play an important role in the absorption of impact 
energy in full- and offset-frontal impact conditions. Besides the engineering properties of 
the material, the geometric attributes of the rail can have a significant impact on its 
collapse and energy absorption characteristics. Hence, by controlling the form and rate  
of plastic deformation during crash, it would be possible to increase energy absorption 
and reduce the peak acceleration in the passenger compartment. The selected responses 
of interest in this problem are the intrusion distance and peak acceleration at three 
different vehicle locations. While changes in component geometry can influence its 
manufacturability, no constraints on manufacturability or production cost have been 
considered in this study. 

A very challenging aspect of combining numerical optimisation with FE crash 
simulations and structural reliability analysis is the overall computational requirement  
as well as the numerical noise that is often present in a calculated transient dynamic 
response such as acceleration. To alleviate this problem, the metamodelling approach  
is used to build separate surrogate models for the crash responses of interest.  
The resulting smooth analytical functions are then coupled with design optimisation and 
structural reliability analysis to find the optimum rail geometry for different combinations 
of objective function and design constraints in the presence of design uncertainties. 

As with many other realistic engineering problems, the example problem chosen here 
is complex, and as such, the competing design criteria may produce results that are not 
intuitive. Thus, it is necessary to consider multiple test cases to fully quantify the impact 
of problem formulation on the optimum design. 
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The remaining portion of the paper is organised as follows. Sections 2 and 3 describe 
the deterministic and probabilistic optimisation approaches and the potential strategies  
to increase the efficiency of reliability analysis and the solution of RBDO problems. 
Sections 4 and 5 describe the underlying methodology for crash simulation and 
metamodelling whereas Section 6 gives a thorough description of the side-rail example 
problem including a comparison of deterministic and probabilistic optimisation results. 
Concluding remarks appear in Section 7. 

2 Deterministic Design Optimisation 

In a generic formulation of the Deterministic Design Optimisation (DDO) problem,  
we seek the optimal values of design variables in vector Y that would 

min ( )
s.t. ( ) 0; 1,

; 1, NDV
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where f(Y) is the objective function, gi is the ith inequality constraint, and Yk is the kth 
design variable with lower and upper bounds (side constraints), l

kY  and u
kY , respectively. 

When design variables represent continuous (e.g., shape and sizing) variables, the 
solution to equation (1) can be found using a mathematical programming method such as 
the Modified Method of Feasible Directions (MMFD) (Vanderplaats, 1999) or the 
Sequential Quadratic Programming (SQP) (Rao, 1996). In these methods, the original 
functions and their gradients are used in the formulation of an approximate subproblem 
for finding the components of the search direction vector at the current design point. 
Following the determination of optimum step size along the selected search direction,  
an updated (improved) design point is identified. The procedure is repeated until solution 
convergences to an optimal design point. When a problem is non-convex, the 
optimisation problem is often solved by considering multiple initial design points with 
the best design identified from the set of locally optimum solutions. 

When the optimisation problem involves multiple objectives, f(Y) in equation (1) is 
modified to 1 2( ) [ ( ), ( ),..., ( )].

fNf f f f=Y Y Y Y  Since in many problems the objective 
functions are in conflict, it is impossible to find a vector Y that optimises all the objective 
functions simultaneously. Hence, a compromise or Pareto optimum solution is sought. 
Many methods have been developed for the solution of multi-objective design 
optimisation problems including the utility function method, bounded objective function 
method, global criterion method and compromise programming approach (Rao, 1996).  
In compromise programming, f(Y) is expressed as 
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where the superscripts t and w denote the target and worst values, respectively,  
for each objective function with wm representing a scalar weight factor associated with 
the mth objective function. 
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In equation (1), all design variables and constraints have deterministic values, and 
design uncertainties are addressed only in a very limited fashion with the use of factors  
of safety on material properties and constraint limits. As such, the resulting optimum 
design can have inconsistent levels of failure probability among the failure modes,  
with some being unexpectedly high, especially in the presence of active design 
constraints. For consistent levels of failure probability and quantitative modelling of 
design uncertainties, the deterministic formulation in equation (1) is replaced by a 
probabilistic or RBDO formulation as discussed in the following section. 

3 Reliability-Based Design Optimisation 

The underlying stochastic uncertainties in product design can be represented in terms  
of an n-dimensional vector of random variables, 1 2{ , ,..., }T

nX X X=X  with each variable 
having a continuously differentiable cumulative distribution function, Fx(X).

If G(X, Y) represents a stochastic response function for measuring product 
performance, then the failure condition is defined as G(X, Y) ≤ 0 whereas G(X, Y) > 0 
implies safety with G(X, Y) = 0 representing the limit-state surface that separates the safe 
and failure regions of the random-variable space. For this response function, the 
probability of failure is defined as the probability of G(X, Y) ≤ 0, which can be computed 
using the multi-integral equation 

[ ]
( , ) 0

( , ) 0 ( ) df G
P P G f

≤
= ≤ = xX Y

X Y X X  (3) 

where Pf is the failure probability and fx(X) is the joint probability density function  
of random variables integrated over the failure domain of random variables. 

There are alternative ways of formulating a stochastic non-linear programming  
(Rao, 1996) or RBDO problem (Enevoldsen and Sorensen, 1994; Frangopol, 1995;  
Tu et al., 1999). In a generic RBDO problem, we seek the optimal vector of design 
variables { }1 2 NDV, ,..., TY Y Y=Y  that would 
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where
iaP  represents the allowable value or upper bound on the ith failure probability, 

,
if

P  for a single event that may be represented by a unique failure mode in a structural 
component or a system. The probabilistic constraint set in equation (4) may include both 
component- and system-level reliabilities with each constraint limit related to the 
corresponding target reliability index defined as ( )1 ,

i it aPβ −= −Φ  where Φ(⋅) is the 
standard normal cumulative distribution function. Although X and Y in equation (4) 
describe two separate vectors, the mean values of random variables µX are often chosen 
as the design variables. 

For a trade-off between design efficiency and robustness, the objective  
function in equation (4) can be written in its equivalent deterministic form as 

1 2( , ) ( , ) ( , )f ff a aµ σ= +X Y X Y X Y , where µf  and fσ  represent the mean and standard  
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deviation values, respectively, of f(X, Y) while the coefficients a1 and a2 denote scalar 
weighting factors that signify the desired emphasis on efficiency and robustness, 
respectively (Rao, 1992). As in the case of equation (1), it is also possible to have 
multiple objective functions in equation (4). 

In RBDO of structural components, design uncertainties associated with material 
properties and loading condition as well as the component shape and sizing are captured 
in the mathematical formulation and solution of the optimisation problem. 

As is often the case, some responses may be marginally impacted or totally 
unaffected by the variability in the random variables (i.e., design uncertainties), and 
consequently they can be treated as deterministic. If, for instance, the objective function 
and a subset of design constraints are deterministic, then equation (4) can be rewritten as 
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where p
ig  and d

jg  represent normalised reliability-based and deterministic constraints, 
respectively, with the latter preventing the critical value of a deterministic response, 

jCR ,
from exceeding its allowable value, .

jaR
The presence of probabilistic design constraints makes the solution of equation (5) 

more challenging and expensive than that of equation (1). Different approaches for 
 the evaluation of ( , )p

ig X Y  have been developed. In the reliability index  
approach (Enevoldsen and Sorensen 1994), ( , )p

ig X Y  is described in terms of a  
lower bound on the reliability index (i.e., ( , ) 1 ( , ) / 0

i

p
i i tg X Yβ β= − ≤X Y ,

where [ ]( )1( , ) ( , ) 0i iP Gβ −= −Φ ≤X Y X Y ) whereas in the performance measure 
approach (Tu et al., 1999), it is modelled using inverse transformation  
(i.e., ( )1( , ) ( ) 0,

i i

p
i G tg F β−= − Φ − ≤X Y  where (0) [ ( , ) 0]).

iG iF P G= ≤X Y  More recently,  
Du and Chen (2004) proposed the replacement of ( , )p

ig X Y  with an equivalent 
deterministic constraint and the decoupling of reliability analysis and design optimisation 
in each design cycle whereas Qu and Haftka (2004) suggested the use of probability 
safety factor in modelling each probabilistic constraint. 

In general, the solution to the RBDO problem in equation (4) or equation (5) involves 
two major parts: the search for the optimum design point in the design-variable  
space, and the evaluation of component failure probability (or reliability index) in the 
random-variable space at every updated design point. Whether these two parts are kept 
separate or combined in some fashion, the efficient solution of RBDO of complex 
systems requires the use of approximation techniques in one or more areas including the 
modelling of limit state functions, the evaluation of structural reliability and the 
determination of optimum design. 



      

      

      

   Shape and sizing optimisation of automotive structures 315    

      

      

      

      

3.1 Approximate methods for reliability analysis 

For most engineering problems, the analytical integration of equation (3) or the full 
distributional approach is not possible; hence, many simulation and approximate 
analytical methods have been developed for component reliability estimation. 

Simulation-based methods include the direct Monte Carlo Simulation (MCS) 
(Rubinstein, 1981) and its more advanced variants such as Importance Sampling 
(Melchers, 1989), Adaptive Importance Sampling (Wu, 1994) and Directional Simulation 
(Nie and Ellingwood, 2000). Depending on the extent of sampling of the failure domain, 
the results obtained from simulation-based methods may represent approximate 
reliabilities. 

Analytical methods, which include the popular First- and Second-Order Reliability 
Methods (FORM and SORM), involve the transformation of random variables and 
approximation of non-linear limit-state function for the determination of the Most 
Probable Point (MPP) of failure and the reliability index, β. In structural reliability, MPP 
represents the maximum value on the joint probability density function that lies on the 
limit-state surface in standard normal space, whereas the distance from the origin of the 
coordinate system to MPP represents β (Hasofer and Lind, 1974). 

Since the search for MPP can be treated as an optimisation problem, many solution 
techniques have been developed for its calculation (Hasofer and Lind, 1974; Rackwitz 
and Fiessler, 1978; Der Kiureghian et al., 1987) with a comparison of different 
algorithms given by Liu and Der Kiureghian (1991). Other approximate reliability 
analysis methods include the Fast Probability Integration (Wu and Wirsching, 1987), 
Advanced Mean Value method (Wu and Burnside, 1988) and its more accurate variant 
(AMV+) (Wu et al., 1990). To increase the efficiency of FORM, Wang and Grandhi 
(1994) introduced intervening variables for approximation of non-linear limit-state 
functions. More recently, Acar et al. (2010) combined the Univariate Dimension 
Reduction approach of Rahman and Xu (2004) with the Extended Generalised Lambda 
Distribution (EGLD) fitting of Karian et al. (1996) to develop an analytical approach that 
does not require the calculation of MPP for reliability estimation. 

Although – depending on the form of the limit-state function and the number of 
random variables involved – the analytical methods tend to be less accurate than the 
simulation-based methods, they are more computationally efficient, especially when 
combined with numerical optimisation for RBDO of complex systems. For a survey of 
reliability analysis methods, the reader is referred to Rackwitz (2001). 

In this study, we chose the AMV+ method for reliability analysis, where the  
first-order Taylor series expansion of the limit-state function is performed at the MPP 
instead of the mean value point. Since the location of MPP is not readily available, 
AMV+ uses an iterative procedure for its calculation and that of the probability of failure. 
Even though AMV+ method typically requires additional samples than the more 
traditional methods such as FORM, it yields better accuracy for non-linear limit-state 
functions, such as those encountered in vehicle crash simulations. We developed a 
MATLAB function for the implementation of the AMV+ method for reliability 
assessment. 
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3.2 Approximate methods for RBDO 

Most approaches for solving the RBDO problem in equation (4) or equation (5) employ 
at least one form of approximation. The most common solution techniques employ  
a nested or double-loop procedure, wherein the reliability analysis constitutes the inner 
loop and the design optimisation the outer loop. Other methods involve either sequential 
or single-loop (unilevel) procedures. A brief overview of some of the suggested solution 
techniques as published over the last decade is presented in this section. 

To increase the solution efficiency, Grandhi and Wang (1998) replaced the exact 
limit-state function with a two-point adaptive non-linear approximation while using 
FORM for the reliability analysis. Kirjner-Neto et al. (1998) proposed an outer 
approximation of the optimum solutions for the reliability analysis part. Yu et al. (1997) 
developed a mixed design approach in which a FORM-based RBDO is performed only  
if the deterministic optimum solution does not provide a satisfactory level of reliability. 
Koch and Kodiyalam (1999) proposed a variable-complexity technique in which the 
accuracy of FORM solutions is balanced with more efficient solutions derived from  
the Mean-Value First-Order Reliability Method (MVFORM) through the so-called 
adjustment factors. 

Lee and Kwak (1995) suggested replacing MPP-search optimisation with Neumann 
expansion technique. Papadrakakis and Lagaros (2002) used the combination of neural 
networks and evolution strategies to develop inexpensive estimates of deterministic and 
probabilistic constraints and used MCS based on Importance Sampling for the reliability 
analysis. Kharmanda et al. (2002) developed a technique to combine the design and 
random variables into a single albeit more complex Hybrid Design Space (HDS) for  
a simultaneous (single-loop) solution of the reliability and optimisation problems.  
The proposed HDS-based method is shown to be much more computationally efficient 
when compared with the traditional double-loop procedure. Mohsine et al. (2004) 
extended the HDS-based method to what they call the Improved Hybrid Method (IHM)  
by including standard deviations as optimisation variables, and showed an improvement 
in the optimum design from the same starting point. Kharmanda et al. (2004)  
introduced the Optimum Safety Factor (OSF) approach that relies on the first-order 
Karush-Kuhn-Tucker (KKT) optimality criteria for the solution of RBDO problems at a 
reduced computational cost. The OSF approach was later applied to problems involving 
highly non-linear and non-normal random variables (Kharmanda and Olhoff, 2007). 

Choi et al. (2001) introduced a general Design Potential Concept (DPC) for RBDO 
with smooth and non-smooth probabilistic constraints. They described DPC as searching 
for the minimum cost design in the unified design space, which is obtained by mapping 
the design space into system parameter space and transforming it into the standardised 
normal reference space. They also provided the extension of DPC for extreme cases,  
for instance the structures with very small probability of failure. Youn and Choi (2004a) 
compared the reliability index, approximate moment and PMAs for modelling of 
reliability constraints in RBDO and suggest that the PMA is less prone to numerical 
instability than the other two approaches while providing more accurate solutions for 
non-linear limit-state functions. Yang and Gu (2004) investigated four different 
approximate RBDO strategies and found that the Single-Loop-Single-Vector (SLSV) 
approach of Chen et al. (1997) provides the best solution in terms of accuracy and 
efficiency.
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Zou and Mahadevan (2006) proposed a decoupled approach to solve an RBDO 
problem by using a first-order Taylor series approximation of failure probabilities to 
formulate a deterministic set of reliability constraints and solving an approximate 
deterministic optimisation problem. After each deterministic optimisation, a more 
accurate reliability analysis (e.g., MCS) is performed only for the active reliability 
constraints. Through the application of potential constraint strategy and sequential 
approximate optimisation, the RBDO problem is solved with comparable efficiency to 
PMA. Agarwal et al. (2007) have replaced the inverse FORM in PMA with its KKT 
conditions at the upper-level optimisation problem and show that the new approach is 
more robust with better convergence characteristics in comparison with the procedure 
developed by Kuschel and Rackwitz (2000). 

In this study, we chose the double-loop procedure based on the reliability index 
approach. The reason for this choice is the simplicity and the reasonable accuracy of this 
procedure when the response functions of interest are approximated using closed-form 
analytical functions (i.e., metamodels). 

3.3 RBDO of automotive components 

The desire to improve design safety and efficiency in the presence of various sources  
of uncertainty has led to the growth of probabilistic design modelling and RBDO  
in automotive applications. Liaw and DeVries (2001) discuss the effects of uncertainty  
in design variables on the variability of different vehicle responses and the use of this 
information to find robust optimum designs. They modelled variability using two 
metamodelling techniques: Forward Stepwise Regression (FSR) and Enhanced 
Multivariate Adaptive Regression Splines. They examined the trade-off between weight 
and target reliability in one vehicle design problem where durability, noise and vibration 
are taken as responses of interest with panel thicknesses and elastomer stiffness treated as 
the design and random variables. Zhang and Liu (2002) used the probabilistic 
perturbation method together with the Mean-Value First- and Second-Order Method 
(MVFORM, MVSORM) for reliability analysis and design (no optimisation) of nine 
different automotive components including a tension bar, connecting rod, semi-axle,  
fore-axle and torsion bar. In all problems, the limit state functions are in analytical form 
expressed in terms of two to seven random variables. Yang et al. (2004) presented the 
recent developments and applications of structural safety optimisation and robustness 
methods for vehicle crashworthiness-based gauge, size, shape and topology optimisation. 
They encouraged the use of response surface approximations in reliability analysis of 
vehicle crashworthiness. 

Youn and Choi (2004b) combined their proposed Hybrid Mean Value (HMV) method 
for structural reliability analysis with response surface methodology based on quadratic 
backward-stepwise regression, and applied the combined approach to RBDO of a vehicle 
model in side crash. The responses modelled included force, deflection and viscous 
criterion as experienced by the dummy as well as the intrusion velocities at the door and 
the B-pillar. An extension of this effort in Youn et al. (2004) gave a comparison of PMA 
and HMV methods in RBDO solutions with the same side crash model as an example. 
The nine continuous design variables consisted of wall thickness and material properties. 
Gu and Yang (2006) discuss different aspects of RBDO in their paper and using the  
same side crash problem as mentioned earlier examine the characteristics of solutions 
based on SLSV, MVFORM and their combination with those obtained using SQP  
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and MCS combination. They found MVFORM to be the most efficient approach with 
comparable results to SLSV. 

Kaymaz and McMahon (2004) proposed a probabilistic design system called 
ADAPRES_NET for RBDO problems. The two principal features of the system are: 
adaptive response surface approximations for reliability analysis using FORM and 
network programming to distribute the computational tasks. The RBDO of a connecting 
rod is used as an example problem to show the computational efficiency of the proposed 
design system. 

Yang et al. (2005) extended the work of Yang and Gu (2004) by evaluating the 
efficiency and accuracy of multiple RBDO methods. An automobile exhaust hanger 
system defined by four sizing variables was optimised for minimum weight subject to 
144 reliability design constraints on resultant force in three different frequency domains. 
They found that direct application of these methods render them computationally very 
expensive. They concluded that an active constraint strategy combined with a hybrid 
approach for approximate optimisation can improve the computational efficiency  
in reliability design. Sinha (2007) presented a methodology for reliability-based 
multidisciplinary optimisation of engineering structures. He applied this methodology to 
design optimisation of vehicle structures for crashworthiness and occupant safety in side 
impact. The probabilistic constraints were calculated using FORM. Pareto frontier was 
generated for showing the trade-offs between vehicle weight and door intrusion velocity. 

It is worth noting that in all the vehicle design optimisation problems cited earlier,  
the design modifications do not include changes to the product shape, which requires the 
altering of the FE mesh to determine the effect of shape change on response functions of 
interest in the design optimisation problem. 

4 Crash simulation 

Crash characteristics are measured by various performance parameters including 
intrusion distance, strain energy, strain-energy absorption rate, peak acceleration and  
its profile, and contact force. One critical factor is the amount of energy transferred to the 
occupants, which is directly proportional to the amount of energy absorbed by the vehicle 
structure during a crash scenario. Ideally, vehicle simulation models would include 
human (or dummy) models to predict various bodily injuries to the occupants. However, 
in the absence of such models, average responses at key passenger compartment locations 
are used as surrogates or secondary risk measures. 

Non-linear transient dynamic FEA based on explicit time integration schemes  
has proven to be a powerful computational tool in analysing the large-deformation 
dynamic responses of vehicle models in various crash events. Commercial codes, such  
as LS-DYNA, PAM-CRASH, ABAQUS and RADIOSS, are widely used in performing 
realistic and predictive virtual crash simulations. Here, crash simulations are performed 
using LS-DYNA MPP v970. 

5 Metamodelling 

A single high-fidelity vehicle crash simulation for a brief time period of approximately 
100 ms could take in excess of 10 CPU hours even on a multiprocessor-based parallel 
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computing platform (Fang et al., 2005; Rais-Rohani et al., 2006). Moreover, crash 
response characteristics such as peak acceleration can be non-smooth (noisy),  
which prevents their use in gradient-based design optimisation solutions. Therefore, the 
application of DDO and RBDO to vehicle design problems requires the use of smooth 
approximate functions for increased computational accuracy and efficiency. 

One method of approximation is to develop surrogate models (metamodels) for 
estimation of the responses of interest. There are several advantages to using metamodels 
including the elimination of noise in some responses such as acceleration, the fast and 
low-cost computation of responses during the optimisation process, and the evaluation of 
exact derivatives using closed-form analytical functions. Metamodels generally tend to 
enhance the efficiency of both the reliability analysis as well as the design optimisation. 

Metamodelling or response surface techniques have been used in numerous 
engineering applications (e.g., Daberkow and Mavris, 2002; Rais-Rohani and Singh, 
2004) in recent years. Detail information about various metamodelling techniques and the 
performance of the resulting models in approximating non-linear and complex 
multivariate functional relationships can be found in recent survey papers (Simpson et al., 
1998, 2001; Jin et al., 2001). More recent efforts include the use of weighted-sum 
formulation of two or more metamodels to create an ensemble of approximate functions. 
By taking advantage of the prediction ability of each stand-alone metamodel, it is 
possible to enhance the accuracy of the response predictions with an ensemble 
formulation (Goel et al., 2007; Acar and Rais-Rohani, 2009).

In comparing various parametric and non-parametric metamodels for some  
20 different benchmark problems, Wang et al. (2006) have shown that, based on six 
separate performance criteria, the multiquadric Radial Basis Functions (RBFs) 
outperformed other metamodels, such as quadratic Response Surface and Multivariate 
Adaptive Regression Splines (MARS), for highly non-linear and non-noisy functions. 
Fang et al. (2005) also showed that for responses of interest in automobile crash 
simulations, multiquadric RBF surpasses the more traditional Polynomial Response 
Surface (PRS) models in terms of prediction accuracy.

On the basis of the previous experience (Fang et al., 2005) and considering the forms 
of response functions of interest in automobile crash, we focused on two candidate 
metamodelling techniques, one that provides a parametric regression model (i.e., PRS) 
and another that results in a non-parametric interpolation model (i.e., RBF). 

A general, second-order PRS using a quadratic polynomial can be expressed as 
1

2
0

1 1 1 1
( )

m m m m

i i ii i ij i j
i i i j i

f a a x a x a x x
−

= = = = +

= + + +x  (6) 

where m is the total number of input variables, xi is the ith input variable and the as are 
the unknown constant coefficients. Depending on the response and the number of input 
variables, equation (6) is often used either in its complete (fully quadratic) form or with 
the interaction terms excluded. However, this approach either leads to the inclusion  
of terms that have minimal influence on the response or the possibility of leaving out an 
important interaction term. A more efficient alternative is to use an FSR procedure that 
uses a combination of forward entry and backward removal through which only the 
influential effects together with the regression intercept are included in the model.  
For more details about the stepwise model-building techniques, the reader is referred  
to Darlington (1990). 
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RBF methods (Buhmann, 2003) were originally developed to approximate 
multivariate functions based on scattered data. For a data set consisting of the values of 
input variables and response values at n sampling points, the true function f(x) can be 
approximated as 

( )
1

( )
n

i i
i

f λ φ
=

= −x x x  (7) 

where x is the vector of input variables, xi is the vector of input variables at the ith 
sampling point, ( ) ( )T

i i i− = − −x x x x x x  is the Euclidean norm representing the 
radial distance, r, from design point x to the sampling point or centre xi, φ is a radially 
symmetric basis function, and λi, i = 1, …, n are the unknown interpolation coefficients. 
Among the various options for RBF (e.g., thin plate spline, Gaussian, multiquadric and 
inverse multiquadric), we found the multiquadric formulation, 2 2( ) ,r r cφ = +  to 
provide the most accurate predictions for crash responses of interest. The parameter c in 
φ(r) is a constant such that 0 < c ≤ 1 when the radial distances are normalised. 

6 Design application problem 

Figure 1 shows a modified version of the full-scale FE model of a c-class passenger  
car developed by the Partnership for a New Generation of Vehicles team under the 
UltraLight Steel AutoBody-Advanced Vehicle Concepts (ULSAB-AVC) program group.  
This vehicle model consists of 313 components, most of which are made of isotropic 
materials with the non-linear behaviour of material defined by the true stress–strain 
curves at different strain rates. The baseline design has a mass of approximately 1210 kg. 

Figure 1 Vehicle FE model showing the rail and the locations of measured responses
(see online version for colours) 
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The design effort here is focused on the geometric (i.e., shape and size) optimisation of 
only the front two rails (see Figure 1) for improved crashworthiness and lightweighting. 
The rails play a crucial role in attenuating the impact energy in frontal impact.  
Whereas in the baseline model the rails are straight prismatic members with a hexagonal 
cross-section, they are allowed to change shape (become non-prismatic) in the 
optimisation process with varying curvatures in both vertical and horizontal planes.  
The wall thickness is also allowed to vary in the optimisation process but kept uniform 
throughout the component. When the component shape is allowed to change, it is 
necessary to morph the FE mesh repeatedly during the optimisation process.  
The procedure for mesh morphing is discussed in the next section. Generally speaking,  
it is much more difficult to change the shape than thickness of structural members  
in finite-element-based design optimisation problems such as the one considered here. 

The selected crash responses are the total intrusion distances and peak accelerations 
(decelerations times –1) at the Floor Pan (FP) (Dis_FP, Acc_FP), the Driver Seat (DS) 
(Dis_DS, Acc_DS), and the steering wheel (Dis_SW, Acc_SW), with locations identified 
in Figure 1. The area designated as DS is actually located in the toe pan area of the driver 
side. To reduce noise in the sampled responses, intrusion distance and acceleration values 
are averaged over a small area consisting of multiple FEs at the three sites of interest as 
highlighted in Figure 1. Although reduced intrusion distances are generally favourable, 
that reduction may be accompanied by dangerously high accelerations (g-load) 
experienced by the occupants. Hence, a proper balance must be maintained. 

The twofold frontal impact scenarios considered here, i.e., Full Frontal Impact (FFI) 
and Offset Frontal Impact (OFI), are depicted in Figure 2. In FFI simulation, the vehicle 
crashes into a rigid wall, whereas in OFI it collides into a deformable barrier supported 
by a rigid wall. The deformable barrier is made of multiple layers of materials including 
aluminium honeycomb with overall stiffness properties defined according to FMVSS  
208 standards. Since the deformable barrier has greater structural stiffness than the 
vehicle, its deformation is not as noticeable as that of the vehicle in Figure 2(b).  
Details of the FE models in FFI and OFI are given in Table 1. The FE model in FFI has 
mostly Belyschko-Tsay shell elements, for a total of over 1.1M degrees of freedom.  
In OFI, the deformable barrier model includes additional nodes and elements (76% of 
which are solid). The average element size in the deformable barrier is 12.5 mm. 

Since car crash is a transient event, the desired responses have to be evaluated over  
a specific time interval beyond initial impact. Figure 3 shows the plots of time variations 
of peak accelerations and intrusion distances calculated using LS-DYNA and averaged 
over multiple elements at the three designated sites in the baseline model. The symbol 
AAA_BB_C refers to the response, site and crash scenario, respectively. The plots show 
that the maximum acceleration occurs at some instant during the first 30 ms time interval 
following collision with Acc_DS having the highest value in both impact scenarios.  
The average intrusion distances, computed by subtracting nodal rigid-body translation 
from the actual nodal displacement, are also shown in Figure 3. The intrusion distance 
calculations are based on the same procedure as that described in Fang et al. (2004).  
The plot shows that the intrusion distance, Dis_FP, has the largest average value at 
approximately 100 ms. It is worth noting that although some of the curves for intrusion 
distance have an upward trend, they level off or drop shortly after the 100 ms time is 
reached.
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Table 1 Summary of FE models for frontal crash simulations 

Elements 
Model Node Solid Shell Beam Total Impact time (ms)

FFI 184,436 1,072 178,414 358 179,844 100 
OFI 351,618 158,592 227,054 358 386,004 100 

Figure 2 Baseline vehicle model before and after (a) full-frontal impact with a rigid wall  
and (b) offset-frontal impact with a deformable barrier 

Figure 3 Average acceleration and intrusion distance variations in regions of interest  
in the baseline model 

Crash simulations of full-vehicle models require substantial computational resources  
due to iterative non-linear transient dynamic FEA procedure at computational time steps 
in the order of 1.0E-06. For instance, a 100-ms OFI simulation of the baseline model 
takes approximately 17 CPU hours with LS-DYNA MPP v970 using 32 processors on an 
IBM Linux Cluster with Intel Pentium III 1.266 GHz processors and 607.5 GB RAM.  
By comparison, a comparable FFI simulation takes approximately 13 CPU hours. 
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6.1 Mesh morphing 

If the model is allowed to change shape during design optimisation, then it is necessary  
to modify the FE mesh to correctly capture the influence of such change on structural 
response. This modification may involve developing a whole new mesh for each design 
perturbation or morphing (reshaping) the original mesh. We chose the latter approach, 
and kept the numbers of nodes and elements as well as element connectivity fixed while 
allowing the coordinates of a particular subset of nodes (i.e., deformable nodes)  
to change. There are various ways of adjusting the nodal coordinates. One approach is to 
start with a series of configurations (i.e., basis vectors) that are different only in regions 
where the shape can change, and then find the necessary contribution from each basis 
vector that would optimise the component design. Another approach is to group specific 
nodes in a region of interest into a domain and to apply perturbation vectors at specific 
nodes of the domain. 

To simplify the perturbation of the baseline geometry, each rail is enclosed inside  
a fictitious rectangular box. Figure 4(b) shows this arrangement for a single rail.  
The rectangular box is divided lengthwise into five smaller boxes (domains 1–5) with the 
coordinates of each of its eight corners defined by that of the corresponding fictitious 
node as shown in Figure 4(b). The fictitious nodes do not enter the FEA, and are only 
used to control the coordinates of grid nodes in the underlying structure as the shape of 
each domain is perturbed. By defining the location, direction and magnitude of each 
Geometric Perturbation Vector (GPV) in a given set, we will specify how the geometry 
of each domain as well as that of the enclosed rail will be morphed. The fictitious nodes 
associated with both rails are perturbed in a consistent manner to maintain symmetry 
between the two rails. Four GPV sets are considered in this problem with their points  
of application and positive direction as shown in Figure 4(c). 

The nodal coordinates of the perturbed FE mesh are determined as 
( ) ( ) ( ) ( )

4
( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )

p o j o
i i i i

p o j o
i i j i i

jp o j o
i i i i

x x x x
y y Y y y
z z z z=

−
= + −

−
 (8) 

where subscript i identifies the FE node number, superscripts o and p refer to the original 
and perturbed mesh, respectively, and Yj represents the value of the jth shape design 
variable. It is important to note that Yj could have negative values within the side 
constraints specified in the optimisation problem. While the magnitude of the shape 
design variable has a scaling effect on the corresponding GPV, its sign defines the 
direction of perturbation vectors. At the extreme values of Yj, j = 1, …, 4, the geometry of 
the rail will take the shapes shown in Figure 4(d). Because of connection with the bumper 
at the one end and the body structure at the other end, the nodal locations at the right and 
left ends of the rails are kept fixed. Depending on the desired shape change, adjustments 
can be made to the number of GPV sets, the location and axis of each perturbation vector, 
as well as the number and set-up of morphing domains. It should be noted that for the rail 
shape modification only the y and z components of the nodal coordinates are changed. 
Hence, in equation (8), the x-coordinates do not change, i.e., ( ) ( ) .p o

i ix x=
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Figure 4 (a) Right rail; (b) fictitious box enclosing the rail mesh; (c) geometric perturbation 
vectors pointing in the positive direction, and (d) perturbed mesh corresponding to the 
upper (+) and lower (−) bounds of shape design variables Y1 through Y4 (see online 
version for colours) 

The mesh perturbation (morphing) is performed by combining an in-house programme 
and the GENESIS (2005) software. The mesh smoothing option in GENESIS ensures that 
the interior nodes are relocated in a manner that minimises the distortion of individual 
elements as evident in the perturbed models shown in Figure 4(d). Once the perturbed 
mesh is found, the model is converted into the LS-DYNA format for crash simulations. 

6.2 Description of random variables 

In design of vehicle structures for crashworthiness, typical uncertainties include the 
collision scenario (e.g., impact velocity and offset distance) as well as the variability  
in material properties and geometric shape and size of structural components. 

Many engineering materials used in automotive applications are polycrystalline  
in nature, and the presence of crystallographic characteristics, such as texture and 
misorientation, affects several important physical properties. Although these properties 
may have little or no influence at low deformation-rate applications, they often have 
destructive impact in high-rate applications such as crash. 
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Figure 5(a) shows the effect of strain rate on the true stress–strain curve.  
As suggested by Horstemeyer et al. (2005), small variability (~1%) in microstructures 
can result in very large (~13%) variation in failure stress. Here, we quantify material 
uncertainty due to microstructural features, manufacturing processes and their history 
effects by using an uncertainty stress–strain parameter defined by random variable X1.
This random variable is assumed to have a lognormal distribution and it describes  
the variability in the plastic portion of material stress–strain curves, as illustrated  
in Figure 5(b). The second random variable, X2, defines the collision speed with a mean 
value of 15.65 m/s (35 mph) assuming a normal distribution with the direction of impact 
perpendicular to the barrier. Since in an OFI only a fraction of the vehicle front end 
comes in contact with the barrier, the offset distance is also treated as a normally 
distributed random variable, defined by X3. In the case of X3, a large Coefficient of 
Variation (COV) is meant to reflect a more realistic variation of offset distance in frontal 
collisions. The last random variable, X4, captures the variability in occupant mass. 
Although it represents only a small fraction of the vehicle mass, it does have an influence 
on the kinetic energy of the vehicle. X4 is also assumed to have a normal probability 
distribution. The choice of distribution types represents an assumption on our part based 
on the available information. Table 2 gives the listing of the design and random variables 
with associated bounds and statistical properties, respectively. 

Figure 5 (a) Effect of strain rate on material constitutive relationship and (b) the band
of uncertainty 

(a) (b) 

Table 2 Description of design and random variables 

Variable name (units)
Variable
symbol

Lower 
bound

Upper
bound Mean COV 

Distribution
type

Shape design variables Y1 – Y4 −25.0 25.0 – – – 

Wall Thickness (mm) Y5 0.75 1.25 – – – 
Stress-strain parameter X1 – – 1.0 0.033 Lognormal 
Speed (m/s) X2 – – 15.65 0.067 Normal 
Offset distance (%) X3 – – 40.0 0.167 Normal 
Occupant mass (kg) X4 – – 136.2 0.167 Normal 
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6.3 Metamodels for different responses 

The 13 responses considered in this problem are the rail mass (Mass_R), average 
intrusion distances at FP, DS, and steering wheel locations (Dis_FP, Dis_DS and 
Dis_SW, respectively) in FFI and OFI, and average peak accelerations at the same three 
locations (Acc_FP, Acc_DS and Acc_SW, respectively) in FFI and OFI. Since the FFI 
and OFI collision conditions are distinct from each other, a separate metamodel needs to 
be developed for each intrusion distance and acceleration response. The input variables 
for each model are those identified in Table 2, with X3 excluded in FFI-based 
metamodels. 

Using the Latin Hypercube Sampling (LHS), a pool of 100 design (training) points  
is identified. Two crash simulations are performed at each training point, with  
the generated responses used in the development of PRS and RBF metamodels.  
An additional 40 randomly selected design points are used as test points to compare the 
exact and the estimated values of each response to validate the developed metamodels. 

As a single global metric of accuracy, we used an average error estimate calculated as 

1

1 N i i

i i

f f

N f
ε

=

−
=  (9) 

where N represents the total number of test design points (40 in this problem).  
Table 3 compares the average error estimates for the 13 responses. Generally,  
RBF models are superior to the PRS models with a few exceptions, the most noteworthy 
being the mass. The superiority of RBF is more evident in FFI than the OFI conditions. 
The greatest difference between the two models is in prediction of Dis_SW, with the 
average error in RBF being approximately half that for PRS. 

Table 3 Comparison of average error in different metamodels 

FFI  OFI 
Response ε_RBF (%) ε_PRS (%) ε_RBF (%) ε_PRS (%)
Dis_FP 6.7 8.4 5.9 6.1 
Dis_DS 6.7 8.3 8.4 7.8 
Dis_SW 7.1 11.9 8.3 17.2 
Acc_FP 5.7 9.1 5.2 5.0 
Acc_DS 7.6 9.2 7.6 9.3 
Acc_SW 5.0 6.4 3.8 3.6 
Mass_R 1.1 0.2 1.1 0.2 

Although for all responses, RBF models consisted of 100 terms (see equation (6)),  
the number of terms in PRS models varied from one response to another as well as the 
crash condition. For example, for FFI, all PRS equations were second-order and had  
from 8–20 terms whereas in the case of OFI, they were second-order with 9–24 terms.  
On the basis of the functional characteristics of the responses of interest and the desire  
to use a single global metamodel for each response over the entire design space, we chose 
RBF for all intrusion distance and acceleration responses and PRS for structural mass. 
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We also investigated the effect of population size of training points as well as the area 
over which the intrusion distance and acceleration responses are averaged, and found that 
for most responses, 70 sample points provided acceptable accuracy with marginal 
improvement when nearing 100 samples. We also found that an increase of 50% in the 
surface area used for averaging of each crash response did not have any significant effect 
on the accuracy of the metamodels. 

6.4 Optimisation algorithm 

The algorithm for crashworthiness optimisation based on RBDO formulation is described 
by the flowchart in Figure 6. It essentially involves five main elements: mesh morphing, 
crash simulations, metamodelling, structural reliability analysis and numerical 
optimisation. For the DDO solution, the algorithm is simplified with the elimination  
of reliability analysis and the random variables. 

Figure 6 Flowchart for the crashworthiness optimisation based on RBDO formulation 

6.5 DDO results and discussion 

The metamodel-based DDO problem is solved using MMFD in VisualDOC (2005)  
while considering different choices for the design constraint set as well as the objective 
function. Table 4 gives a summary of the optimisation results for the rail mass 
minimisation (Mass_R), single-site-single-crash scenario acceleration minimisation 
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(Acc_FP_F, Acc_DS_F, Acc_SW_F, Acc_FP_O, Acc_DS_O, Acc_SW_O) and the 
multi-objective acceleration minimisation (M_Obj) problems. 

Table 4 Summary of DDO results 

Response minimised Variable/ 
response (units)

Baseline
model Mass_R Acc_FP_F Acc_DS_F Acc_SW_F Acc_FP_O Acc_DS_O Acc_SW_O M_Obj 

Y1 0.0 7.84 17.30 3.76 −1.62 4.23 3.26 12.36 9.02 

Y2 0.0 7.01 5.76 6.79 6.24 3.52 8.19 9.30 7.53 

Y3 0.0 2.27 3.06 2.50 −0.10 1.64 −1.17 −1.37 0.16 

Y4 0.0 −2.53 −4.81 −3.45 −2.30 −1.30 0.74 −0.58 −0.31 

Y5 (mm) 1.0 0.97 0.97 0.98 1.00 0.98 1.01 0.98 0.99 

Mass_R (kg) 2.33 2.22 2.24 2.26 2.32 2.28 2.35 2.26 2.27 

Acc_FP_F
(mm/s2)

424844 382434 369332 389831 406573 391035 394834 377865 382291 

Acc_DS_F
(mm/s2)

687421 640011 667753 638321 653161 651072 661671 651425 650766 

Acc_SW_F
(mm/s2)

585434 566681 576182 567973 563881 573140 576396 566472 571718 

Dis_FP_F
(mm) 

59.1 60.88 57.65 60.70 60.00 61.15 59.93 59.58 60.12 

Dis_DS_F
(mm) 

40.5 41.58 39.06 41.39 40.49 41.82 41.12 40.57 41.13 

Dis_SW_F
(mm) 

8.9 9.13 8.35 9.12 9.12 9.12 9.11 9.14 9.12 

Acc_FP_O
(mm/s2)

514641 502729 502549 502823 503177 501454 501752 502730 501814 

Acc_DS_O
(mm/s2)

933830 915513 918274 906207 916534 916247 884733 916625 904270 

Acc_SW_O
(mm/s2)

529007 507855 510428 510189 513155 513217 511981 504915 508790 

Dis_FP_O
(mm) 

69.7 69.76 69.05 69.69 69.69 70.39 69.49 68.89 69.55 

Dis_DS_O
(mm) 

55.2 50.62 50.89 50.55 50.78 51.48 50.96 50.40 50.93 

Dis_SW_O
(mm) 

6.2 6.07 6.05 6.08 6.04 6.05 6.06 6.06 6.06 

In each single-objective optimisation problem, there are 12 constraints with the bounds 
set equal to the corresponding responses in the baseline model. The solutions  
to these problems give an indication of how much a selected response can be improved 
over that of the baseline model. In the multi-objective optimisation (M_Obj) problem,  
the six acceleration responses are combined using equation (2) to form a composite 
objective function while the remaining seven responses are treated as design constraints. 
The target acceleration values in equation (2) are those found through single-objective 
minimisation solutions whereas the worst values are set equal to the responses of the 
baseline model. 
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As was the case with the baseline model, in all DDO solutions, the largest intrusion 
distance occurs at the FP location whereas the maximum average acceleration occurs at 
the DS location. 

The optimum side-rail geometry for each case is shown in Figure 7. Judging by the 
optimal shapes and values of Y1 through Y4, it appears that the first and second GPV sets 
are considerably more influential than the other two. The thickness design variable 
remains relatively constant from one optimum design to another. Changing the 
optimisation method to SQP and using alternative initial design points did not produce 
any significant improvement in the optimisation results. 

To measure the accuracy of the individual response values in Table 4, an FFI and OFI 
simulation was performed on each optimal design configuration, and the largest error  
was found to be less than 7% with the majority of responses having errors of  
less than 2%. It is important to note that the error in responses of optimum designs is less 
than the predicted error of individual metamodels in Table 3. 

Figure 7 Optimal rail shapes based on DDO solutions (see online version for colours) 

6.6 Design sensitivity analysis 

The influence of design variables on intrusion distance and acceleration responses was 
examined through a design sensitivity analysis of the baseline model. The plots of 
normalised responses vs. normalised perturbations in Y1, Y3 and Y5 are shown in Figure 8. 
The responses are based on the corresponding RBF predictions and are normalised using 
the RBF-predicted values for the baseline model. The design variables are also 
normalised such that a value of zero represents the baseline model. The plots for Y2 and 
Y4 are similar to those of Y1 and Y3, hence, not shown here. 

The plots in Figure 8 reveal that, in many instances, increasing or decreasing a design 
variable from its baseline value will improve some responses (i.e., normalised response 
value less than 1.0) while worsening others (i.e., normalised response value greater  
than 1.0). This contradictory effect explains the limited amounts of mass and 
performance improvements that could be achieved by changing the rail geometry 
(especially wall thickness) during the optimisation process as observed in the DDO 
results. As noted previously, changing the initial design point or the method of solution 
did not have a significant impact on the optimisation results. 
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Figure 8 Effect of changes in design variables 1, 3, and 5 on FFI and OFI responses 

6.7 RBDO results and discussion 

The RBDO problem based on equation (5) is solved using the SQP algorithm  
in MATLAB. Since the consequence of imposing limits on one or more responses  
(at a single vs. multiple sites) and the treatment of some constraints as deterministic  
and others as probabilistic is not necessarily intuitive, multiple optimisation problems are 
considered. A detailed comparison of results from different RBDO problems is also 
helpful to identify the influence of uncertainties in material properties and crash 
conditions on optimum design and to explore trade-offs between weight reduction and 
safety.
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Table 5 gives the summary of RBDO results for most of the cases examined with 
configuration of each optimum design shown in Figure 9. In all the cases considered,  
the deterministic mass of the rail is minimised subject to a different combination of 
deterministic and probabilistic design constraints as identified in Table 5. While the 
deterministic constraints are bounded by the response values in the baseline model,  
the reliability-based constraints seek an improvement over the baseline model according 
to the selected target reliability index. The value of βt−max indicates the largest target 
reliability index that we were able to impose on the probabilistic constraints and find an 
optimum solution. As a reference, when β = 0, the response of the optimum design 
matches that of the baseline model whereas a positive or negative value indicates an 
improvement or worsening (i.e., Pf > 0.5) of the response with the magnitude of β
indicating the extent of difference. Whenever a response is constrained, it is done so for 
both the FFI and the OFI conditions. 

Figure 9 Optimal rail shapes based on RBDO solutions (see online version for colours) 

Table 5 Summary of RBDO results 

RBDO Solution 
Case 1 Case 2 Case 3 Case 4 Case 5 

Variable/response βt−max = 3.5 βt−max = 2.5 βt−max = 1.5 βt−max = 1.5 βt−max = 0.15 
Y1 −22.53 23.73 −2.39 −2.90 5.24 
Y2 14.92 8.43 3.30 10.16 6.54 
Y3 25.0 −20.92 −15.75 −13.70 −1.81
Y4 -4.28 19.54 −6.35 −9.30 0.13 
Y5 (mm) 0.93 1.04 0.97 1.00 1.00 
Mass_R (kg) 1.95 2.49 2.38 2.41 2.33 

β_Dis_FP_F 1.05 2.54a 0.70 1.50a 0.66a
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Table 5 Summary of RBDO results (continued) 

RBDO Solution 
Case 1 Case 2 Case 3 Case 4 Case 5 

Variable/response βt−max = 3.5 βt−max = 2.5 βt−max = 1.5 βt−max = 1.5 βt−max = 0.15 

β_Dis_DS_F 3.50a 4.18 0.67 1.76a 1.02a

β_Dis_DS_F 3.50a 4.18 0.67 1.76a 1.02a

β_Dis_SW_F −5.54 −4.51 1.50a 1.50a 0.15a

Acc_FP_F( mm/s2) 447540 409410a 397150 406090 389410a

Acc_DS_F 
(mm/s2)

667490a 749400 703690 683710 661190a

Acc_SW_F 
(mm/s2)

429990 518630 576280a 573330 576050a

β_Dis_FP_O 0.94 2.56a 1.41 2.01a 0.36a

β_Dis_DS_O 3.50a 2.20 0.97 1.50a 0.30a

β_Dis_SW_O −6.20 −2.13 1.50a 1.50a 0.15a

Acc_FP_O 
(mm/s2)

482710 503740a 526570 528450 502590a

Acc_DS_O 
(mm/s2)

890820a 867420 1071600 1039600 916270a

Acc_SW_O 
(mm/s2)

491840 499240 518030a 515940 511660a

Case 6 Case 7 Case 8 Case 9 Case 10 

βt−max = 1.0 βt−max = 1.0 βt−max = 1.75 βt−max = 0.75 βt−max = 0.07 
Y1 25.00 −5.56 2.55 −3.03 7.77 
Y2 25.00 8.83 20.92 16.59 4.19 
Y3 2.41 25.00 −7.81 24.48 0.48 
Y4 −13.35 12.92 −6.70 23.34 0.44 
Y5 (mm) 0.86 0.83 1.01 0.75 0.99 
Mass_R (kg) 1.91 1.68 2.32 1.50 2.29 
Dis_FP_F (mm) 63.1 60.5a 58.8 58.5 60.5a

Dis_DS_F (mm) 42.3a 38.6 39.7 37.4 41.4a

Dis_SW_F (mm) 10.5 13.7 9.1a 14.6 9.1a

β_Acc_FP_F 0.22 0.99a −0.47 0.75a 0.90a

β_Acc_DS_F 1.00a -0.23 0.33 1.08a 0.18a

β_Acc_SW_F 3.92 3.49 1.78a 4.60a 0.07a

Dis_FP_O (mm) 67.4 67.7a 63.7 68.5 70.2a

Dis_DS_O (mm) 45.2a 43.0 44.5 44.1 51.6a

Dis_SW_O (mm) 7.8 9.3 6.1a 10.6 6.1a

β_Acc_FP_O −0.54 0.99a −0.60 0.75a 0.07a

β_Acc_DS_O 1.00a 2.47 −0.92 1.71a 0.07a

β_Acc_SW_O 2.05 2.34 1.74a 3.27a 0.51a

aResponse treated as a design constraint. 
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Some general observations based on the RBDO results are summarised as follows: 

• The βt−max values for the cases with single-site constraints are generally higher than 
those having multi-site constraints. This is true regardless of whether intrusion 
distance or acceleration responses are treated as probabilistic. 

• When only the intrusion distance responses are treated as probabilistic (cases 1
through 5), the βt−max values are mostly higher than those in the corresponding cases 
with acceleration responses treated as probabilistic (cases 6–10). This trend implies 
that reliability-based acceleration constraints impose more stringent limits on the rail 
design than do the intrusion distance constraints of the same type. 

• Amongst the three sites considered, imposing a probabilistic constraint on the 
intrusion distance at the steering wheel location is more demanding than the same 
constraint at any of the other two sites. By constraining Dis_SW, the intrusion 
distances at the other locations also improve whereas the opposite is not true.  
A similar pattern does not appear to exist for the acceleration responses
indicating that a single-site acceleration constraint is not appropriate. 

• Comparison of cases 5 and 10 indicates that it is possible to improve design safety 
with little or no mass penalty. However, both the mass savings and the safety 
improvements are modest in comparison with the baseline model owing to the 
conflicting influence of design variables and sensitivity patterns as shown  
in Figure 8. 

• In all the cases, the optimiser changed the shape of the rail into a non-prismatic 
geometry with varying degrees of contribution from each GPV set. 

• When treating all 12 intrusion distance and acceleration constraints as probabilistic 
(not shown in Table 5), we found βt−max = 0.04 for a minimum side-rail mass  
of 2.277 lb. 

6.8 Effect of error in metamodel on reliability estimates and RBDO results 

As noted earlier, we found the largest error in the metamodel predicted responses of the 
deterministic optimum models to be around 7% with the majority of responses having 
errors of less than 2%. These errors are actually smaller than the average errors for the 
individual metamodels in Table 3. 

For reliability estimation, a response prediction error may lead to a larger or smaller 
error in β depending on the extent of the non-linearity of the response function, as well as 
the error in the response function at the point where the MPP is evaluated. However, 
given the level of non-linearity in the car crash responses and the unlikelihood that the 
critical region used for reliability calculation (i.e., at the MPP) aligns with the region of 
maximum error found in the response functions, it is expected that error in metamodel 
based β is in the same range as those found in deterministic responses. It is – of course – 
possible to calculate this error exactly, but the computational demand for this type of 
problem is quite high. 

It is also worth noting that if we were to directly link FE simulations with AMV+ 
reliability analysis and design optimisation (overlooking the numerical difficulties),  
we would still encounter another source of error owing to the finite-difference estimation 
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of response derivatives that appear in both the reliability analysis and the design 
optimisation. However, this error can be eliminated when using analytical metamodels. 
Otherwise, the procedures used in RBDO remain the same whether we use the exact or 
metamodel-based responses. 

7 Summary and conclusions 

In this paper, the effects of deterministic and probabilistic (reliability-based) design 
constraints on shape and sizing optimisation of an automotive component were 
investigated. While the inclusion of design uncertainties in probabilistic formulation and 
RBDO can boost confidence in the structural safety predictions, the mathematical 
complexity of the corresponding optimisation problem tends to increase the 
computational cost. This is particularly true when the response functions are highly  
non-linear and require the use of high-fidelity FE simulations of a complex physical 
phenomenon such as crash. The development of analytical surrogate models to increase 
the efficiency of crashworthiness optimisation was a crucial element in the overall 
structural optimisation scheme. 

The metamodel-based design methodology was applied to structural optimisation  
of the rail component of a passenger car under full- and offset-frontal crash scenarios. 
The metamodel-based optimum results were validated using FE simulations of  
full-vehicle crash scenarios. On the basis of the results of the crashworthiness 
optimisation problem, it appears that the choice of single vs. multi-site constraints and the 
modelling of constraints as deterministic or probabilistic have the greatest impact on the 
component design. While adjusting the shape of the rail was effective, the effects of rail 
geometry on the vehicle responses considered were mixed resulting in moderate design 
improvements. Future efforts will explore the expansion of the design space to include 
other components besides the rail in structural optimisation and energy absorption 
management. Also, other important design considerations such as manufacturability and 
process optimisation will be addressed. 
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