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Abstract: Radial basis functions (RBFs) are approximate mathematical models that can
mimic the behaviour of rapidly changing and computationally expensive simulations, such as
finite element simulations for predicting automobile crash responses. The most popular way of
selecting optimal RBF shape parameters is based on minimizing the global cross-validation
error (CVE). Solving this optimization problem may lead to the construction of globally
accurate RBF models, but the shape parameters are assumed to be constant over the entire
design space. On the other hand, having flexible shape parameters that can change over the
design space may allow the local behaviour to be captured better, thereby improving the
accuracy. Thus, optimizing the RBF shape parameters based on minimization of the pointwise
CVE rather than the global CVE is proposed in this paper. Three benchmark mathematical
functions followed by an automobile crash problem are used to evaluate the effectiveness of
the proposed method. It is found that the RBF models based on the minimum pointwise CVE
outperform the RBF models based on the minimum global CVE.

Keywords: optimization, shape parameters, radial basis functions, automobile crashworthi-
ness

1 INTRODUCTION

Radial basis functions (RBFs) are approximate

mathematical models used as surrogates for rapidly

changing and computationally expensive simula-

tions. RBFs have many attractive features including,

first, their capability of accurately modelling arbi-

trary functions, second, their capability of handling

scattered training points in multiple dimensions,

and, third, their relatively simple implementation

compared with kriging and neural networks [1].

Because of these capabilities, RBFs have been used

in many engineering applications. Hardy [2–4] used

RBFs to predict the potential or temperature on the

Earth’s surface at some desired points. Arad et al. [5]

used RBFs for image warping of facial expressions.

Tu and Barton [6] used RBFs as surrogates for

electronic circuit simulation models. Zala and

Barradole [7] used RBFs to warp aerial photographs

to orthomaps. Kremper et al. [8] used RBFs in

neurophysics applications to classify neural signals.

Papila et al. [9] used RBFs for design optimization of

a propulsion system and turbomachinery compo-

nents. Reddy and Ganguli [10] used RBFs to predict

structural damage in helicopter rotor blades. Lai et

al. [11] used RBFs for gear fault classification. Sonar

et al. [12] used RBFs for predicting the surface

roughness in a turning process. Zhang et al. [13]

used RBFs for optimizing a microelectronic packa-

ging system. Young et al. [14] used RBFs to predict

the responses of control systems used in aircraft.

Sjögren [15] used RBFs for the multi-objective

design of antennae.

RBFs have also attracted the attention of several

researchers to predict the crash performances of

vehicles and their components. Jin et al. [16] used

RBFs for predicting the rollover characteristics of a

trailer analysed by Chen et al. [17]. They constructed

four different surrogate model types (polynomial

regression (PR), multi-variate adaptive regression

splines, RBF, and kriging) and found that the RBF

model was the most accurate. Lanzi et al. [18]

constructed RBFs to approximate crash capabilities

of composite absorbers to perform multi-objective
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shape optimization of the absorbers under crash-

worthiness requirements. Hamza and Saitou [19]

used RBFs to design the B-pillar of an automobile

under roof crash conditions. They constructed PR,

neural network, and RBF models to predict the

maximum crush force and found that the RBF model

was the most accurate. Fang et al. [20] utilized RBFs

to perform multi-objective optimization of automo-

bile components for crashworthiness. They con-

structed PR and RBF models to approximate the

energy absorption and peak acceleration responses

of an automobile and found that the RBF model was

more accurate than the PR model. Yang et al. [21]

constructed RBF models for vehicle frontal-impact

simulations. They constructed five different surro-

gate types (PR, moving least-squares, kriging, RBF,

and adaptive and interactive modelling system

models) and found that the RBF model was the

most accurate surrogate type. Last but not least,

Rais-Rohani et al. [22] used RBFs to perform

reliability-based optimization of the front side-rail

component of a passenger car under full-frontal-

and offset-frontal-crash scenarios.

The accuracy of the constructed RBF models

depends heavily on the procedure followed to select

the RBF shape parameters. Several methods have

been suggested in the literature for selecting the

shape parameters. Hardy [2], Franke [23], Kansa [24,

25], and Fasshauer [26] proposed empirical formu-

lations for selecting good values for the shape

parameters. Carlson and Foley [27] and then Foley

[28], with an improved procedure, proposed com-

puting the RBF shape parameters by minimizing the

r.m.s. error (RMSE) evaluated at a set of test points.

In these two studies, several RBF models were built

for different values of the shape parameters using a

common set of training points, and the accuracies of

the constructed RBF models were evaluated for a

dense grid of test points. Finally, the shape para-

meters corresponding to the minimum RMSE were

selected. These procedures require the use of a fine

grid of test points, and so it is computationally pro-

hibitive when the responses are calculated through

time-consuming analysis models (e.g. high-fidelity

finite element (FE) simulations). Rippa [29] proposed

computing the RBF shape parameters by minimizing

the r.m.s. cross-validation error (CVE) evaluated at

training points. The procedure employed by Rippa

[29] is more advantageous than the procedures

used by Carlson and Foley [27] and Foley [28] as it

does not require a set of test points. However,

evaluation of the CVE becomes computationally

costly when the number of training points is large.

To resolve this computational challenge, Wang [30]

and later Roque and Ferreira [31] proposed more

efficient ways to compute the CVE and minimized

the r.m.s. CVE to select the RBF shape parameters.

However, it should be noted that, within the

context of crashworthiness analysis, the computa-

tional cost of CVE evaluation is much smaller than

a single crash simulation for a moderate number of

variables.

The accuracy of RBF models can be further

improved by allowing the RBF shape parameters to

take variable values over the design space. Having

flexible shape parameters may allow the local

behaviour to be captured better, thereby improving

the accuracy. This can be easily achieved by allowing

the shape parameters to take different values at any

different training points. However, as the number of

training points increases, the computational cost

associated with optimization of the shape para-

meters can quickly escalate. Hence, this is not a good

strategy. This paper proposes an efficient optimiza-

tion procedure for selecting flexible RBF shape

parameters. The proposed formulation is applied to

three benchmark problems followed by application

to an automobile crash problem.

The remainder of the paper is organized as

follows. Section 2 provides a brief description of

the RBFs. Section 3 presents the current practice in

choosing the RBF parameters. A new formulation to

choose the RBF parameters is proposed in section 4.

Three benchmark mathematical problems and an

automobile crash problem used to measure the

accuracy of the proposed method are presented in

section 5. The numerical procedure followed is

detailed in section 6. The results of test problems

are presented and discussed in section 7, followed by

concluding remarks given in section 8.

2 BRIEF DESCRIPTION OF THE RBF

The RBFs were originally developed to approximate

multi-variate functions based on scattered data [32].

For a data set consisting of the values of the input

variables and response values at N training points,

the true function y(x) can be approximated as

ŷy xð Þ~
XN

k~1

lkw x{xkk kð Þ ð1Þ

where x is the vector of input variables, xk is the

vector of input variables at the kth training point,

x{xkk k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xkð ÞT x{xkð Þ

q
is the Euclidean norm
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representing the radial distance from the prediction

point x to the training point xk, w is a radially

symmetric basis function, and lk are the unknown

interpolation coefficients. Equation (1) represents a

linear combination of a finite number of radially

symmetric basis functions. The most popular RBF

formulations include w rð Þ~r2 log rð Þ (thin-plate spline),

w rð Þ~e{ar2
, aw0 (Gaussian), w rð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2zc2
p

(multi-

quadric), and w rð Þ~1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2zc2
p

(inverse multi-quadric).

In this study, the multi-quadric formulation of RBF is

used because of its prediction accuracy and its in-

creasing rate of convergence with increased number of

training points [33].

Given the locations x of training points and the

calculated responses y(x) at training points, the

unknown interpolation coefficients li are found by

minimizing the residual R as

R~
XN

j~1

y xj

� �
{
XN

i~1

liw xj{xi

�� ��� �" #2

ð2Þ

Equation (2) can be expressed in matrix form as

A½ �l~y ð3Þ

where A½ �~ w xj{xi

�� ��� �
, i~1, . . . ,N , j~1, . . . ,N , lT~

l1, l2, :::, lNf gT, and yT~ y x1ð Þ, y x2ð Þ, :::, y xNð Þf gT. The

unknown interpolation coefficient vector l is ob-

tained by solving equation (3).

3 CURRENT PRACTICE IN CHOOSING THE RBF
PARAMETERS

As noted earlier, the choice of the shape parameter c

has a substantial effect on the accuracy of the RBF

model. Several researchers selected the shape vari-

able c based on their experience or intuition. For

instance, Wang et al. [33] noted that, if the radial

distances between the training points are normalized

to the range (0, 1), then c 5 1 works well for most

problems. Similarly, Fang et al. [20] and Rais-Rohani

et al. [22] used c 5 1 to predict the crash responses of

automobiles and obtained satisfactory results.

It has been argued in many studies including

those by Bogomolny [34] and Cheng et al. [35] that

the accuracy of RBF models can be maximized by

letting the shape parameter c R ‘. This is true if

there is no round-off error. Huang et al. [36] used a

new error estimate that takes round-off error into

account and proposed a new formulation for the

optimal value of the shape parameter. Through

numerical examples they showed that there is a

finite and problem-dependent optimal value for the

shape parameter c.

The most popular way of selecting an optimal

value for the RBF shape parameter c is using the

procedure proposed by Rippa [29], who selected the

RBF shape parameter c by minimizing the r.m.s. CVE

evaluated at training points. The optimization prob-

lem can be formulated as

Find c ð4:1Þ

Minimize E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

yk{ŷy kð Þ cð Þ½ �2
vuut ð4:2Þ

where E is the global CVE (r.m.s. CVE). The CVE at

any training point is defined as yk{ŷy kð Þ cð Þ½ �, where

the term yk is the true response at the kth training

point xk, and the term ŷy kð Þ cð Þ is the prediction of an

RBF model constructed using all except the kth

training point. Obviously, the predicted value de-

pends on the selected shape parameter c.

It has been shown that selecting the value of c

based on minimization of the global CVE provides

substantial accuracy improvement compared with

selecting the value of c based on experience or

intuition [29–31]. However, the accuracy of RBF

models can be further improved by allowing the RBF

shape parameters to take flexible values over the

design space. This is discussed in the next section.

4 A NEW FORMULATION TO CHOOSE THE
PARAMETERS

Instead of using a constant value for the shape

parameter c over the entire design space, having a

flexible c may allow the local behaviour to be

captured better, thereby improving the accuracy.

This can be easily achieved by allowing c to take

different values at different training points; i.e. for

any constructed RBF model, there exists a number

N of c values c1, c2, …, cN. Then, these shape

parameters can be found by solving the optimization

problem

Find c1,c2, . . . ,cN ð5:1Þ

Minimize E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

yk{ŷy kð Þ ckð Þ½ �2
vuut ð5:2Þ
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where ck is the value of c at the training point xk.

The downside of this approach is that, as the

number N of training points increases, the com-

putational cost associated with optimizing the

shape parameters can quickly escalate. Hence, this

is not a good strategy. In this study, the shape

parameter c is restricted to take a single value for

any constructed RBF model, but for each training

point a different RBF model is constructed; i.e. N

different RBF models (with different but constant

ck) are constructed. Then, the predictions of N

different RBF models are interpolated for the

prediction point x. With this procedure, the

number of design variables for each RBF model is

limited to one, while the flexibility of c over the

design space is also maintained. The shape para-

meters of each of the N different RBF models are

calculated by solving N times the optimization

problem

Find ck, k~1, . . . ,N ð6:1Þ

Minimize Ek~yk{ŷy kð Þ ckð Þ ð6:2Þ

where Ek is the pointwise CVE evaluated at the kth

training point, and ck is the value of the shape

parameter c that minimizes the pointwise CVE at

the kth training point xk.

Then, the prediction of the response at x is

evaluated from

ŷy xð Þ~
XN

k~1

lk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xkk k2

zc xð Þ2
q

ð7Þ

where the flexible shape parameters are calculated

from

c xð Þ~
XN

k~1
k=i

ck

rk xð Þ

,XN

k~1
k=i

1

rk xð Þ ð8Þ

and rk(x) is the radial distance between xk and

the prediction point x, which is computed from

rk xð Þ~ x{xkk k. Note that the formulation of equa-

tion (8) is heuristic.

The proposed approach is based on constructing

multiple RBF models and using equation (8) to

interpolate the shape parameters. This approach is

close to constructing an ensemble of metamodels,

where different types of metamodel are constructed

and combined in the form of an ensemble using a

weighing scheme that assigns larger weights to more

accurate metamodels. The reader is referred to the

papers by Goel et al. [37], Acar and Rais-Rohani [38],

and Viana et al. [39] for more information on the

ensemble of metamodels.

5 TEST PROBLEMS

To evaluate the effectiveness of the proposed method

of optimizing shape parameters of radial basis func-

tions, first three benchmark mathematical functions

are used. Then, the proposed method is applied to

an automobile crash problem.

5.1 Benchmark mathematical problems

The following benchmark functions are used as part

of the test problems in this study. These benchmark

functions are taken from the book by Dixon and

Szegö [40].

5.1.1 Branin–Hoo (two-variable) function

This is given by

y x1, x2ð Þ~ x2{
5:1x2

1

4p2
z

5x1

p
{6

	 
2

z10 1{
1

8p

	 

cos x1ð Þz10 ð9Þ

where x1 [ {5, 10½ � and x2 [ 0, 15½ �. The Branin–Hoo

function is depicted in Fig. 1.

Fig. 1 Branin–Hoo function
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5.1.2 Camelback (two-variable) function

This is given by

y x1, x2ð Þ~ 4{2:1x2
1z

x4
1

3

	 

x2

1

zx1x2z {4z4x2
2

� �
x2

2 ð10Þ

where x1 [ {3, 3½ � and x2 [ {2, 2½ �. The Camelback

function is depicted in Fig. 2.

5.1.3 Hartman function (six-variable) function

This is given by

y xð Þ~{
Xm

i~1

ci exp {
Xn

j~1

aij xj{pij

� �2

" #
ð11Þ

where xi [ 0, 1½ �. Here, a six-variable (n 5 6) model of

this function is considered, where m is taken to be

equal to 4. The values of the function parameters ci,

aij, and pij are provided in Table 1.

5.2 Automobile crash problem

In the safety design of automobiles, crashworthiness

considerations are particularly important. An auto-

mobile is designed such that particular crash re-

sponses (such as the intrusion of components into

the driver compartment, and the accelerations at

specified locations) need to be smaller than their

allowable values. In this paper, full-frontal impact

(FFI) of a c-class passenger car is investigated,

whereas other possible crash scenarios such as

offset-frontal impact, side impact, roof crash, and

rear impact are not included.

An FE model of a c-class passenger car is used to

simulate an FFI scenario using the FE code LS-

DYNA. This FE model was also used in one of the

studies in which the present author was involved

[41]. It is a modified version of the full-scale FE

model of a c-class passenger car developed by the

Partnership for a New Generation of Vehicles [42].

The model consists of 313 components totalling a

mass of approximately 1210 kg. The automobile

components are modelled using isotropic materials

with the non-linear behaviour of material defined by

the true stress–strain curves at different strain rates.

The responses of interest are the intrusion dis-

tances and average peak accelerations at the floor

pan, the driver seat, and steering-wheel locations

(Fig. 3) for a crash duration of 100 ms. Overall, there

are six responses of interest.

The input variables of the RBF models are the

shape control parameters (x1 to x4) and the wall

thickness (x5) of the two side rails (Fig. 4) as well as

the parameters that define variability or uncertainty

in the material stress–strain relationship (x6), offset

distance (x7), impact speed (x8), and occupant mass

(x9). Overall, there are nine input variables.

6 THE NUMERICAL PROCEDURE

For the mathematical benchmark problems, Latin

hypercube sampling (LHS) is used to select the

locations of the training points as well as the test

points such that the minimum distance between the

points is maximized. The MATLAB built-in function

‘lhsdesign’ is used to generate the training and test

points. Here, the ‘maximin’ criterion with a max-

imum of 100 iterations is used.

Fig. 2 Camelback function

Table 1 Parameters used in the six-variable Hartman function, j 5 1, …, 6

i

aij for the following j

ci

pij for the following j

j 5 1 j 5 2 j 5 3 j 5 4 j 5 5 j 5 6 j 5 1 j 5 2 j 5 3 j 5 4 j 5 5 j 5 6

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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To reduce the effect of random sampling, 1000

sets of training points are used for all the benchmark

problems. For each set, 20 training points are used

for the two-variable Branin–Hoo and Camelback

functions, and 60 training points are used for the six-

variable Hartman function. Hence, the RBF models

are constructed multiple times with different train-

ing sets. To measure the prediction accuracy of the

RBF models, 1000 sets of test points are generated.

In each set, 1000 test points are used.

The RMSE is chosen as the error metric of interest.

The average RMSE evaluated over 1000 different sets

of test points is computed for the benchmark

problems.

For the automobile crash problem, the LHS

technique is also used. Owing to the large computa-

tional cost of FE simulations, however, the RBF

models are constructed for only a single training set

with 100 points, and the RMSE is computed over a

single test set with 40 points, which are not among

the 100 training points. Overall, 140 crash simula-

tions are performed. Note that a single FE simulation

takes about 13 central processing unit hours using a

32-processor IBM Linux Cluster with Intel Pentium

III 1.266 GHz processors and 607.5 GB random-

access memory (available at the Center for Advanced

Vehicular Systems, Mississippi State University). A

summary of the training and test sets information is

provided in Table 2.

7 RESULTS AND DISCUSSION

The effectiveness of the proposed method is eval-

uated on the basis of its ability to reduce the RMSE.

The RMSE values are normalized with respect to the

RMSE of RBF models constructed by using c 5 1.

Hereafter, the word ‘normalized’ is dropped when

referring to the error.

7.1 Benchmark functions

For the Branin–Hoo and Camelback functions, RBF

models are constructed using four different app-

roaches:

(a) setting c 5 1;

(b) selecting c using the Rippa method (c_Rippa);

(c) selecting c using the proposed method

(c_Prop.);

(d) selecting c by solving the optimization problem

stated in equation (5) (c_Eq. 5.2).

Fig. 3 Vehicle FE model showing the side rail and
locations of measured responses [41]

Fig. 4 Perturbed geometry of the right-hand side rail at the upper and lower limits of x1 to x4

Table 2 Summary of training and test data used in
each problem

Problem

Number of
training
and test sets

Number of
points in a
training set

Number of
points in a
test set

Branin–Hoo 1000 20 1000
Camelback 1000 20 1000
Hartman 100 60 1000
Automobile crash 1 100 40
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For the six-variable Hartman function, solving the

optimization problem stated in equation (5) would

be computationally costly, and so only the first three

methods mentioned above are used.

The results for the benchmark problems are

provided in Tables 3 and 4 as well as Figs 5 to 10.

In Table 3, the smallest error for each problem is

indicated in bold for ease of comparison. Overall, the

least accurate RBF models are constructed by setting

c 5 1. On average, the shape parameter selection

based on the Rippa method reduces the error in RBF

predictions by 21 per cent for the Branin–Hoo

function, 8 per cent for the Camelback function,

and 16 per cent for the Hartman function compared

with the use of c 5 1. The proposed method based on

pointwise CVE further reduces the errors by an

additional 1 per cent for the Branin–Hoo and the

Hartman functions and an additional 3 per cent for

the Camelback function. Selecting the shape para-

meter by solving equation (5) leads to the smallest

CVE (as expected) as shown in Table 4, but it leads to

larger RMSE values than both the Rippa method and

the proposed method do. This finding arises because

the setting for minimum CVE does not necessarily

lead to minimum RMSE; even though CVE is usually

a good surrogate for the actual error, the setting that

minimizes CVE does not necessarily minimize the

actual error.

Figure 5 shows the box plots for the RMSEs of the

RBF models corresponding to the three different

shape factor selection procedures for the Branin–

Hoo function. The box plots show how the RMSE

varies over the different training and test sets used.

The bottom and top of each box represent the lower

and upper quartile values respectively, with the

interior line representing the median. The dashed

lines (whiskers) extending from both ends of the box

indicate the extents of the remaining data relative to

the lower and upper quartiles. Here, the maximum

whisker length is set at 1.5 times the inter-quartile

range, and the data beyond this limit are character-

ized as outliers and represented by the plus symbols.

The box plots for the RMSEs of the RBF models

constructed for the Camelback function and the

Hartman function are provided in Figs 6 and 7

respectively. Similarly, the box plots for the CVE of

the RBF models constructed for the Branin–Hoo

function, the Camelback function, and the Hartman

function are depicted in Figs 8, 9, and 10 respec-

tively.

The difference between the performances of the

RBF models constructed on the basis of the global

CVE minimization (the Rippa method) and the

proposed method is very small in some of the

example problems. It is not easy to decide from

Figs 5 to 7 whether the results are statistically

significant or not. To assess whether the proposed

method performs better, a t test is performed for the

RMSEs of the RBF models constructed using the

proposed method and the RMSEs of the RBF models

constructed using the Rippa method. Table 5 pre-

sents the degrees of freedom for the example

problems, the corresponding critical t statistics, and

the computed t statistics. It is seen that the computed

t statistics are larger than the critical values for the

Branin–Hoo and the Camelback functions, and

smaller for the Hartman function. Therefore, the

results of the Branin–Hoo and the Camelback

functions are statistically significant, while those of

the Hartman function are not. Note also that the

negative values of the computed t statistics are

indications that the average performance of the

proposed method is better than that of the Rippa

procedure.

7.2 Automobile crash problem

The results for the automobile crash problem are

provided in Table 6. When the performances of

RBF models for predicting intrusion distances or

Table 3 Comparison of the average RMSEs of the
constructed RBF models with different shape
parameter selection procedures for the
benchmark functions

Problem

Average RMSE*

c 5 1 c_Rippa c_Prop. c_Eq. 5.2

Branin–Hoo 1 0.79 0.78 0.86
Camelback 1 0.92 0.89 0.95
Hartman 1 0.84 0.83 Not computed{

*Average over 1000 different training and test sets.
{Owing to a larger computational cost.

Table 4 Comparison of the average CVEs of the
constructed RBF models with different
shape parameter selection procedures for
the benchmark functions

Problem

Average CVE*

c 5 1 c_Rippa c_Prop. c_Eq. 5.2

Branin–Hoo 1 0.65 0.72 0.09
Camelback 1 0.75 0.83 0.16
Hartman 1 0.79 0.82 Not computed{

*Average over 1000 different training and test sets.
{Owing to a larger computational cost.
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accelerations are compared, no clear superiority

is observed for any model. Similarly, there is no

clear distinction regarding the performances of

the RBF models at different locations of the auto-

mobile.

The shape parameter selection based on global

CVE minimization reduces the error in RBF

predictions up to 18 per cent compared with the

use of c 5 1 for the different crash responses

considered. The proposed pointwise shape para-

Fig. 5 Box plots of the normalized RMSE over 1000 training and test sets for the Branin–Hoo
function

Fig. 6 Box plots of the normalized RMSE over 1000 training and test sets for the Camelback
function
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meter selection procedure further reduces the

errors by 5–13 per cent. The only exception is for

the acceleration at the steering wheel, where the

error associated with the proposed procedure is 1

per cent larger than that of the global CVE minimi-

zation procedure.

8 CONCLUDING REMARKS

The most popular way of selecting the optimal RBF

shape parameters is based on minimizing the global

CVE. This paper proposed a methodology to opti-

mize the RBF shape parameters based on minimiza-

Fig. 7 Box plots of the normalized RMSE over 100 training and test sets for the Harman function

Fig. 8 Box plots of the normalized CVE over 1000 training sets for the Branin–Hoo function
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tion of the pointwise CVE. Three benchmark math-

ematical problems and an automobile crash pro-

blem were used to evaluate the efficiency of the

proposed method. From the results obtained in this

study, the following were observed.

1. For the mathematical benchmark problems, the

least accurate RBF models are constructed by

setting c 5 1. The shape parameter selection based

on global CVE minimization (the Rippa method)

reduced the error in RBF predictions by 8–21 per

Fig. 9 Box plots of the normalized CVE over 1000 training sets for the Camelback function

Fig. 10 Box plots of thenormalized CVE over 1000 training sets for the Hartman function
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cent compared with setting the shape parameter to

c 5 1. The proposed method based on pointwise

CVE minimization further reduced the errors by 1–

3 per cent. In addition, for the Branin–Hoo

function and the Camelback function, RBF models

were also constructed by allowing the shape

parameters to take different values at different

data points and minimizing the global CVE. Even

though this approach resulted in a smaller CVE

than for the Rippa method and the proposed

method, it led to larger RMSE values. This finding

was explained with the reasoning that, even

though CVE is usually a good surrogate for the

actual error, the setting that minimizes CVE does

not necessarily minimize the actual error.

2. For the automobile crash problem, greater error

reductions were observed. The shape parameter

selection based on global CVE minimization

reduced the error in RBF predictions up to 18

per cent (for the different crash responses

considered) compared with setting the shape

parameter to c 5 1. The proposed method based

on pointwise CVE minimization further reduced

the errors by 5–13 per cent, with the exception

that the error for the acceleration reduction at the

steering wheel increased by 1 per cent.
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15 Sjögren, D. Statistical methods for improving
surrogate models in antenna optimization. Master’s
Thesis, Chalmers University of Technology, Göte-
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optimization 2, 1978 (North-Holland, Amsterdam).

41 Rais-Rohani, M., Solanki, K., Acar, E., and Eamon,
C. D. Shape and sizing optimization of automotive
structures with deterministic and probabilistic de-
sign constraints. Int. J. Veh. Des., 2010 (in press).

42 Partnership of a New Generation of Vehicles, ULSAB-
AVC Program, May 1999, available from http://
www.corusautomotive.com/file_source/automotive/
Publications/ULSAB-TTD1.pdf.

1552 E Acar

Proc. IMechE Vol. 224 Part D: J. Automobile Engineering JAUTO1560



APPENDIX

Notation

c shape parameter of the radial basis

function model

CVE cross-validation error

E r.m.s. cross-validation error (i.e. the

global cross-validation error)

Ei pointwise cross-validation error at

the ith training point

N number of training points

rk(x) radial distance between the kth

training point xk and the prediction

point x

RMSE r.m.s. error

y(x) true value of the response evaluated

at x

ŷ(x) radial basis function model predic-

tion of the response y(x) evaluated at x

yk true response value at the kth

training point

ŷ(k) predicted value of the response by

the radial basis function model con-

structed using all except the kth

training point

l interpolation coefficients used in the

radial basis function models

w radially symmetric basis function
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