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Abstract Metamodels are approximate mathematical mod-
els used as surrogates for computationally expensive simu-
lations. Since metamodels are widely used in design space
exploration and optimization, there is growing interest in
developing techniques to enhance their accuracy. It has been
shown that the accuracy of metamodel predictions can be
increased by combining individual metamodels in the form
of an ensemble. Several efforts were focused on deter-
mining the contribution (or weight factor) of a metamodel
in the ensemble using global error measures. In addition,
prediction variance is also used as a local error measure
to determine the weight factors. This paper investigates the
efficiency of using local error measures, and also presents
the use of the pointwise cross validation error as a local
error measure as an alternative to using prediction variance.
The effectiveness of ensemble models are tested on several
problems with varying dimensionality: five mathematical
benchmark problems, two structural mechanics problems
and an automobile crash problem. It is found that the spa-
tial ensemble models show better performances than the
global ensemble for the low-dimensional problems, while
the global ensemble is a more accurate model than the spa-
tial ensembles for the high-dimensional problems. Ensem-
bles based on pointwise cross validation error and prediction
variance provide similar accuracy. The ensemble models
based on local measures reduce cross validation errors dras-
tically, but their performances are not that impressive in
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reducing the error evaluated at random test points, because
the pointwise cross validation error is not a good surrogate
for the error at a point.

Keywords Ensemble · Local error measures ·
Metamodeling · Surrogate modeling

Nomenclature
C mean square error matrix
eik cross validation error of the ith metamodel

at the kth training data point
Ei generalized root mean square cross valida-

tion error (GMSE) of the ith metamodel
GLO the global ensemble model based on the

minimization of the global error measure
GMSE

GP Gaussian process
Ik(x) a function that relates the weight factor at

the kth traing point to the weight factor at
any point x

KR0, KR1 Kriging metamodels with constant and lin-
ear trend models, respectively

NM number of metamodels used in the
ensemble

PRS2 second-order polynomial response surface
(with all terms in the polynomial included)

RBF radial basis functions
SPV the spatial ensemble model based on mini-

mization of prediction variance
SP1–SP4 four different spatial ensemble models pro-

posed in this paper
wi (x) normalized weight factor of the ith meta-

model at any point x(0 ≤ wi (x) ≤ 1)

Wi (x) unnormalized weight factor of the ith
metamodel at any point x
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Wik unnormalized weight factor of the ith
metamodel at kth data point

ŷens response prediction of the ensemble of
metamodels

ŷi response prediction of the ith metamodel

1 Introduction

The analysis of complex engineering systems relies on high
fidelity computer simulations that require several hours of
CPU time. When high-fidelity simulations are combined
with numerical design optimization, the computational
cost becomes excessive. Hence, metamodels (or surrogate
models) are widely used to replace the computationally
expensive simulations with smooth analytic functions for
efficient estimation of system responses.

Metamodeling techniques aim at regression and/or inter-
polation fitting of the system responses at some specified
training (observation) points. There are many metamodeling
techniques including polynomial response surface approxi-
mations, PRS (Box et al. 1978; Myers and Montgomery
2002), radial basis functions, RBF (Dyn et al. 1986; Mullur
and Messac 2004), Kriging, KR (Sacks et al. 1989; Martin
and Simpson 2005), and Gaussian process, GP (MacKay
1998; Rasmussen and Williams 2006).

A review of literature provides many examples where
the accuracy and the efficiency of various metamodels for
linear, nonlinear, smooth, and noisy responses have been
investigated (Giunta and Watson 1998; Simpson et al. 2001;
Jin et al. 2001; Stander et al. 2004; Fang et al. 2005; Wang
et al. 2006). For instance, Fang et al. (2005) found RBF
gives accurate metamodels for highly nonlinear responses,
Simpson et al. (2001) found Kriging to be most suitable
for slightly nonlinear responses in high dimension spaces,
and Jin et al. (2001) proposed the use of PRS for slightly
nonlinear and noisy responses. An extensive review of meta-
modeling can be found in Queipo et al. (2005) and Wang
and Shan (2007).

While the studies cited above identify a single metamodel
as being accurate for a particular form of response, it is not
always apparent for an engineer to know in prior which
metamodel is the best for a specific application. There-
fore, as an alternative to using a single metamodel, several
researchers combined multiple metamodels in the form of
an ensemble (Goel et al. 2007; Sanchez et al. 2008; Acar and
Rais-Rohani 2009; Viana et al. 2009). These studies showed
that the resulting ensemble of metamodels takes advantage
of the prediction ability of each individual metamodel to
enhance the accuracy of the response predictions.

Goel et al. (2007), Acar and Rais-Rohani (2009) and
Viana et al. (2009) used the generalized mean square cross
validation error (GMSE) as a global metric to determine the

contribution (or weight factor) of an individual metamodel
in the ensemble. Since a global error metric was used, the
weight factors were kept constant over the entire design
space. Instead of using a global error measure, Sanchez
et al. (2008) proposed the use of the prediction variance
as a local error measure to determine the weight factors
of the metamodels in the ensemble. Since Sanchez et al.
(2008) used a local error metric, the weight factors were
flexible over the design space leading to better predictions.
On the other hand, Viana et al. (2009) showed that the cross-
validation errors are better indicators of the global accuracy
of a metamodel than prediction variance. Motivated from
this finding, this paper proposes the use of the pointwise
cross validation error as a local error measure as an alterna-
tive to using prediction variance. The main objective of the
paper is to investigate the efficiency of using various local
error measures.

The remainder of the paper is structured as follows.
Section 2 presents the basic ensemble formulation and
weight factor selection using global error measures.
Section 3 proposes different approaches for selecting weight
factors using local error measures. Section 4 describes the
example problems considered, and Section 5 describes the
numerical procedure numerical procedure followed while
constructing the ensembles. The results are presented and
discussed in Section 6, and a summary of important conclu-
sions is conclusions is listed in Section 7.

2 Ensemble of metamodels constructed using global
error measures

Traditional application of metamodeling techniques is based
on constructing many different metamodels, selecting the
best one and discarding the rest. This practice has two major
shortcomings. First, most of the effort spent on constructing
different metamodels is wasted. Second, the performances
of different metamodels are dependent on the training data
set used, so it cannot be guaranteed that the selected meta-
model will perform the best as a new data is available. These
drawbacks can be overcome by using an ensemble of meta-
models rather than a single one. This section provides a brief
description of ensemble of metamodels.

An ensemble can be constructed by using a weighted
average of different metamodels. The resulting ensemble
model can be defined as

ŷens(x) =
NM∑

i=1

wi (x)ŷi (x) (1)

where ŷens is the prediction of the ensemble, NM is the num-
ber of metamodels used, wi is the weight factor for the ith
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metamodel and ŷi is the prediction of the ith metamodel.
The weight factors satisfy

NM∑

i=1

wi (x) = 1 (2)

Construction of an accurate ensemble requires judicious
selection of the weight factors. The weight factors, wi , for
the metamodels need to be selected such that the prediction
accuracy of the ensemble is maximized. Different weight
selection procedures followed by different researchers are
briefly discussed in the followings.

Goel et al. (2007) considered an ensemble of three meta-
models (PRS, KR, and RBF) and used the generalized mean
square cross validation error (GMSE) as a global error met-
ric to select the weight factors using a heuristic formulation:

wi = w∗
i

M∑
j=1

w∗
j

(3.1)

w∗
i = (

Ei + αE
)β

(3.2)

E = 1

NM

NM∑

i=1

Ei (3.3)

where Ei is the GMSE of the ith metamodel calculated from

Ei = 1

N

N∑

k=1

(
y(k) − ŷ(k)

)2 (4)

where y(k) is the true response at the kth data point xk ,
and ŷ(k) is the corresponding predicted value from the meta-
model constructed using all except the kth data point. The
parameters β < 0 and α < 1 are selected by the analyst
based on the importance of Ei and E . Goel et al. (2007)
found α = 0.05 and β = −1 leads to a good model in
their study. Even though the analyst has the flexibility on
the values of these parameters, the optimal values of these
parameters may not be known beforehand. Notice that in
this model the weight factors of metamodels in the ensemble
are constant over the entire design space.

Acar and Rais-Rohani (2009) also used the GMSE as the
global error metric of interest and proposed that the weight
factors of different metamodels can be selected via solving
the following optimization problem

Find wi (5.1)

Minimize GMSE
[
ŷens (wi )

]
(5.2)

Such that
NM∑

i=1

wi = 1 (5.3)

Notice that in this model the weight factors do not depend
on the pointwise location of the prediction point.

Similarly, Viana et al. (2009) proposed to select the
weight factors following an approach based on minimizing
the mean square error (MSE). They found that the optimum
values of weight factors can be calculated from

w = C−11
1TC−11

(6)

where 1 is the identity matrix, and the elements of the C
matrix (the mean square error matrix) can be calculated
from

Ci j = 1

N
ET

i Ej (7)

where N is the number of data points, and Ei is the GMSE
of the ith metamodel as defined in (4). Notice that the
ensemble model proposed by Viana et al. (2009) specifies
also constant weight factors for metamodels over the entire
design space. Note also that boldface symbols appearing in
the equations define matrices.

3 Constructing ensembles using local error measures

Instead of using a global error metric leading to constant
weight factors over the entire design space, the use of a
local error measures may lead to more accurate predictions
by allowing flexible weight factors over the design space.
Sanchez et al. (2008) proposed the use of the prediction vari-
ance as the local error metric, and set the value of weight
factor for each metamodel to be inversely proportional to
the pointwise estimate of the prediction variance as

wi (x) =
1

Vi (x)

NM∑
j=1

1
Vj (x)

(8)

where Vi (x) is the pointwise prediction variance of the ith
metamodel. Here, the prediction variances are calculated
using the empirical formula proposed by Sanchez et al.
(2008) using the k nearest neighbors of point x . That is, the
prediction variance of the jth metamoel is computed from

Vj (x) = 1

k − 1

k∑

n=1

[
y (xn) − ŷ j (xn)

]2 (9)

where x1, x2, ..., xk are the k nearest neighbor data points
of the prediction point x . Here, k= 3 is used as proposed
by Sanchez et al. (2008). Notice from (8) that the weight
factors in the ensemble proposed by Sanchez et al. (2008)
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depend on the pointwise location of the prediction point x .
However, setting the values of weight factors to be inversely
proportional to the prediction variances of metamodels is
an optimal selection only if the metamodel predictions are
unbiased and uncorrelated, which is not always the case. In
addition, it has been shown that the cross-validation errors
are better indicators of the global accuracy of a metamodel
than prediction variance (Viana et al. 2009). Therefore, the
following approaches, which use the pointwise cross val-
idation error as the local error measure of interest, are
proposed in this paper. The main objective of the paper is
to investigate the efficiency of the use of various local error
measures.

Proposed approaches

In this paper, the weight factors are selected based on cross-
validation error rather than the prediction variance. Here,
the weight factors are proposed to be calculated from

wi (x) = Wi (x)

NM∑
j=1

Wj (x)

(10)

where Wi (x) is the weight factor of the ith metamodel.
Recall that we need weight factors at prediction points, but
the cross-validation errors are defined at the data points. To
solve this problem, this paper proposes that first the weight
factors at data points are calculated, and then the weight fac-
tors at the prediction points are computed from those. That
is, the weight factors at a prediction point depend on two
factors: (a) the distance between the prediction point and
the data points, (b) the weight factors at data points.

This paper envisions two different ways to assess the
weight factors at prediction points from the weight factors
at data points:

(i) The weight factors at data points are scaled inversely
proportional to the square of the distance between the
prediction point and the data point.

(ii) The weight factors at a prediction point are equal to
the weight factors at the closest data point.

Similarly, two different ways are proposed to compute the
weight factors at data points

(i) The weight factors at data points are selected such that
weight factor of individual metamodel with smallest
cross validation error is one, while all other metamod-
els have zero weights.

(ii) The weight factors at data points are inversely propor-
tional to the square of the cross-validation errors.

Therefore, overall four different heuristic approaches are
proposed in this paper to compute the weight factors Wi (x)

as described below. Since the weight factors Wi (x) are
dependent on the spatial location of the prediction point x ,
these ensemble of models can be called as spatial ensemble
of metamodels.

Approach 1 To compute the weight factors at a prediction
point, the weight factors at data points are scaled inversely
proportional to the square of the distance between the pre-
diction point and the data point. The weight factors at data
points are selected such that weight factor of individual
metamodel with the smallest cross validation error is one,
while the other metamodels have zero weights. Hence, the
spatial weight factors Wi (x) in (10) are computed from

Wi (x) =
N∑

k=1

Wik Ik(x) (11)

where Wik is the pointwise weight factor of the ith meta-
model at kth data point. Wik is equal to one for the meta-
model with the smallest cross validation error at the kth data
point, and equal to zero for all other metamodels at the kth
data point. That is, at the kth data point, only the prediction
of the most accurate individual metamodel is utilized.

The function Ik(x) in (11) is computed from

Ik(x) = 1

d2
k (x)

(12)

where the distance between the prediction point x and the
data point xk is calculated from

dk(x) = ‖x − xk‖ (13)

where ‖ ‖ is the Euclidian norm. In (12), if dk(x) is com-
puted as zero, there will be a singularity. To solve this
problem, Wi (x) = Wik is used when dk(x)=0.

Approach 2 To compute the weight factors at a prediction
point, the weight factors at data points are scaled inversely
proportional to the square of the distance between the pre-
diction point and the data point. The weight factors at
data points are inversely proportional to the square of the
cross-validation errors. Hence, the spatial weight factors are
computed from (11), where the pointwise weight factors are
calculated from

Wik = 1

e2
ik

, eik = y(k) − ŷi(k) (14)

Here y(k) is the true response at the data point xk , and ŷi(k) is
the corresponding predicted value of the ith metamodel con-
structed using all except the kth data point. In this approach,
the function Ik(x) is computed from (12) and (13).



Various approaches for constructing an ensemble of metamodels using local measures 883

Approach 3 The weight factors at a prediction point are
equal to the weight factors at the closest data point. The
weight factors at data points are selected such that weight
factor of individual metamodel with smallest cross valida-
tion error is one, while all other metamodels have zero
weights. The spatial weight factors are computed from (11).
The pointwise weight factor Wik is equal to one if a meta-
model has the smallest cross validation error at kth data
point, and equal to zero otherwise. Similarly, the function
Ik(x) is equal to one if a data point xk is closest to the pre-
diction point x , and equal to zero otherwise. In short, at
a prediction point, first the closest data point is found,
and then the metamodel with the minimum cross-validation
point at that data point is used for ensemble prediction.

Approach 4 The weight factors at a prediction point are
equal to the weight factors at the closest data point. The
weight factors at the data points are inversely proportional to
the square of the cross validation errors. That is, the spatial
weight factors are computed from (11), and the pointwise
weight factor Wik is computed from (14). Ik(x) is equal to
one if a data point xk is closest to the prediction point x , and
equal to zero otherwise.

4 Example problems

The performances of five individual metamodels, the global
ensemble model of Acar and Rais-Rohani (2009), the spatial
ensemble model of Sanchez et al. (2008) and the proposed
spatial models are evaluated considering eight example
problems. The first five examples are widely used mathe-
matical benchmark problems in the literature. The following
two examples are structural mechanics problems, where the
responses are described by analytic functions. In the last
example problem, an automobile crash problem, the critical
responses are obtained from finite element simulations.

4.1 Mathematical problems

The mathematical benchmark problems are defined by the
following analytical functions:

Branin-Hoo function (two-variable)

y (x1, x2) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos (x1) + 10 (15)

Fig. 1 Branin-Hoo function

where x1 ∈ [−5, 10], and x2 ∈ [0, 15]. Branin-Hoo func-
tion in the specified range is depicted in Fig. 1.

Goldstein-Price function (two-variable)

y (x1, x2)

=
[
1 + (x1 + x2 + 1)2

× (
19 − 14x1 + 13x2

1 − 14x2 + 6x1x2 + 3x2
2

)]

×
[
30 + (2x1 − 3x2)

2

×(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]

(16)

where x1, x2 ∈ [−2, 2]. Goldstein-Price function in the spe-
cified range is depicted in Fig. 2.

Hartman function (six-variable)

y (x) = −
m∑

i=1

ci exp

⎡

⎣−
n∑

j=1

ai j (xj − pi j )
2

⎤

⎦ (17)

Fig. 2 Goldstein-Price function
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Table 1 Parameters used in
six-variable Hartman function,
j = 1, · · · , 6

i ai j ci pi j

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

where x1 ∈ [0, 1]. Here six-variable (n = 6) model of this
function is considered, where m is taken four. The values of
function parameters ci , ai j and pi j , taken from Goel et al.
(2007), are provided in Table 1.

Extended Rosenbrock function (nine-variable)

y(x) =
m−1∑

i=1

[
(1 − xi )

2 + 100
(
xi+1 − x2

i

)2
]

(18)

where x1 ∈ [−5, 10]. Here nine-variable (m = 9) model of
this function is considered.

Dixon-Price function (12-variable)

y(x) =
m−1∑

i=1

[
(1 − xi )

2 + 100
(
xi+1 − x2

i

)2
]

(19)

where x1 ∈ [−5, 10]. Here 12-variable (m = 12) model of
this function is considered.

4.2 Structural mechanics problems

4.2.1 Four variable I-beam

This four-variable I-beam (see Fig. 3) problem is taken from
Messac and Mullur (2008). The critical response for this
problem is the maximum bending stress developed in the
beam, which is calculated from

σmax =
P
2

x1
2

I
, I = 1

12

[
x2x3

1 − (x2 − x3) (x1 − 2x4)
3
]

(20)

Fig. 3 The cross-section of the four variable I-beam design

The ranges of the design variables are taken as 0.1 m ≤ x1,
x2 ≤ 0.8 m and 0.009 m ≤ x3, x4 ≤ 0.05 m as specified in
Messac and Mullur (2008).

4.2.2 Fortini’s clutch

The other four-variable problem is taken from Lee and
Kwak (2006). This overrunning clutch assembly, depicted
in Fig. 4, is known as Fortini’s clutch. The contact angle y
is given in terms of the geometric variables x1 through x4 as

y = arccos

[
x1 + 0.5 (x2 + x3)

x4 − 0.5 (x2 + x3)

]
(21)

The problem specified in Lee and Kwak (2006) is a reli-
ability assessment problem for the clutch. The mean and
standard deviations of the geometric variables are provided
in Table 2. The ranges for these variables are taken as ± five
times standard deviations away from the mean values.

4.3 Automobile crash problem

A finite element (FE) model of a c-class passenger car
shown in Fig. 5 is used for offset-frontal impact (OFI) sim-
ulations using the FE code, LS-DYNA. In this example,
metamodels are constructed to estimate the intrusion dis-
tances and average peak accelerations at the floor pan in
OFI scenario for crash duration of 100 ms. There are two
responses of interest (intrusion distance and acceleration)
for this example.

Fig. 4 The clutch assembly (courtesy of Lee and Kwak 2006)
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Table 2 Mean and standard
deviation of the geometric
variables

Variable Mean Standard

deviation

x1 55.29 0.0793

x2 22.86 0.0043

x3 22.86 0.0043

x4 101.60 0.0793

The input-variable vector consists of the geometric
parameters that control the shape (x1 to x4) and wall thick-
ness (x5) of the two side rails (see Fig. 5) as well as
the parameters that define variability or uncertainty in the
material stress–strain relationship (x6), offset distance (x7),
impact speed (x8), and occupant mass (x9). The input vari-
ables are normalized between −1 and +1 in this example.
A more detailed description of this problem can be found in
Rais-Rohani et al. (2006).

5 Numerical procedure

5.1 Design and analysis of computer experiments

For the mathematical problems in (15)–(19) and the struc-
tural mechanics problems in (20), (21), Latin hypercube
sampling (LHS) technique is used to select the locations of
the training points such that the minimum distance between
the design points is maximized. The MATLAB R© routine
“lhsdesign” and “maximin” criterion with a maximum of
100 iterations is used to obtain the locations of the train-
ing points. Random sampling is used to generate 1,000 test
points for a specified training set. It should be noted that for
12-variable problems, 1,000 test points in a single test set
is relatively small. However, since 1,000 different test sets
are used, the mean values of the errors calculated over 1,000
test sets provides a general trend for the errors.

To reduce the effect of random sampling, a varying num-
ber of different training sets are used for the mathemati-
cal examples and the structural mechanics examples (see
Table 3, column 2). The low computational cost allowed
considering repetitive training and test sets. To keep the
computational cost affordable, the number of training sets is
reduced as the number of variables is increased. The number
of the training points in a set is selected as twice the num-
ber of coefficients in a full quadratic PRS. Hence, all the
metamodels are constructed multiple times with the error
estimate being the average value corresponding to multiple
versions (replicates) of the same metamodel. In addition,
for each training set, a different set of test points is used to
reduce the bias in RMSE estimation. The accuracy of meta-
models for the benchmark problems is measured using the
mean and the coefficient of variation (COV) of GMSE and
RMSE error metrics.

For the automobile crash problem, the LHS technique
is also used; however, because of the large computational
cost of each high-fidelity simulation (13 CPU hours for FFI
and 17 CPU hours for OFI using a 32-processor IBM Linux
Cluster with Intel Pentium III 1.266 GHz processors and
607.5 GB RAM), the metamodeling calculations are done
using only a single training set with 100 training points.
A summary of the training and test data sets used in each
problem is provided in Table 3.

To compute the weight factors, the “fmincon” function
(optimizer) of MATLAB based on the sequential quadratic
programming algorithm is used to solve the optimization
problem. Since the optimization routine is a gradient-based
optimizer and the objective function being minimized is not
necessarily convex, a multiple starting point strategy is used
to increase the probability for the solution to converge to a
global optimum.

5.2 Metamodeling techniques

As noted earlier, four different metamodeling techniques
are considered in this study: PRS, RBF, KR, and GP. In the

Fig. 5 Perturbed geometry
of the right side rail at the
upper and lower limits of x1
through x4 x1 

x2 

x3 

x4 

xi
l  xi

u  
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Table 3 Summary of training
and test data used in each
problem

Problem Training sets Number of Design points in Test points

variables a training set in a set

Branin-Hoo 1,000 2 12, 24, 36 1,000

Goldstein-Price 1,000 2 12 1,000

I-beam design 1,000 4 30 1,000

Fortini’s clutch 1,000 4 30 1,000

Hartman 400 6 56 1,000

Extended Rosenbroock 100 and 20 9 110 and 220 1,000

Dixon-Price 20 12 182 1,000

Automobile crash 1 9 100 40

case of Kriging, both constant trend model, KR0, and linear
trend model KR1 are used. Therefore, the ensemble models
are composed of five members.

The PRS metamodel is represented by fully quadratic
polynomial. The RBF metamodel is based on the multi-
quadric formulation with the constant, c = 1. In Kriging
metamodels KR0 and KR1, a Gaussian correlation func-
tion is used. The covariance function in GP metamodel is
selected as the sum of a squared exponential function with
automatic relevance determination and covariance func-
tion for the input-independent noise (i.e., white noise).
The mathematical descriptions of these metamodels are
provided in the Appendix.

6 Results and discussion

In this section root mean square error (RMSE) values eval-
uated at test points are reported. Since the weight factor
selection of the global ensemble model and the proposed
spatial ensemble models used GMSE metric, the RMSE is
the main error metric of interest in this paper. To explore
the effect of dimensionality, example problems with vary-
ing dimension (from two to 12) are considered. Moreover,
to see the effects of the number of training points, the
Branin-Hoo (a 2-D function) and the extended Rosenbrock
(a 9-D function) functions are evaluated with varying num-
ber of training points. With the exception of the automobile

crash example, the mean and coefficient of variation (COV)
values of RMSE over various training and test sets are
computed. The error values are normalized with respect to
the most accurate individual metamodel to provide a better
comparison of different models.

The abbreviated symbols introduced earlier are used to
identify the individual metamodels. The ensemble model
of Acar and Rais-Rohani (2009) based on the minimiza-
tion of the global error measure GMSE is denoted by GLO.
The spatial ensemble of Sanchez et al. (2008) that uses
prediction variance is labeled by SPV. Finally, the spatial
ensembles proposed in Section 3 of this paper are denoted
by SP1 thorough SP4.

6.1 Branin-Hoo function (two-variable)

The comparison of the GMSE of all individual metamodels
as well as the ensemble models for the Branin-Hoo func-
tion is provided in Table 4. At first, 12 points are used in a
training set, and later on the number of points is increased
to 24 and 36 to explore the effects of the number of training
points. The smallest error value in each category is shown in
bold for ease of comparison. According to the average value
of GMSE, RBF is found to be the most accurate individual
metamodel for this function. All the ensemble models are
found to yield smaller GMSE than RBF. When the ensem-
ble models are compared, the spatial ensemble based on the
first and third approaches (SP1 and SP3) yield the smallest

Table 4 Comparison of normalized GMSE of individual and ensemble models for the Branin-Hoo function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

Mean 1.24 1.00 1.03 1.30 1.05 0.82 0.85 0.65 0.78 0.65 0.78

COV 0.39 0.31 0.29 0.31 0.30 0.35 0.36 0.43 0.41 0.43 0.41

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 12
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Table 5 Comparison of normalized RMSE of individual and ensemble models for the Branin-Hoo function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

Mean 1.26 1.00 1.01 1.21 1.03 0.99 0.96 0.97 0.96 1.05 0.99

COV 0.13 0.21 0.36 0.39 0.42 0.27 0.26 0.26 0.27 0.24 0.25

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 12

GMSE overall. With an average GMSE of 0.65, SP1 and
SP3 are 35% more accurate than RBF and about 20% more
accurate than the global ensemble. The GMSE of the spa-
tial ensemble based on prediction variance SPV is larger
than other spatial ensembles, since GMSE and prediction
variance are not closely correlated.

Table 4 shows that the spatial ensembles SP1 and SP3
have the same performance. This is not surprising since the
GMSE error metric is evaluated at the data points, and the
weight factor selection methods of these approaches at the
data points are essentially the same. Similarly, the spatial
ensembles SP2 and SP4 have the same performance due to
the same reason.

Recall that the mean and COV values in Table 4 are cal-
culated based on 1,000 different training sets. Hence, the
mean values of the GMSE over the selected population sam-
ple has a COV of 1/

√
1,000 times that of the native COV

of the GMSE. For instance, the COV of the mean GMSE
for PRS model is 0.39/

√
1,000 = 0.012. This number pro-

vides an estimate of the standard error in the prediction of
mean GMSE over 1,000 training sets, which is fairly small
in this case. For instance, if 100 different training sets were
used instead, then the standard error in the mean GMSE
prediction would be around 4%, which would be quite large.

Instead of the GMSE evaluated at the data points, the
RMSE evaluated at random test points may provide a better

Fig. 6 Boxplots of normalized GMSE over 1,000 training sets for the
Branin-Hoo function. The number of points in a training set is 12

measure of the accuracy of metamodels. The comparison
of the RMSE of all models for the Branin-Hoo function
is given in Table 5. Comparison of the results given in
Tables 4 and 5 reveals that GMSE and RMSE of the indi-
vidual metamodels are similar in terms of both magnitude
and trend. However, GMSE and RMSE behaviors of the
ensemble models are different. Even though the ensemble
models, in particular SP1 and SP3 models, show excellent
performances if measured by GMSE, their performances are
not that impressive if measured by RMSE. In addition, it is
found that the accuracies of the spatial ensembles that use
pointwise cross validation and the accuracy of the spatial
ensemble that uses prediction variance are close.

Table 5 shows that the RBF is the most accurate individ-
ual metamodel for this function. Table 5 also shows that all
ensemble models, except SP3, provide more accurate pre-
dictions than the best individual metamodel RBF. Amongst
all the ensemble models, the spatial ensembles SPV and
SP2 are the most accurate. The COV values provided in the
last row indicate that the standard errors in the prediction
of mean RMSEs over 1,000 training sets are fairly small as
in the case of GMSE. Therefore, for the remaining example
problems, only the mean values of RMSE and GMSE of the
metamodels will be given.

Figures 6 and 7 show the boxplots for the error metrics,
GMSE and RMSE, respectively, corresponding to the 11

Fig. 7 Boxplots of normalized RMSE over 1,000 training and test sets
for the Branin-Hoo function. The number of points in a training set
is 12
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Table 6 Comparison of normalized RMSE of individual and ensemble models for the Branin-Hoo function when the number of points in a training
set is increased

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

Number of points in training set is increased to 24

GMSEa 4.75 3.26 1.00 1.13 1.47 0.85 0.91 0.68 0.84 0.68 0.84

RMSEa 6.92 4.00 1.00 1.07 1.30 0.95 1.08 1.23 1.23 1.69 1.52

Number of points in training set is increased to 36

GMSEa 59.7 31.9 3.90 4.10 1.00 0.79 0.80 0.68 0.75 0.68 0.75

RMSEa 179 77.8 7.66 7.97 1.00 1.40 1.98 2.46 2.86 3.90 4.30

The smallest error value in each category is shown in bold for ease of comparison
aThe mean values of these error metrics over 1,000 training and test sets

different metamodels for the Branin-Hoo function. The box-
plots provide a graphical depiction of how the normalized
value of each metric varies over the range of training sets
used. The bottom and top of each box represent the lower
and upper quartile values, respectively, with the interior
line representing the median. The broken line (whiskers)
extending from each end of the box indicates the extent
of the remaining data relative to the lower and upper quar-
tiles. Here, the maximum whisker length is set at 1.5 times
the inter-quartile range, and the data beyond this limit (if
present) are characterized as outliers and represented by the
+ symbols.

Finally, for the Branin-Hoo function (chosen as the repre-
sentative example for low-dimensional problems), the effect
of increasing the number of training points is explored. The
number of training points is increased from 12 to 24 and
36, and the overall analysis is repeated. The results are
provided in Table 6. Combining the results presented in
Tables 5 and 6, it is seen that as the number of training
points is increased (1) the order of the accuracies of the
metamodels changes, (2) the deviation between the accu-
racies of the metamodels increases, (3) the global ensemble
becomes more accurate than the spatial ensembles, and (4)
the best individual metamodel becomes more accurate than
all ensemble models.

6.2 Goldstein-Price function (two-variable)

For the other two-variable example problem, Goldstein-
Price function, the values of GMSE and RMSE for the
individual and the ensemble of metamodels are listed in
Table 7. For the Goldstein-Price function, the RBF is found
to be the most accurate individual metamodel whether eval-
uated by GMSE or RMSE. Amongst the ensemble models,
the spatial ensembles SP1 and SP3 are found to be the most
accurate if evaluated by the GMSE. The spatial ensemble
SP1 is found to be the most accurate if evaluated by the
RMSE. Notice that the best ensemble model is better than
the best individual metamodel if GMSE is used, while this
is not the case if RMSE is used.

6.3 Four variable structural mechanics problems

The results for the two structural mechanics problems are
given in Tables 8 and 9. When GMSE is the error metric
of interest, RBF is found to be the most accurate indi-
vidual metamodel and the spatial ensembles SP1 and SP3
are found to be the most accurate ensemble models for the
four-variable I-beam problem (see Table 8). For the I-beam
problem, the best ensembles SPV and SP1 are also found

Table 7 Comparison of accuracies of individual and ensemble models for the Goldstein-Price function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.09 1.00 1.11 1.19 1.15 0.91 0.96 0.80 0.91 0.80 0.91

RMSEa 1.07 1.00 1.17 1.19 1.17 1.05 1.05 1.04 1.05 1.06 1.06

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 12
aThe mean values of these error metrics over 1,000 training and test sets
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Table 8 Comparison of accuracies of individual and ensemble models for the four-variable I-beam

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.34 1.00 1.29 1.22 1.04 0.77 0.79 0.59 0.72 0.59 0.72

RMSEa 1.47 1.00 1.41 1.33 1.12 1.03 1.02 1.02 1.04 1.11 1.07

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 30
aThe mean values of these error metrics over 1,000 training and test sets

to be slightly less accurate than the best individual meta-
model RBF.

For Fortini’s clutch problem, RBF is the most accurate
individual metamodel if GMSE is used, while GP is the
most accurate metamodel if RMSE is used (see Table 9).
The spatial ensembles SP1 and SP3 are the most accurate
ensemble models if GMSE is used, whereas the spatial
ensemble SPV is the most accurate metamodel if RMSE is
used. The accuracy of SPV is the same as the accuracy of
the best individual metamodel.

6.4 Harman function (six-variable)

The accuracies of the individual and the ensemble of meta-
models constructed for six-variable Hartman function are
evaluated in Table 10. GP is the most accurate individual
metamodel whether evaluated by GMSE or RMSE. The spa-
tial ensembles SP1 and SP3 are the most accurate ensemble
models if evaluated by the GMSE metric, while the spatial
ensembles SP1 and SP2 is the best ensemble models if eval-
uated by the RMSE metric. Notice that the ensembles GLO,
SPV, SP1, SP2, and SP4 are more accurate than the best
individual metamodel.

6.5 Extended Rosenbrock function (nine-variable)

The accuracies of the individual and the ensemble of meta-
models constructed for nine-variable extended Rosenbrock

function are evaluated in Table 11. RBF is the most accu-
rate individual metamodel whether evaluated by GMSE or
RMSE. The spatial ensembles SP1 and SP3 are the most
accurate ensemble models if evaluated by the GMSE metric,
but the global ensemble GLO is the best model if evaluated
by the RMSE metric. Notice that the global ensemble GLO
is more accurate than the best individual metamodel RBF.

The extended Rosenbrock function is chosen as the repre-
sentative example for high-dimensional problems to analyze
the effect of increasing the training points. The number of
training points is increased from 110 to 220, and the anal-
ysis is repeated. The results are presented in Table 12. It
is seen that as the number of training points is increased,
the performances of the individual as well as the ensemble
models change slightly.

6.6 Dixon-Price function (12-variable)

The accuracies of the individual and the ensemble of meta-
models constructed for the 12-variable Dixon-Price function
are presented in Table 13. PRS is the most accurate indi-
vidual metamodel whether evaluated by GMSE or RMSE.
The spatial ensembles SP1 and SP3 are the most accurate
ensemble models if evaluated by the GMSE metric, but the
global ensemble GLO is the best model if evaluated by the
RMSE metric. Notice that the global ensemble GLO is more
accurate than the best individual metamodel.

To provide an overall picture of the performances of the
ensemble models, Table 14 presents the three most accurate

Table 9 Comparison of accuracies of individual and ensemble models for the Fortini’s clutch

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.67 1.00 4.00 2.11 3.06 0.90 0.80 0.63 0.72 0.63 0.72

RMSEa 1.47 1.13 3.12 1.72 1.00 1.03 1.00 1.06 1.02 1.32 1.14

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 30
aThe mean values of these error metrics over 1,000 training and test sets
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Table 10 Comparison of accuracies of individual and ensemble models for the Hartman function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.25 1.12 1.00 1.04 1.00 0.85 0.80 0.59 0.70 0.59 0.70

RMSEa 1.26 1.11 1.03 1.07 1.00 0.94 0.94 0.92 0.92 1.06 0.98

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 56
aThe mean values of these error metrics over 400 training and test sets

Table 11 Comparison of accuracies of individual and ensemble models for the extended Rosenbrock function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.11 1.00 1.94 1.60 2.24 0.97 0.93 0.62 0.77 0.62 0.77

RMSEa 1.09 1.00 1.97 1.63 2.33 0.98 1.15 1.12 1.16 1.41 1.31

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 110
aThe mean values of these error metrics over 100 training and test sets

Table 12 Comparison of accuracies of individual and ensemble models for the extended Rosenbrock function when the number of training points
is increased from 110 to 220

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.00 1.02 1.95 1.71 2.65 0.97 0.94 0.62 0.78 0.62 0.78

RMSEa 1.01 1.00 1.86 1.65 2.61 0.97 1.13 1.14 1.16 1.43 1.31

The smallest error value in each category is shown in bold for ease of comparison
aThe mean values of these error metrics over 20 training and test sets

Table 13 Comparison of accuracies of individual and ensemble models for the Dixon-Price function

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.00 1.25 2.33 2.43 2.33 0.96 0.97 0.67 0.84 0.67 0.84

RMSEa 1.00 1.25 2.41 2.47 2.41 0.96 1.22 1.17 1.22 1.45 1.41

The smallest error value in each category is shown in bold for ease of comparison. The number of points in a training set is 182
aThe mean values of these error metrics over 20 training and test sets

Table 14 The three most
accurate ensemble models for
the mathematical problems
when the number of training
points is twice the number of
coefficients in PRS2

Note that the individual meta-
models are excluded

Problem GLO SPV SP1 SP2 SP3 SP4

Branin-Hoo (2 var.) – 1 3 1 – –

Goldstein-Price (2 var.) 2 2 1 2 – –

I-beam design (4 var.) 3 1 1 – – –

Fortini’s clutch (4 var.) 2 1 – 2 – –

Hartman (6 var.) 3 3 1 1 – –

Extended Rosenbroock (9 var.) 1 3 2 – – –

Dixon-Price (12 var.) 1 3 2 3 – –
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Table 15 Comparison of accuracies of individual and ensemble models for the intrusion distance of the automobile floor pan under offset frontal
impact

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.43 1.14 1.34 1.00 1.04 0.99 0.95 0.74 0.88 0.74 0.88

RMSEa 1.25 1.10 1.50 1.00 1.07 0.96 0.94 0.97 0.97 1.04 0.98

The smallest error value in each category is shown in bold for ease of comparison
aNote that only a single training set is used for the automobile crash problem

ensemble models for all the mathematical problems consid-
ered in this study. The cases when the number of training
points is taken twice the number of coefficients in PRS2 are
considered. Table 14 shows that the spatial ensemble mod-
els are, in general, better than the global ensemble model
for low dimensional problems, while the global ensemble is
the most accurate model for the high dimensional problems.
The spatial ensemble based on prediction variance mini-
mization (SPV) is usually more accurate than the proposed
spatial ensembles for low-dimensional problems, while the
proposed spatial ensemble SP1 becomes more accurate than
SPV for high-dimensional problems.

6.7 Automobile crash problem

Table 15 presents a comparison of the accuracies of the
individual as well as the ensemble of metamodels for the
intrusion distance of the automobile floor pan under offset
frontal impact. KR1 is found to be the most accurate indi-
vidual metamodel whether evaluated by GMSE or RMSE.
The spatial ensembles SP1 and SP3 are the most accurate
ensemble models if evaluated by the GMSE metric, while
the spatial ensemble SPV is the most accurate metamodel if
evaluated by the RMSE metric.

The accuracies of the individual and the ensemble of
metamodels built for prediction of the acceleration of the
automobile floor pan under offset frontal impact are com-
pared in Table 16. GP is the most accurate individual meta-

model if evaluated by GMSE, while RBF is best individual
metamodel if evaluated by RMSE. The spatial ensembles
SP1 and SP3 are the most accurate ensemble models if
evaluated by the GMSE metric, while the spatial ensem-
ble SP2 is the best metamodel if evaluated by the RMSE
metric.

6.8 Correlation between the pointwise cross validation
error and error at a prediction point

The example problems revealed that even though the spatial
ensemble models show excellent performances in reduc-
ing GMSE (20–40% accuracy improvement), their perfor-
mances in reducing RMSE are not that impressive (at most
4% accuracy improvement). Therefore, it is necessary to
investigate whether the pointwise cross validation error is
a good surrogate for the error at a prediction point. For this
purpose, their correlation is computed for all the individ-
ual metamodels for the Branin-Hoo function (chosen as the
representative example). Table 17 shows that the pointwise
cross validation error is weakly correlated to the error at
a prediction point as manifested by the small mean values
and very large coefficient of variations of the correlation
coefficients. It is found that the pointwise cross valida-
tion error is not a good surrogate for the error at a point,
even though GMSE is a good surrogate for the global error
RMSE. Similar investigations are also conducted for the
other example problems and it is found that the pointwise

Table 16 Comparison of accuracies of individual and ensemble models for the acceleration of the automobile floor pan under offset frontal impact

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

GMSEa 1.65 1.26 1.44 1.02 1.00 0.99 0.99 0.80 0.90 0.80 0.90

RMSEa 1.79 1.00 2.00 1.11 1.18 1.14 0.99 0.98 0.97 1.44 1.16

The smallest error value in each category is shown in bold for ease of comparison
aNote that only a single training set is used for the automobile crash problem
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Table 17 Correlation coefficient of the square of the pointwise cross
validation error and square of the error at a prediction point for the
Branin-Hoo function

PRS RBF KR0 KR1 GP

Meana 0.15 0.16 0.14 0.23 0.16

COVa 1.2 1.2 1.5 0.84 1.3

aComputed over 1,000 training and test sets

cross validation error is only weakly correlated to the error
at a prediction point.

6.9 Evaluating the accuracies of the metamodels
using different error metrics

As noted earlier, the RMSE is the main error metric of
interest in this paper, since the weight factor selection is
based on GMSE metric. If a different error metric than
GMSE was used for weight factor selection, a different
error metric would be the main interest. However, it is also
worthy to evaluate the accuracies of the metamodels using
different error metrics. For this purpose, Branin-Hoo and
the extended Rosenbrock functions are chosen as represen-
tative examples of low-dimensional and high-dimensional
functions, respectively. The accuracies of the metamodels
are evaluated using the following error metrics: the RMSE,
the mean absolute error (MAE), the maximum absolute
error (MAXE), and the coefficient of multiple determination
(R2). The metrics RMSE, MAE, and MAXE are normal-
ized with respect to the most accurate individual metamodel,
while the R2 metric is not (since it is already a normal-
ized value). Table 18 shows for the Branin-Hoo function
that RMSE, MAE, and R2 metrics declares the same meta-
models as being the most accurate one, while MAXE metric
points out a different one. Table 19 shows for the extended
Rosenbrock function that all the error metrics pinpoint RBF
as the most accurate individual metamodel, and the GLO as
the most accurate ensemble model.

7 Conclusions

The advantages of using an ensemble of metamodels instead
of a single metamodel have been investigated by several
researchers. Most of these studies have used global error
measures while forming the ensemble. The generealized
mean square cross validation error (GMSE) has been suc-
cessfully used as a global measure. In addition, the use of
prediction variance, a local error measure, was also pro-
posed to determine the weight factors of individual meta-
models in the ensemble. The main objective of this paper
was to investigate the efficiency of various local error mea-
sures. As an alternative to prediction variance, the use of
pointwise cross validation error was also presented. The
accuracies of the individual models and ensemble models
were tested on various problems with varying complexity:
four mathematical benchmark problems, two structural
mechanics problems and an automobile crash problem (with
two critical responses) requiring high-fidelity simulations
of a complex model with nonlinear responses. Since the
accuracies of metamodels depend on training data (size and
location), test data (size and location), error metric, and the
complexity of the problem, the effects of these parameters
were also investigated. From the results of this study, the
following conclusions could be drawn.

• In general, the spatial ensemble models showed bet-
ter performances than the global ensemble for low-
dimensional problems, while the global ensemble was
the most accurate model for high-dimensional prob-
lems. In addition, the ensemble models were 1–6%
more accurate than the best individual metamodel in
seven out of nine responses appeared in all example
problems.

• The accuracies of the spatial ensembles that use point-
wise cross validation and the accuracy of the spatial
ensemble that uses prediction variance were close. The
difference between the accuracies of the spatial ensem-
ble based on prediction variance and the most accurate
spatial ensemble based on pointwise cross validation

Table 18 Evaluating accuracies of individual and ensemble models for Branin-Hoo function using different error metrics

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

RMSE 1.26 1.00 1.01 1.21 1.03 0.99 0.96 0.97 0.96 1.05 0.99

MAE 1.47 1.00 1.04 1.22 1.09 1.03 0.98 1.00 0.98 1.07 1.01

MAXE 1.02 1.05 1.00 1.25 1.01 0.97 1.00 1.00 1.00 1.05 1.02

R2 0.60 0.74 0.72 0.59 0.70 0.74 0.76 0.75 0.76 0.71 0.75

The best performance in each category is shown in bold for ease of comparison. The number of points in a training set is 12
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Table 19 Evaluating accuracies of individual and ensemble models for extended Rosenbrock function using different error metrics

Individual metamodels Ensemble models

PRS RBF KR0 KR1 GP GLO SPV SP1 SP2 SP3 SP4

RMSE 1.09 1.00 1.97 1.63 2.23 0.98 1.15 1.12 1.16 1.41 1.31

MAE 1.09 1.00 2.00 1.65 2.40 0.98 1.14 1.13 1.17 1.34 1.27

MAXE 1.03 1.00 2.00 1.52 2.19 0.96 1.30 1.18 1.21 1.76 1.60

R2 0.77 0.81 0.27 0.51 0.10 0.82 0.75 0.77 0.75 0.63 0.68

The best performance in each category is shown in bold for ease of comparison. The number of points in a training set is 110

error were at most 4% over all problems. It is worthy to
note that this observation is dependent on the accuracy
criterion used.

• While computing the weight factors at a prediction
point from the weight factors at data points, scaling the
weight factors at all the data points proportional to the
square of the distance between the prediction point and
the data point was found to lead to around 2–10% more
accurate predictions than assigning the weight factors
at a prediction point equal to the weight factors of the
closest data point.

• While computing the weight factors at data points,
selecting the weight factor of the individual metamodel
with smallest GMSE as one, and assigning zero weights
to other metamodels is found to be better than selecting
the weight factors at the data points inversely propor-
tional to the square of the cross-validation errors to
reduce GMSE errors. This practice resulted in 1–4%
reduction in RMSE.

• Even though the spatial ensemble models showed excel-
lent performances in reducing GMSE (20–40% accu-
racy improvement), their performances in reducing
RMSE were not that impressive (at most 4% accuracy
improvement). This behavior can be explained by the
finding of this paper that the pointwise cross validation
error is not a good surrogate for the error at a point,
even though GMSE is a good surrogate for the global
error.

• The effect of the training points was also investigated.
For the Branin-Hoo function (chosen as representative
example for low dimensional problems), it was found
that as the number of training points was increased (1)
the order of the accuracies of the metamodels changed,
(2) the deviation between the accuracies of the meta-
models increased, (3) the global ensemble became more
accurate than the spatial ensembles, and (4) the best
individual metamodel became more accurate than all
ensemble models. For the extended Rosenbrock func-
tion (chosen as representative example for high dimen-
sional problems), it was observed that as the number of
training points was increased, the performances of the

individual as well as the ensemble models changed only
slightly.

• The accuracies of the metamodels were evaluated using
different error metrics for the Branin-Hoo and the ex-
tended Rosenbrock functions. It was found that RMSE,
MAE, and R2 metrics indicates the same metamodel
as the most accurate models, while MAXE metric may
lead to a different one.
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Appendix: Description of selected metamodeling
techniques

A brief overview of the mathematical formulation of PRS,
RBF, KR, and GP metamodeling techniques is provided
here. This appendix is close to the appendix of the paper
by Acar and Rais-Rohani (2009).

Polynomial response surface approximations, PRS

The most commonly used PRS model is the second-order
model in the form of a second-degree algebraic polynomial
function as

f̂ (x) = b0 +
L∑

i=1

bi xi +
L∑

i=1

bii x2
i +

L−1∑

i=1

L∑

j=i+1

bi j xi xj (22)

where f̂ is the response surface approximation of the actual
response function, f , L is the number of variables in the
input vector x, and b0, bi , bii , bi j are the unknown co-
efficients to be determined by the least squares technique.

Radial basis function, RBF

RBF methods were originally developed to approximate
multivariate functions based on scattered data. For a data
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set consisting of the values of input variables and response
values at n sampling points, the true function f (x) can be
approximated as

f̃ (x) =
n∑

i=1

λiφ(‖x − xi‖) (23)

where x is the vector of input variables, xi is the vector
of input variables at the ith sampling point, ‖x − xi‖ =√

(x − xi )T (x − xi ) is the Euclidean norm representing the
radial distance, r from design point x to the sampling point
or center xi , φ is a radially symmetric basis function, and
λi , i = 1,n are the unknown interpolation coefficients.
Equation (23) represents a linear combination of a finite
number of radially symmetric basis functions. Some
of the most commonly used RBF formulations include:
φ(r) = r2 log(r) (thin-plate spline); φ(r) = e−αr2

, α > 0
(Gaussian); φ(r) = √

r2 + c2 (multiquadric); and φ(r) =
1/

√
r2 + c2 (inverse multiquadric). The parameter c in the

multiquadrics is a constant. If the r values are normalized to
the range of (0,1), then 0 < c ≤ 1. The choice of c = 1 is
found to be suitable for most function approximations. The
feature that makes these functions excellent candidates for
φ is not simply their radial symmetry but their smoothness
and certain properties of their Fourier transform (Buhmann
2003). In this study, the multiquadric formulation of RBF
is chosen because of its prediction accuracy and its com-
monly linear and possibly exponential rate of convergence
with increased sampling points.

Given the design coordinates of n sampling points and
associated responses, the unknown coefficients in (23) are
found by minimizing the residual or the sum of the squares
of the deviations expressed as

R =
n∑

j=1

[
f (x j ) −

n∑

i=1

λiφ(‖x j − xi‖)
]2

(24)

Expressed in matrix form, (24) appears as

[A]{λ} = { fff } (25)

where [A] = [φ‖xxx j − xxxi‖], j = 1,n; i = 1,n, {λ}T =
{λ1, λ2, ...λn}T , and { fff }T ={ f (x1), f (x2), ... f (xn)}T . The
coefficient vector λ is obtained by solving (25).

Kriging, KR

The basic assumption of KR is the estimation of the
response in the form

f (x) = p(x) + Z(x) (26)

where f (x) is the response function of interest, p(x) is a
known polynomial that globally approximates the response,

and Z(x) is the stochastic component that generates devia-
tions such that the Kriging model interpolates the sampled
response data. In this work, when p(x) is chosen as a con-
stant, the metamodel is denoted with KR0, and when p(x)
is chosen as a linear polynomial, the metamodel is denoted
with KR1.

The stochastic component has a mean value of zero and
covariance of

COV
[
Z(xi ), Z(xj )

] = σ 2R
[
R(xi , xj )

]
(27)

where R is N × N correlation matrix if N is the number
of data points, R(xi , x j ) is correlation function between the
two data points xi and x j . Mostly, the correlation function
is chosen as Gaussian, that is,

R(θ) =
L∏

k=1

exp
(−θkd2

k

)
(28)

where L is the number of variables, dk = xi
k − x j

k is
the distance between the kth components of the two data
points xi and x j , and θk are the unknown parameters to be
determined.

Once the correlation function has been selected, the
response f is predicted as

f̂ (x) = β̂ + rT(x)R−1(f − β̂ p) (29)

where rT(x) is the correlation vector of length N between a
prediction point x and the N sampling points, f represents
the responses at the N points and p is an L-vector of ones
(in the case that p(x) is taken as a constant). The vector r
and scalar β̂ are given by

rT(x) = [
R(x, x1), R(x, x2), · · · , R(x, x N )

]T
,

β̂ = (pTR−1p)−1pTR−1f (30)

The variance of the output model (which is different than
the variance of the sampled output) can be estimated as

σ̂ 2 = (f − β̂ p)T R−1(f − β̂ p)

N
(31)

The unknown parameters θk can be estimated by solving
the following constrained maximization problem (Simpson
et al. 2001)

Max 	(
) = − [
N ln(σ̂ 2) + ln |R|]

2

s.t. 
 > 0 (32)

where � is the vector of unknown parameters θk , and both
σ̂ and R are functions of �.

In this work, the MATLAB Kriging toolbox developed
by Lophaven et al. (2002) is used.
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Gaussian process, GP

Gaussian process assumes that the output variables fN ={
fn

(
x1

n , x2
n , · · · , x L

n

)}N
n=1 are related to each other with a

Gaussian joint probability distribution

P( fN |CN , X N )

= 1√
(2π)N |CN | exp

[
−1

2
( fN − μ)T C−1

N ( fN − μ)

]

(33)

where X N = {xn}N
n=1 are N pairs of L-dimensional input

variables xn = (x1
n , x2

n , · · · , x L
n ), CN is the covariance

matrix with elements of Ci j = C(xi , x j). μ is the mean
output vector. GP estimates the output at a prediction point
xp = (x1

p, x2
p, · · · , xL

p) as

f̂ (xp) = kT C−1
N fN (34)

where k = [C(x1, x p), · · · , C(xN , x p)]. One of the nice
properties of the GP is that the standard deviation at the
prediction point is readily available without a requirement
of any extra simulations. This standard deviation can be
utilized as an error measure and can be calculated from

σ f̂ (xp)
= κ − kT C−1

N k (35)

where κ = C(x p, x p).
We notice from (34) that the GP prediction depends on

the covariance matrix CN . The elements of this matrix are
calculated from

Ci j = θ1 exp

⎡

⎣−1

2

L∑

l=1

(
x (l)

i − x (l)
j

)2

r2
l

⎤

⎦ + θ2 (36)

Ci j = θ1 exp

⎡

⎣−1

2

L∑

l=1

(
x (l)

j − x (l)
j

)2

r2
l

⎤

⎦ + θ2 + δi jθ3 (37)

where θ1, θ2, θ3, and rl(l = 1, 2, ...., L) are called “hyper-
parameters”. Here δi j is the Kronecker delta and θ3 is
an independent noise parameter. The hyperparameters are
selected so as to maximize the logarithmic likelihood that
the model prediction matches the training response data.
The logarithmic likelihood function L is defined as

L = −1

2
log |CN |− 1

2
f T
N C−1

N fN − N

2
log 2π+ln P(θ) (38)

where P(θ ) is the prior distribution of the hyperparameters.
In most of the applications, there is no prior knowledge of
the values of the hyperparameters, so the prior distribution
is uniform. Then, the last term of (38), ln P(θ), is a constant
and can be taken as zero for the purpose of optimization, as
done in this work.

The covariance function given in (36) defines the inter-
polation mode of the GP metamodel, that passes through
all the training data points exactly. On the other hand, (37)
defines the regression mode of the model, which allows
building smoother surfaces for problems with noisy data.

With the noise of the output values filtered out, the pre-
dicted surface becomes less complex and may not pass
through all the training points; however, it provides a
better prediction at the non-training points. In this work,
the Gaussian process code from Rasmussen and Williams
(2006) is used.
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