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This paper presents amethodology to investigate the effects of structural tests on aircraft safety. In particular, the

paper focuses on the effect of the number of coupon tests and structural element tests on the final distribution of

failure stress. The mean failure stress is assumed to be predicted by a failure criterion (e.g., Tsai-Wu), and the initial

distribution of this mean failure stress reflects the uncertainty in the analysis procedure that uses coupon test data to

predict structural failure. In addition to the uncertainty in the mean failure stress, there is also uncertainty in its

variability due to the finite number of coupon tests. Bayesian updating is used to update the failure stress distribution

basedon results of the element tests.AMonteCarlo simulation of a large number of uncertainties and thepossible test

results are used to obtain the probability of structural failure in a certification test or in actual flight. Incorporating

the Bayesian updating into the Monte Carlo simulation loop is computationally prohibitive; therefore, a surrogate

procedure is devised to overcome the computational challenge. A structural design following the Federal Aviation

Administration regulations is considered, and the tradeoffs between the number of tests and the weight and

probability of failure in the certification test and in service are explored. To make this tradeoff analysis

computationally affordable, response surface approximations are used to relate the knockdown factor to the

probability of failure in service and in the certification test. It is found that it is possible to do a simultaneously

probabilistic design and satisfy the Federal Aviation Administration regulations for deterministic design.

Nomenclature

A = load-carrying area of a small part of the overall
structure

Abuilt-av = fleet average value of the built area after element
tests

Abuilt-av-c = built value of the load-carrying area after coupon
tests

ACOV = coefficient of variation of the load carrying area
between different companies

bt = bound of error in the design thickness et
bw = bound of error in the design width ew
ccf = coefficient of variation of failure stress calculated

from coupon tests
�cef�calc = coefficient of variation of failure stresses calculated

from coupon tests
E� � = expected value (i.e., mean value)
eef = error associated with failure criterion used while

predicting failure in the structural element tests
ef = error in predicting failure of the entire structure in

certification or proof test
ep = error in load calculation
et = error in the design thickness due to construction

errors

etotal = total error
ew = error in the design width due to construction errors
e� = error in stress calculation
kB = tolerance limit factor
kd = knockdown factor at coupon level due to use of

conservative (B basis) material properties
kf = additional knockdown factor at the structural level

(nominal value is taken as 0.95 here)
k2d = ratio between the unidirectional failure stress and

the failure stress of a ply in a laminate under
combined loading

nc = number of coupon tests
ne = number of element tests
Pcalc = calculated design load
Pd = true design load based on the Federal Aviation

Administration specifications (e.g., gust load
specification)

Pf = probability of failure (in service)
SF = Federal Aviation Administration load safety factor

of 1.5
t = thickness of a small part of the overall structure
tdesign = design thickness when all errors exist
vt = variability in the built thickness
vw = variability in the built width
w = width of a small part of the overall structure
wdesign = design width when all errors exist
� = stress in a small part of the overall structure
�a = allowable stress (B basis) of the entire structure
�ca = allowable stress (B basis) from coupon testing
�cf = failure stress from coupon testing
�ea = allowable stress (B basis) from element testing
�ef = failure stress of the structural element
��ef�calc = calculated (or predicted) element failure stress

��ef�test = element failure stress measured in tests

��ef�upd = updated value of the calculated (or predicted)
element failure stress

��ef�upd = most likely value of the updated distribution of
mean failure stresses

�f = failure stress of the overall structure
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Subscripts

built-av = average built value that differs from the design
value due to errors in construction

built-var = actual built value that differs from the average built
value due to variabilities in construction

calc = calculated (or predicted) value that differs from the
design value due to errors in design

design = design value
true = true value (error-free value)

I. Introduction

T HE safety of aircraft structure can be achieved by designing the
structure against uncertainty and by taking steps to reduce the

uncertainty. Safety factors and knockdown factors are examples of
measures used to compensate for uncertainty during the design
process. For instance, uncertainty due to the limited number of
coupon and element tests is often considered by a knockdown factor,
which reduces the measured/calculated failure stress to compensate
for the uncertainty. Uncertainty reduction measures (URMs), on the
other hand, may be employed during the design process or later on
throughout the operational lifetime. Examples of URMs for aircraft
structural systems include structural testing, quality control,
inspection, health monitoring, maintenance, and improved structural
analysis and failure modeling.

In reliability-based design, all uncertainties that are available at the
design stage are considered in calculating the reliability of the
structure. However, the actual aircraft is much safer, because after
design, it is customary to engage in vigorous uncertainty reduction
activities using various URMs. However, so far, these URMs are
heuristically applied without knowing their contributions to the
structural reliability. It would be, therefore, beneficial to quantify the
contribution of URMs to reliability and to include the effects of these
plannedURMs in the design process. It may even be advantageous to
design the URMs together with the structure, trading off the cost of
more weight against additional tests or more refined analytical
simulations. To incorporate URMs into the design process, it is
important to model their effect on the safety of the system, which is a
challenging task, because many URMs will occur in the future. In
this paper, the effect of structural tests (coupon tests and element
tests) on structural reliability is investigated. In the building block
testing framework [1], the former is performed before design, while
the latter is performed after design. If a structural element fails the
element test, redesign is required to satisfy the element test.

In reliability-based design, the contribution of each URM can be
represented by a distribution. In the case of predesign tests (e.g.,
coupon tests) to estimate failure stress, since the tests have already
been performed, the distribution of failure stress is known in terms of
distribution parameters (e.g., mean and variance). In the case of
future tests (e.g., element tests), however, since the tests are not yet
performed, the distribution parameters are uncertain, and the same is
true for other future URMs. In this case, these parameters should be
considered as randomvariables. Then, a future URMcan bemodeled
as a distribution of distributions.

There have been numerous studies [e.g., [2–16]] on computing
safety of aircraft and their components. In these studies, first, all the
uncertainties are quantified and assumed to be fixed. Then the reli-
ability of the aircraft structure is computed on the basis of these fixed
uncertainties. These studies did not consider the effects of URMs.
Recently, several attempts have been made in considering the effect
of URMs on safety and reliability. For instance, Dhillon et al. [17]
noted for industrial robots that there has been substantial work on
incorporating URMs into safety and reliability evaluation. Similarly,
the authors showed that quality control [18], improved failure-
prediction models [19,20] can lead to substantial reduction of failure
probability of aerospace structures. More recently, Li et al. [21]
considered systems that have interval uncertainty in their inputs.
They developed a multiobjective optimization model to obtain
optimal reduction of parameter uncertainty that provide the maxi-
mum improvement in system performance with the least amount of
investment.

There are few papers in the literature that address the effect of tests
on structural safety. Jiao and Moan [22] investigated the effect of
proof tests on structural safety using Bayesian updating. They
showed that the proof testing reduces theuncertainty in the strength of
a structure, thereby leading to substantial reduction in probability of
failure. Jiao and Eide [23] explored the effects of testing, inspection,
and repair on the reliability of offshore structures. Beck and
Katafygiotis [24] addressed the problem of updating a probabilistic
structural model using dynamic test data from structure by using
Bayesianupdating.Similarly, Papadimitriou et al. [25] usedBayesian
updatingwithin a probabilistic structural analysis tool to compute the
updated reliability of a structure using test data. They found that the
reliabilities computed before and after updating were significantly
different. We aim to extend the work of these earlier authors in
simulating all possible outcomes of future tests, which would allow
the designer to design the tests together with the structure.

The objectives of the present paper are 1) to explore modeling the
effects of past and future tests on reducing the uncertainty and
narrowing the probability distribution of uncertainty in structural
failure predictions and 2) to study their effects on structural design.
Since the distribution type of failure stress is unknown a priori, we
use one of the most general distribution types, the Johnson
distribution [26], which can be represented by four quantiles. As
mentioned previously, since the distribution parameters of future
tests are uncertain, the four quantiles of failure stress distribution are
modeled as normal distributions. Then, the uncertainty of these four
quantiles will depend on the number of tests; more tests will reduce
the variance of quantile distributions. Then, the critical information
for tradeoff analysis will be howmuch uncertainty can be reduced by
a given number of future tests.

In the paper, we investigate in particular the effect of the number of
coupon and future element tests on the final distribution of the failure
stress. It is assumed that the mean value of the failure stress (mean
over a large number of aircraft) is obtained from a failure criterion
(e.g., Tsai-Wu theory [27]) using the results of coupon tests. The
initial uncertainty in thismean failure stress reflects the confidence of
the analytical model in this prediction. The Bayesian updating
technique is then used to update the mean failure stress distribution
from the possible results of the future element tests. In addition, there
is the variability of the failure stress from one aircraft to another or
from one structural component to another.

Finally, we consider structural design following the Federal
Aviation Administration (FAA) regulations. The FAA regulations
(FARs) state the use of a load safety factor of 1.5, conservative
material properties (using B-basis allowables) and conservative
design practice at each level (e.g., using knockdown factors smaller
than one). We show tradeoffs between the number of tests and the
weight of the structure for a given probability of failure. These could
provide tradeoffs between additional tests and heavier weight,
depending on the cost of testing and the cost of carrying the
additional weight.

Our earlier research on this subject includes investigations of the
effects of explicit and implicit safety measures [28,29] and effects of
URMs [18–20] on aircraft structural safety. In these studies, the
effects of coupon tests and the certification test are included in
the analysis, while element tests are not considered. In addition, the
effect of element tests on failure stress distribution is analyzed using
Bayesian updating [30]. The main contributions of this paper are the
following:

1) We propose a methodology to investigate the effects of future
tests on safety.

2) We devise a Monte Carlo simulation (MCS) procedure to make
it computationally affordable. For that purpose, Bayesian updating is
not directly integrated to the main reliability assessment loop but,
rather, performed aside. In addition, response surface approxima-
tions (RSAs) are used to relate the knockdown factor to the
probability of failure in service and in the certification test.

The paper is organized as follows. Section II presents a list of
assumptions, simplifications, and limitations of this work. Section III
discusses the safety measures taken during aircraft structural de-
sign. Section IV presents a simple uncertainty classification that
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distinguishes uncertainties that affect an entire fleet (errors) from the
uncertainties that vary from one aircraft to another in the same fleet
(variability). Section V discusses the modeling of errors and vari-
ability throughout the design and testing of an aircraft. Section VI
discusses probability of failure estimation via MCSs. Finally, the
results and the concluding remarks are given in the last two sections
of the paper, respectively.

II. Assumptions, Simplifications, and Limitations

The major assumptions, simplifications, and limitations of this
study can be listed as follows:

1) A small region in a small structural part of an aircraft is
considered for design. It is assumed that the small region can be
characterized by a thickness and a width.

2) The small region is assumed to be designed against a static point
stress failure. Other failuremechanisms (e.g., fatigue, corrosion, etc.)
are not considered.

3) Safety measures for protection against uncertainties are
restricted to the use of a load safety factor and conservative material
properties, while other measures, such as redundancy, are left out.

4) Uncertainty analysis is simplified by classifying uncertainties
into two parts: errors and variability.

5) It is very rare to have data on the probability distribution of
errors. The errors are assumed to follow uniform probability
distribution with known bounds based on experience. The uniform
distribution is based on the principle of maximum entropy.

6) It is assumed that the aircraft companies can predict stresses
very accurately so that error in stress prediction is taken as zero.

7) The probability distributions of variabilities are also selected
based on previous work [19,20,28–30].

8) The quantiles of themean failure stress distribution are assumed
to follow normal distribution.

9) It is assumed that a large number of nominally identical aircraft
are designed by many aircraft companies (e.g., Airbus, Boeing,
Embraer, Bombardier, etc.), with the errors being fixed for each
aircraft.

10) Aircraft companies are assumed to follow conservative design
practices at each stage of the design process. We assumed that these
conservative practices can be simulated by using an additional
knockdown factor kf over the FARs. The nominal value of kf is taken
as 0.95.

11) Every aircraft in a fleet is assumed to experience limit load
throughout its service life. This assumption will lead to very
conservative failure probability estimations.

12) The mean failure stress is assumed to be predicted by a failure
criterion using the results of coupon tests.

13) The structural test pyramid that has many layers (e.g., coupon
tests, element tests, part tests, subassembly tests, assembly tests, and
the certification test) is simplified to a three-level test pyramid com-
posed of coupon tests, element tests, and the certification test only.

14) The nominal value for the material coupon tests is assumed to
be 50.

15) The nominal value for the structural element tests is assumed
to be 3.

16) For the redesign of elements based on test results, we could not
find published data, so we devised a common sense approach. We
assumed that, if the B-basis value obtained after element tests �ea
is more than 5% higher than the B-basis value obtained from
coupon tests�ca, then the load-carrying area is reduced. If theB-basis
value obtained after element tests is more than 2% lower than the
B-basis value obtained from coupon tests, the load-carrying area is
increased.

17) It is assumed that structural element tests are conducted for a
specified combination of loads corresponding to critical loading such
that the failure surface is boiled down to a single failure stress value.
Note that the failure surface is a surface in the space of stresses
defining the failure state. When the stress state lies on the failure
surface, the material is assumed to fail.

18) The information from the element tests is assumed to be used
to update the failure stress distribution by performing Bayesian

updating. In practice, simpler procedures are used (such as selecting
the lowest value of test results), so this assumption will tend to
overestimate the beneficial effect of element tests.

III. Safety Measures

The safety of aircraft structures is achieved by designing these
structures to operate well in the presence of uncertainties and taking
steps to reduce the uncertainties. The following gives a brief descrip-
tion of these safety measures.

A. Safety Measures for Designing Structures Under Uncertainties

1. Load Safety Factor

In transport aircraft design, FARs state the use of a load safety
factor of 1.5 (FAR 25.303 [31]). That is, aircraft structures are
designed to withstand 1.5 times the limit load without failure.

2. Conservative Material Properties

To account for uncertainty in material properties, FARs state the
use of conservative material properties (FAR 25.613 [32]). The
conservative material properties are characterized as A-basis or
B-basis material property values. Detailed information on these
values is provided in volume 1, chapter 8 of the Composite Materials
Handbook [1]. In this paper, we use B-basis values. The B-basis
value is determined by calculating the value of a material property
exceeded by 90% of the population with 95% confidence. The basis
values are determined by testing a number of coupons selected
randomly from amaterial batch. In this paper, the nominal number of
coupon tests is taken to be 50. In Sec. VII, the effect of the number of
coupon tests will be explored.

Other measures, such as redundancy, are not discussed in this
paper.

B. Safety Measures for Reducing Uncertainties

Improvements in accuracy of structural analysis and failure
prediction of aircraft structures reduce errors and enhance the level of
safety. These improvements may be due to better modeling tech-
niques developed by researchers, more detailed finite-element
models made possible by faster computers, or more accurate failure
theories. Similarly, the variability in material properties can be
reduced through quality control and improved manufacturing
processes. Variability reduction in damage and aging effects is
accomplished through inspections and structural health monitoring.
The reader is referred to the papers by Qu et al. [18] for effects of
variability reduction, Acar et al. [19] for effects of error reduction,
and Acar et al. [20] for effects of reduction of both error and
variability.

In this paper, we focus on error reduction through aircraft
structural tests, while the other URMs are left out for future studies.
Structural tests are conducted in a building block procedure
(volume I, chapter 2 of [1]). First, individual coupons are tested to
estimate the probability distribution of failure stress. The mean
structural failure is estimated based on failure criteria (such as Tsai-
Wu), and this estimate is further improvedusing element tests. Then a
subassembly is tested, followed by a full-scale test of the entire
structure. In this paper, we use the simplified three-level test
procedure depicted in Fig. 1. The coupon tests, the structural element
tests, and the final certification test are included.

The first level is the coupon tests, where coupons (i.e., material
samples) are tested to estimate failure stress. The FAR 25-613
requires aircraft companies to perform “enough” tests to establish
design values of material strength properties (A-basis or B-basis
value). As the number of coupon tests increases, the errors in the
assessment of the material properties are reduced. However, since
testing is costly, the number of coupon tests is limited to about 100 to
300 for A-basis calculation and at least 30 for B-basis value
calculation.

At the second level of testing, structural elements are tested. The
main target of element tests is to reduce errors related to failure
theories (e.g., Tsai-Wu) used in assessing the failure load of the
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structural elements. In this paper, the nominal number of structural
element tests is taken as three.

At the uppermost level, certification (or proof) testing of the
overall structure is conducted (FAR 25-307 [33]). This final
certification or proof testing is intended to reduce the chance of
failure in flight due to errors in the structural analysis of the overall
structure (e.g., errors in finite-element analysis and errors in failure
mode prediction). While failure in flight often has fatal conse-
quences, certification failure often has serious financial implications.
So we measure the success of the URMs in terms of their effect (a
reduction or an improvement) on the probability of failure in flight
and in terms of their effect on the probability of failure in certification
test (PFCT). For instance, structural tests lead to a narrower spread of
the probability density function (PDF) of the mean failure stress,
thereby reducing the probability of failure in service and in the
certification test.

IV. Structural Uncertainties

A good analysis of different sources of uncertainty in engineering
simulations is provided by Oberkampf et al. [34,35]. To simplify the
analysis, we use a classification that distinguishes between errors
(uncertainties that apply equally to the entire fleet of an aircraft
model) and variability (uncertainties that vary for the individual
aircraft) as we used in earlier studies [28,29]. The distinction, pre-
sented in Table 1, is important because safetymeasures usually target
either errors or variability. While variabilities are random uncer-
tainties that can be readily modeled probabilistically, errors are fixed
for a given aircraft model (e.g., Boeing 737-400), but they are largely
unknown. Since errors are epistemic, they are often modeled using
fuzzy numbers or possibility analysis [36,37].Wemodel errors prob-
abilistically by using uniform distributions, because these distrib-
utions correspond to minimum knowledge or maximum entropy.

Errors are uncertain at the time of the design, but theywill not vary
for a single structural component on a particular aircraft, while the
variabilities vary for individual structural components. To model
errors, we assume that we have a large number of nominally identical
aircraft being designed (e.g., Airbus, Boeing, Embraer, Bombardier,
etc.), with the errors being fixed for each aircraft.

V. Modeling Errors and Variability

To compute the probability of failure of aircraft structures, it is
required to simulate coupon tests, element tests, and the certification
test where the errors and variability must be carefully introduced. At
the coupon level, we have errors in estimating material strength
properties from coupon tests, due to limited number of coupon tests.
At the element level, we have errors in structural element strength
predictions due to the inaccuracy of the failure criterion used. At the
full-scale structural level, we have errors in structural strength
predictions, error in load calculation, and error in construction.
Similarly, we havevariability in loading, geometry, and failure stress.
The following subsections describe modeling of these errors and
variability in detail.

A. Errors in Estimating Material Strength Properties
from Coupon Tests

Coupon tests are conducted to obtain the statistical character-
ization ofmaterial strength properties, such as failure stress, and their
corresponding design values (A basis or B basis). With a finite
number nc of coupon tests, the statistical characterization involves
errors. Therefore, the calculated values of the mean and the standard
deviation of the failure stress will be uncertain. We assume that the
failure stress follows a normal distribution, so the calculated mean
also follows normal distribution. In addition, when nc is larger than
25, the distribution of the calculated standard deviation tends to be
normal. Then, the calculated failure stress can be expressed as

��cf�calc � normal �� ��cf�calc; std��cf�calc� (1)

where the calculated mean and the calculated apparent standard
deviation can be expressed using the first-order Taylor series as

� ��cf�calc � normal

�
��f;

std��f������
nc
p

�
(2)

std��cf�calc � normal

�
std��f�

���������������������������������������������������
1�

�������������������������������������
�nc � 3�=�nc � 1�

p
2

s

std��f�

��������������������������������������������������
1 �

�������������������������������������
�nc � 3�=�nc � 1�

p
2

s �
(3)

where ��f and std��f� are, respectively, the true values of the mean
and standard deviation of failure stress. Note that Eqs. (1–3) describe
a random variable coming from a distribution (normal) for which the
parameters are also random. In this paper, this will be referred to as a
distribution of distributions.

The allowable stress at the coupon level, �ca, is computed from the
mean failure stress calculated at the coupon level, � ��cf�calc, by using a
knockdown factor kd as

�ca � kd� ��cf�calc (4)

The knockdown factor kd is specified by the FARs. For instance, for
the B-basis value of the failure stress, 90% of the failure stresses
(measured in coupon tests) must exceed the allowable stress with
95% confidence. The requirement of 90% probability and 95%
confidence is responsible for the knockdown factor kd in Eq. (4). For
normal distribution, the knockdown factor depends on the number of
coupon tests and the coefficient of variation (COV) of the failure
stress as

Table 1 Uncertainty classification

Type of uncertainty Spread Cause Remedies

Error (mostly
epistemic)

Departure of the average fleet
of an aircraft model

(e.g., Boeing 737-400) from an ideal

Errors in predicting structural failure,
construction errors, and deliberate changes

Testing and simulation to improve
the mathematical model and the solution

Variability (aleatory) Departure of an individual aircraft
from fleet level average

Variability in tooling, manufacturing process,
and flying environment

Improvement of tooling
and construction, and quality control

Fig. 1 Simplified three-level tests.
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kd � 1 � kB�ccf�calc (5)

where �ccf�calc is the COVof failure stress calculated from coupon
tests, and kB is called the tolerance limit factor. The tolerance limit
factor kB is a function of the number of coupon testsnc, as given in [1]
(volume 1, chapter 8, page 84) as

kB � 1:282� exp

�
0:958 � 0:520 ln �nc� �

3:19

nc

�
(6)

The variation of the tolerance limit factor with the number of coupon
tests is depicted in Fig. 2. It is clear that the reduction in kB (or
increase in kd) is relatively small for a large number of coupon tests,
but the reduction of kB is significant for a small number of coupon
tests.

B. Errors in Structural Element Strength Predictions

The second level in the testing sequence is structural element
testing, where structural elements are tested to validate the accuracy
of the failure criterion used (e.g., Tsai-Wu). Here, we assume that
structural element tests are conducted for a specified combination of
loads corresponding to critical loading. For this load combination,
the failure surface can be boiled down to a single mean failure stress
��ef, where the subscript e stands for structural element tests. The
mean failure stress of the elements ��ef can be predicted from the
mean failure stress of the coupons ��cf through

� ef � k2d ��cf (7)

where k2d is the ratio between the unidirectional failure stress and the
failure stress of a ply in a laminate under combined loading. If the
failure theory used to predict the failure was perfect, and we
performed an infinite number of coupon tests, then we could predict
k2d exactly, and the actual value would vary only due to material
variability. However, neither the failure theory is perfect nor the
infinite tests performed, so the calculated value of k2d will be

�k2d�calc � �1 � eef�k2d (8)

where eef is the error in the failure theory. Note that the sign in front
of the error term is negative, sincewe consistently formulate the error
expressions such that a positive error implies a conservative decision.
Then, the calculated value of the mean failure stress at the element
level can be related to the calculated value of themean failure stress at
the coupon level via

��ef�calc � �k2d�calc� ��cf�calc � �1 � eef�k2d� ��cf�calc (9)

Here, we take k2d � 1 for simplicity. So we have

��*ef�calc � �1 � eef�� ��cf�calc (10)

The initial distribution of � ��ef�calc is obtained by estimating the
distribution of the error eef and using the results of the coupon tests
� ��cf�calc. The information from the element tests is used to update the

failure stress distribution by performing Bayesian updating (see
Appendix A for details). The initial distribution of � ��ef�calc is
uniform for a given set of coupon test results. In practice, simpler
procedures are often used, such as selecting the lowest failure stress
from element tests. Therefore, our assumption will tend to over-
estimate the beneficial effect of element tests.

If Bayesian updating was used directly within the mainMCS loop
for design load-carrying area determination, the computational cost
would be very high. Instead, Bayesian updating is performed outside
of the MCS loop for a range of possible test results. It is important to
note that the error definition used in the Bayesian updating code is
different from the error definition used in the MCS code. In the
Bayesian updating code, the error is measured from the calculated
values of the failure stress, � ��f�calc, such that the true and the
calculated values of the failure stress are related through � ��f�true�
�1� eef�B�� ��f�calc. In the MCS code, on the other hand, the error is
measured from the true value of the failure stress such that the true
and the calculated values of the failure stress are related through
� ��f�calc � �1 � eef�� ��f�true. Therefore, while the Bayesian updating
detailed inAppendixA is implemented, a randomerror eef generated
in the main MCS code is transferred to eef�B � �1=�1 � eef�� � 1
while running the Bayesian updating code. This complication
reflects the fact that, in the MCS loop, we consider many possible
element analysis and test results, while the engineer carrying the
element tests has a unique set of computations and test results.

The allowable stress based on the element test is calculated from

�ea � kd� ��ef�updatedcalc (11)

where � ��ef�updatedcalc is the most likely value (maximum PDF location)
of the updated distribution of themean failure stress, starting from the
initial distribution in Eq. (10) and updated by ne numbers of element
tests. Recall that the initial distribution of � ��ef�calc is obtained by the
estimate of the error eef and using the results of coupon tests � ��cf�calc.
Since the results of coupon tests are random, the initial distribution is
also random, thereby the allowable stress �ea is also random.

Combining Eqs. (4), (10), and (11), we have

�ea � �1 � eef��ca (12)

Note that �ea is the updated value of the allowable stress. From this
point on, updated distribution of the failure stress is used in our
calculations. The superscript “updated” is dropped for convenience.

C. Errors in Structural Strength Predictions

Because of the complexity of the overall structural system, there
will be additional errors in failure prediction of the overall structure,
which is denoted by ef. The calculated mean failure stress of the
overall structure, ��f�calc, can be expressed in terms of the calculated
mean failure stress of the structural element, ��ef�calc, through

��f�calc � �1 � ef�� ��ef�calc (13)

The allowable stress at the structural design level, �a, can be
related to the allowable stress computed at the element level, �ea,
through the following relation:

�a � kf�1 � ef��ea (14)

where kf is an additional knockdown factor used at the structural
level as an extra precaution. Here, the nominal value of kf is taken
0.95. Combining Eqs. (12) and (14), we can obtain

�a � �1 � eef��1 � ef�kf�ca (15)

D. Errors in Design

As noted earlier, along with the errors in failure stress predictions,
there are also errors in design and construction. Before starting the
structural design, aerodynamic analysis needs to be performed to
determine the loads acting on the aircraft. However, the calculated
design load value, Pcalc, differs from the actual design load Pd under

Fig. 2 Variation of the tolerance coefficient with the number of coupon

tests.
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conditions corresponding to FAA design specifications (e.g., gust-
strength specifications). Since each company has different design
practices, the error in load calculation, ep, is different from one
company to another. The calculated design load Pcalc is expressed in
terms of the true design load Pd as

Pcalc � �1� eP�Pd (16)

Notice here that the sign in front of the load error term is positive
while the sign in front of the failure stress error terms was negative.
The reason for this choice is that we consistently formulate the error
expressions such that a positive error implies a conservative
decision.

Besides the error in load calculation, an aircraft companymay also
make errors in stress calculation. We consider a small region in a
structural part, characterized by a thickness t and widthw that resists
the load in that region. The value of the stress in a structural part
calculated by the stress analysis team, �calc, can be expressed in terms
of the load values calculated by the load team Pcalc, the design width
wdesign, and the thickness t of the structural part by introducing the
term e� , representing error in the stress analysis:

�calc � �1� e��
Pcalc

wdesignt
(17)

In this paper, we assume that the aircraft companies can predict
stresses very accurately so that e� is negligible and is taken as zero.
The calculated stress value is then used by a structural designer to
calculate the design thickness tdesign. That is, the design thickness can
be formulated as

tdesign �
SFPcalc

wdesign�a
� �1� eP�
�1 � ef��1 � eef�

SFPd
wdesignkf�ca

(18)

Then, the design value of the load-carrying area can be expressed as

Adesign � tdesignwdesign �
�1� eP�

�1 � ef��1 � eef�
SFPd
kf�ca

(19)

E. Errors in Construction

In addition to the above errors, there will also be construction
errors in the geometric parameters. These construction errors
represent the difference between the values of these parameters in an
average airplane (fleet average) built by an aircraft company and the
design values of these parameters. The error in width ew represents
the deviation of the design width of the structural part, wdesign, from
the average value of the width of the structural part built by the
company, wbuilt-av. Thus,

wbuilt-av � �1� ew�wdesign (20)

Similarly, the built thickness value will differ from its design value
such that

tbuilt-av � �1� et�tdesign (21)

Then, the built load-carrying area Abuilt-av-c can be expressed using
the first equality of Eq. (19) as

Abuilt-av-c � �1� et��1� ew�Adesign (22)

Note that the built load-carrying area computed in Eq. (22) is related
to coupon tests through Adesign, which is computed using the
allowable stress value obtained from coupon tests [see Eq. (19)].

Table 2 presents nominal values for the errors assumed here. It is
very rare to have data on the probability distribution of errors.
Instead, analysts typically estimate error ranges based on experience.
Consequently, the errors here are modeled by uniform distributions,
following the principle of maximum entropy when only the range of
the error is known. For instance, the error in the built thickness of a
structural part (et) is defined in terms of the error bound �bt�built
using

et � uniform ���bt�built-av; ��bt�built-av� (23)

It is seen that the error et has uniform distribution and the error
bound is �bt�built-av � 0:03. Hence, the lower bound for the thickness
value is the average value minus 3% of the average, and the upper
bound for the thickness value is the average value plus 3% of the
average.

F. Total Error etotal

The expression for the built load-carrying area of a structural part
computed based on coupon test results, Abuilt-av-c, can be
reformulated by combining Eqs. (19) and (22) as

Abuilt-av-c � �1� etotal�
SFPd
kf�ca

(24)

where

etotal �
�1� eP��1� et��1� ew�
�1 � ef��1 � eef�

� 1 (25)

Here, etotal represents the cumulative effect of the individual errors on
the load-carrying capacity of the structural part.

G. Redesign Based on Element Tests

Besides updating the failure stress distribution, element tests have
an important role of leading to design changes if the design is unsafe
or overly conservative. That is, if very large or very small failure
stress values are obtained from the element tests, the company may
want to increase or reduce the load-carrying area of the elements.We
did not find published data on redesign practices, and sowe devised a
common sense approach. We assumed that if the B-basis value
obtained after element tests, �ea, is more than 5% higher than the
B-basis value obtained from coupon tests, �ca, then the load-carrying
area is reduced. If the B-basis value obtained after element tests is
more than 2% lower than the B-basis value obtained from coupon
tests, the load-carrying area is increased. This lower tolerance reflects
the need for safety. In both cases, the area is scaled up or down by
�ca=�ea. Otherwise, no redesign is performed. The built load-
carrying area can be revised by multiplying Eq. (24) by a redesign
correction factor cr as

Abuilt-av � crAbuilt-av-c � �1� etotal�cr
SFPd
kf�ca

(26)

where

cr � 1 �no redesign�

cr �
1:01

CF
; CF� �ea

�ca
�redesign� (27)

Since redesign requires new elements to be built and tested, it is
costly. Therefore, we do not model a second round of redesign. To
protect against uncertainties in the test of the redesigned element, we
have an additional 1% reduction in the calculated allowable value
[see term 1.01 in Eq. (27)].

Table 2 Distribution of error terms and their bounds

Error factors Distribution type Mean Bounds, %

Error in load calculation, eP Uniform 0.0 	10
Error in width, ew Uniform 0.0 	1
Error in thickness, et Uniform 0.0 	3
Error in failure prediction, ef Uniform 0.0 	10
Error in failure prediction, eef Uniform 0.0 	10
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H. Variability

In the previous sections, we analyzed the errors made in the design
and construction stages, representing the differences between the
fleet-average values of geometry, material and loading parameters,
and their corresponding design values. For a given design, these
parameters vary from one aircraft to another in the fleet due to
variability in tooling, construction, flying environment, etc. For
instance, the actual value of the thickness of a structural part, tbuilt-var,
is defined in terms of its fleet-average built value, tbuilt-av, by

tbuilt-var � �1� vt�tbuilt-av (28)

We assume that vt has a uniform distribution with 3% bounds (see
Table 3). Then, the actual load-carrying area Abuilt-var can be defined
as

Abuilt-var � tbuilt-varwbuilt-var � �1� vt��1� vw�Abuilt-av (29)

where vw represents the effect of the variability on the fleet-average
built width.

Table 3 presents the assumed distributions for variabilities. Note
that the thickness error in Table 2 is uniformly distributed with
bounds of 	3%. Thus, the maximum difference between all
thicknesses over the fleets of all companies is 	6%. However, the
combined effect of the uniformly distributed error and variability is
not uniformly distributed. Note here that, for the loading, we make a
very conservative assumption that every aircraft in a fleet will
experience limit load throughout its service life. Thiswill lead to very
conservative failure probability estimations, as will be seen in the
Sec. VII.

I. Certification Test

After a structural part has been built with random errors in stress,
load,width, allowable stress, and thickness, itmay fail in certification
testing. Recall that the structural part will not be manufactured with
complete fidelity to the design due to variability in the geometric
properties. That is, the actual values of these parameterswbuilt-var and
tbuilt-var will be different from their fleet-average values wbuilt-av and
tbuilt-av. The structural part is then loaded with the design axial force
of SF times Pcalc, and if the stress exceeds the failure stress of the

structure �f, then the structure fails and the design is rejected;
otherwise, it is certified for use. That is, the structural part is certified
if the following inequality is satisfied:

� � �f �
SFPcalc

�1� vt��1� vw�Abuilt-av
� �f 
 0 (30)

VI. Probability of Failure Calculation

To calculate the probability of failure, we first incorporate the
statistical distributions of errors and variability in a MCS. Errors are
uncertain at the time of design, but they do not change for individual
realizations (in actual service) of a particular design. On the other
hand, all individual realizations of a particular design are different
from each other due to variability. The simulation of error and
variability can be easily implemented through a two-level separable
MCS [29]. At the upper level, different aircraft companies can be
simulated by assigning random errors to each and, at the lower level,
we simulated variability in dimensions, material properties, and
loads related to manufacturing variability, and variability in service
conditions can be simulated. The details of the separable MCS are
provided in Appendix B.

The effect of element tests on failure stress distribution is modeled
using Bayesian updating. If Bayesian updating was used directly
within an MCS loop of probability of failure calculation, the
computational cost would be very high. In this paper, instead,
Bayesian updating is performed aside in a separate MCS before
starting with the MCS loop (the details of which are provided in
Table 4). The procedure followed for Bayesian updating can be
described briefly as follows. First, the four quantiles of the mean
failure stress are modeled as normal distributions. Then, these
quantiles are used to fit a Johnson distribution to the mean failure
stress. That is, the mean failure stress is represented as a Johnson
distribution, for which the parameters are themselves distributions
that depend on the number of element tests as well as the error in
failure stress prediction of the elements, eef. Finally, Bayesian
updating is used to update themean failure stress distribution. Details
of this procedure are provided in Appendix A.

VII. Results

In this section, the effects of the number of coupon tests, the
number of element tests, the redesign of element tests, and the
certification test are analyzed. The tradeoffs between the number of
tests, weight, and probabilities of failure in certification tests and in
service are explored. To make this tradeoff analysis computationally
affordable, RSAs are used to relate the knockdown factor to weight
and probabilities of failure in service and in the certification test. For
any combination of the number of coupon and element tests,
response surfaces (RSs) are constructed that take input as kf and
provide prediction for Abuilt-av or the reliability index of Pf or the

Table 3 Distribution of random variables having variability

Variables Distribution type Mean Scatter

Actual service load, Pact Lognormal Pd � 2=3 10% COV
Actual built width, wbuilt-var Uniform wbuilt-av 1% bounds
Actual built thickness, tbuilt-var Uniform tbuilt-av 3% bounds
Failure stress, �f Normal 1.0 8% COV
vw Uniform 0 1% bounds
vt Uniform 0 3% bounds

Table 4 MCS procedure for probability of failure calculation

1. Compute the allowable stress based on coupon tests, �ca.
2. Calculate the built average load-carrying area using the results of coupon tests, Abuilt-av-c � �1� etotal���SFPd=�kfwdesign���1=�ca�.
3. Generate random numbers for the quantiles of the updated mean failure stress (see Appendix A).
4. Calculate the B-basis value using the quantiles, �ea.
a. Compute the bounds for mean failure stress lb� 0:9�1 � eef� and ub� 1:1�1 � eef�.
b. Compute the PDF of the mean failure stress having Johnson distribution within the bounds, and select the mean failure stress value with the highest PDF.

c. Compute the B-basis value, �ea � �1 � kB�ccf�calc�� ��ef�updatedcalc .
5. Compute a correction factor (CF) for the B-basis value, CF� �ea

�ca
. Limit the value of CF to the interval [0.9, 1.1]. That is, if CF< 0:9, then CF� 0:9. If

CF > 1:1, then CF� 1:1.
6. Revise the built average load-carrying area based on the value of CF.
a. If CF< 0:98, then redesign is needed. We will increase the load-carrying area by CF. Hence, the new load-carrying area is Abuilt-av � 1:01

CF
Abuilt-av-c. Here,

the factor 1.01 is used to avoid a second redesign of elements.
b. If 0:98 
 CF 
 1:05, then no redesign is needed. So, the load-carrying area is Abuilt-av � Abuilt-av-c.
c. If CF> 1:05, then redesign is needed. We will decrease the load-carrying area by CF. Hence, the new load-carrying area is Abuilt-av � 1:01

CF
Abuilt-av-c. Here

again, the factor 1.01 is used to avoid a second redesign of elements.
7. Using Abuilt-av, compute the probability of failure in service (Pf) and PFCT. See Appendix A.
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reliability index of PFCT. It should also be noted that probability
distributions, the element test redesign procedure, and some selected
parameters are based on our engineering judgment rather than
published data. These assumptions have certain effects on the
computed probabilities of failure in service and in the certification
test.

A. Effect of the Number of Coupon Tests

The effects of the number of coupon tests on the built average load-
carrying area and the probability of failure are presented in Table 5.
For each aircraft company, we have a distribution for the load
carrying area.Abuilt-av is the mean of that distribution, andACOV is the
coefficient of variation of that distribution. Since we model multiple
aircraft companies, we have distributions for each. The area values
provided inTable 5 are based on the load andmaterial property values
given in Table 3. As the number of coupon tests increases, both the
mean area (Abuilt-av) is reduced (since the B-basis knockdown factor
kd is increased), and the COVof the area (ACOV) is reduced (since the
COVof the B-basis value is reduced). These two reductions have an
opposing effect on the probability of failure and the PFCT. However,
the net effect is that both probabilities of failure increase. This reflects
the fact that the knockdown factor used by the FAA to compensate for
a small number of coupon tests [Eq. (6)] is conservative, so per-
forming more tests actually makes the average aircraft less safe. The
COV of the area represents the variation between companies, each
having different errors in their designs At over 9%, it is substantial,
indicating that the variation of the probability of failure between
companies can be large.

To provide an indication of the accuracy of the numbers in Table 5,
the numbers in the parentheses show the COVof the corresponding
value computed from five MC simulations with different seeds. It is
seen that the mean built area calculations are accurate to the fourth
digit, while the probability estimations are only accurate to the
second digit.

Since Abuilt-av reduces as the number of coupon tests increases, the
aircraft builder may decide to keep Abuilt-av constant. This can be
achieved by adjusting the knockdown factor kf in Eq. (14) so as to
have the same Abuilt-av for a different number of coupon tests. First,
the knockdown factor kf is varied by �10, �5, 5, and 10% of its
nominal value, and simulations are performed. Then, as noted earlier,
RSs are constructed for the built average area (Abuilt-av), the reliability
index of the probability of failure (Pf), and the reliability index of
PFCT. That is, to obtain the results in Tables 6–9, the number of
element tests is set to three (its nominal value). Three different values
are used for the number of coupon tests (nc) as 30, 50, and 80. For

each value of nc, three different RSs are constructed that take input as
kf and provide prediction for Abuilt-av or the reliability index of Pf or
the reliability index of PFCT. Finally, Pf and PFCT values
corresponding to Abuilt-av � 1:238 are computed. This practice also
reduces the numerical noise in simulation results.

Table 6 shows that increasing the number of coupon tests from 50
to 80 leads to a 3.5% reduction in the probability of failure, whereas
reducing the number of coupon tests to 30 increases the probability of
failure by 5.7%. It can also be concluded that increasing the number
of coupon tests reduces the probability of failure for the sameweight
(i.e., the same Abuilt-av), but the rate of reduction diminishes with the
number of tests. The second column of Table 6 shows that kf values
are all smaller than 1.0, so the FAA deterministic design regulations
are not violated. Note that the Pf and PFCT results in Table 6 are RS
predictions rather than simulation results. To evaluate the accuracy of
the RSs, the RS predictions of Abuilt-av, Pf, and PFCT are compared
with the MCS results for these responses. MCS are repeated by five
times with different seeds, and the average values are used in
comparison. Table 7 shows that the RS predictions for all the
responses are quite accurate, the most accurate being the prediction
ofAbuilt-av. In addition, Table 7 providesR

2 values for the constructed
RSs as another measure of accuracy.

Table 8 shows the change of the built average areawith the number
of coupon tests for the same probability of failure. If the number of
coupon tests is reduced from 50 to 30, the built average load-carrying
area is increased by 0.23%. On the other hand, if the number of
coupon tests is increased from 50 to 80, the built average load-
carrying area decreases by 0.15%. The second column of Table 8
shows that kf values are all smaller than 1.0, so the FAAdeterministic
design regulations are not violated.

Table 9 shows the change of the built average areawith the number
of coupon tests for the same PFCTs. If the number of coupon tests is

Table 5 Effects of the number of coupon testsa

nc Abuilt-av ACOV Pf (�10�4)b PFCT

30 1.252 (0.03%) 0.0945 (0.2%) 0.507 (0.9%) 0.0347 (2.3%)
50 1.238 (0.03%) 0.0931 (0.2%) 0.634 (1.7%) 0.0414 (2.1%)
80 1.229 (0.04%) 0.0922 (0.2%) 0.722 (1.4%) 0.0464 (1.2%)

aThe numbers in parentheses show the COV of the corresponding value with
repeated MCSs. The number of element tests, ne, is three. The redesign of the
element tests and the certification test are included in the analysis.
bPf is the mean value of the probabilities of failure over multiple aircraft
companies.

Table 6 Effects of the number of coupon tests

for the same weighta

nc kf Abuilt-av Pf (�10�4)b PFCT

30 0.961 1.238 0.666 0.0430
50 0.950 1.238 0.630 0.0412
80 0.942 1.238 0.608 0.0402

aThe number of element tests, ne, is three. The redesign of the
element tests and the certification test are included in the analysis.
bPf is the mean value of the probabilities of failure over multiple
aircraft companies.

Table 7 Evaluating the accuracy of RSs for designs in Table 6

nc kf Result Abuilt-av Pf (�10�4)a PFCT

30 0.961 RS prediction 1.238 0.666 0.0430
MCS 1.238 0.665 0.0430
R2 0.9995 0.9982 0.9912

50 0.950 RS prediction 1.238 0.630 0.0412
MCS 1.238 0.634 0.0414
R2 0.9997 0.9994 0.9984

80 0.942 RS prediction 1.238 0.608 0.0402
MCS 1.238 0.611 0.0405
R2 0.9989 0.9981 0.9973

aPf is the mean value of the probabilities of failure over multiple aircraft
companies.

Table 8 Effects of the number of coupon tests for the same

probability of failurea

nc kf Abuilt-av Change in area Pf (�10�4)b PFCT

30 0.958 1.241 0.23 0.630 0.0412
50 0.950 1.238 —— 0.630 0.0412
80 0.945 1.236 �0:15 0.630 0.0414

aThe number of element tests, ne, is three. The redesign of the element
tests and the certification test are included in the analysis.
bPf is the mean value of the probabilities of failure over multiple aircraft
companies.

Table 9 Effects of the number of coupon tests for the same PFCTa

nc kf Abuilt-av Change in area Pf (�10�4)b PFCT

30 0.958 1.241 0.23 0.630 0.0412
50 0.950 1.238 —— 0.630 0.0412
80 0.945 1.236 �0:13 0.627 0.0412

aThe number of element tests, ne, is three. The redesign of the element tests and the
certification test are included in the analysis.
bPf is the mean value of the probabilities of failure over multiple aircraft companies.
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reduced from 50 to 30, the built average load-carrying area is
increased by 0.23%. On the other hand, if the number of coupon tests
is increased from 50 to 80, the built average load-carrying area
decreases by 0.13%.Overall, it appears that increasing the number of
coupon tests has only a small effect on the probability of failure in
service or on the PFCT. The second column of Table 9 shows that kf
values are all smaller than 1.0, so the FAA deterministic design
regulations are not violated. Comparing Tables 8 and 9, it can be seen
that designing to a constant probability of failure or a constant PFCT
are essentially the same,with the difference beingmostly due toMCS
noise.

B. Effect of the Number of Element Tests

The effects of increasing the number of element tests on the load-
carrying area and probability of failure are presented in Table 10. If
we employ redesign after the element tests, the mean load-carrying
area is increased, since we introduced an additional 1% reduction in
the calculated allowable value [see term 1.01 in Eq. (27)]. Increasing
the number of element tests reduces both the average built load-
carrying area as well as its COV. The effect on the COV is more
significant because of the reduction of the error term eef.

To provide an indication of the accuracy of the numbers in
Table 10, the numbers in the parentheses show the COV of the
corresponding value computed from five MC simulations with
different seeds. It is seen that the mean built area calculations are
accurate to the fourth digit, while the probability estimations are only
accurate to the second digit.

The effect of the number of element tests on the probability of
failure in service and in the certification test is shown in Table 11.We
see that increasing the number of element tests from three to five
leads to a 12% reduction in the probability of failure, while reducing
the number of element tests to one causes a 34% increase in
probability of failure. Similar effects are observed on the probability
of failure in certification. It appears that three element tests (typical of
present practice) are a reasonable choice. The second column of
Table 11 shows that kf values are all smaller than 1.0, so the FAA
deterministic design regulations are not violated.

To analyze the probability of failure and weight tradeoffs, the
probability of failure can be fixed to a value, and the variation of the
built average load-carrying area with number of element tests can be
explored. Here, the probability of failure is fixed to 0:63 � 10�4,

which corresponds to performing three element tests and 50 coupon
tests (the nominal values). Table 12 shows that, if wewant to do away
with element tests, then we will need to put 1.67% extra weight to
achieve the same probability of failure. On the other hand, if we
increase the number of element tests from three to five, we can save
around 0.5% weight. The second column of Table 12 shows that kf
values are all smaller than 1.0, so the FAA deterministic design
regulations are not violated.

The probability of failure in certification tests is high and likely a
big motivator for the aircraft companies, hence we also investigate
howmuch extra weight would be needed to maintain the PFCT if the
company intends to eliminate the element tests. Table 13 shows that,
if a company aims to eliminate the element tests, the structural weight
must be increased by 1.5% to achieve to the same PFCTs. The second
column of Table 13 shows that kf values are all smaller than 1.0, so
the FAA deterministic design regulations are not violated.

Section VII.A investigates the effects of the number of coupon
tests onPf and PFCTwhen the number of element tests is fixed to its
nominal value of three. It is found that, if the number of coupon tests
is increased to 80, theweight can be decreased by 0.15% for the same
Pf (see Table 6). Similarly, this section investigates the effects of the
number of element tests when the number of coupon tests is fixed to
its nominal value of 50. It is found that, if the number of element tests
is increased to five, the weight can be decreased by 0.52% for the
same Pf (see Table 12). To provide a brief investigation for the
interaction between the number of coupon tests and the number of
element tests, we compute the value of kf that leads to Pf � 0:63 �
10�4 (the Pf value for the nominal case). It is found that kf � 0:957
results inAbuilt-av � 1:2302 leading to aweight reduction of 0.62%. It
is seen that the combined effect of the coupon test and the element
tests is smaller than the sum of the individual effects of the coupon
tests and the element tests. A detailed analysis of the interaction
between the coupon tests and the element tests is an interesting topic,
which will be addressed is a future work.

C. Effect of the Certification Test

Finally, the effect of the certification test on the mean area and
reliability are explored. Table 14 shows that if certification is not
performed, then the average value of the built area is reduced by a
small amount while its COV is increased significantly. Therefore,
the probability of failure is increased by 22%. If the average

Table 10 Effect of the number of element testsa

ne Abuilt-av ACOV Pf (�10�4) PFCT

0 1.229 (0.01%) 0.1015 (0.3%) 1.111 (1.2%) 0.0628 (1.2%)
1 1.242 (0.03%) 0.0996 (0.2%) 0.792 (0.8%) 0.0484 (1.7%)
2 1.239 (0.04%) 0.0947 (0.2%) 0.670 (1.8%) 0.0435 (1.6%)
3 1.238 (0.03%) 0.0931 (0.2%) 0.630 (1.7%) 0.0412 (2.2%)
4 1.236 (0.02%) 0.0917 (0.3%) 0.601 (0.7%) 0.0404 (1.4%)
5 1.236 (0.04%) 0.0904 (0.07%) 0.575 (1.1%) 0.0390 (2.5%)

aThe numbers in parentheses show the COV of the corresponding value with
repeatedMCSs. The number of coupon tests,nc, is 50. The redesign of the element
tests and the certification test are included in the analysis.

Table 11 Effects of the number of element

tests for the same weighta

ne kf Abuilt-av Pf (�10�4) PFCT

0 0.943 1.238 0.934 0.0549
1 0.953 1.238 0.846 0.0511
2 0.951 1.238 0.688 0.0444
3 0.950 1.238 0.630 0.0412
4 0.948 1.238 0.583 0.0395
5 0.948 1.238 0.556 0.0380

aThe number of coupon tests, nc, is 50. The redesign of
the element tests and the certification test are included
in the analysis.

Table 12 Effects of the number of element tests

for the same probability of failurea

ne kf Abuilt-av % change in area Pf (�10�4) PFCT

0 0.928 1.258 1.67 0.630 0.0402
1 0.941 1.254 1.29 0.630 0.0399
2 0.947 1.243 0.38 0.630 0.0414
3 0.950 1.238 —— 0.630 0.0412
4 0.952 1.234 �0:33 0.630 0.0420
5 0.954 1.231 �0:52 0.630 0.0420

aThe number of coupon tests, nc , is 50. The redesign of the element tests
and the certification test are included in the analysis.

Table 13 Effects of the number of element tests

for the same PFCTa

ne kf Abuilt-av % change in area Pf (�10�4) PFCT

0 0.929 1.257 1.53 0.651 0.0412
1 0.942 1.252 1.11 0.656 0.0412
2 0.947 1.243 0.41 0.626 0.0412
3 0.950 1.238 —— 0.630 0.0412
4 0.951 1.235 �0:23 0.616 0.0412
5 0.952 1.233 �0:42 0.615 0.0412

aThe number of coupon tests, nc , is 50. The redesign of the element tests
and the certification test are included in the analysis.
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load-carrying area is adjusted to its nominal value, the probability of
failure is 9.8% larger.

VIII. Conclusions

The effects of aircraft structural tests on aircraft structural safety
were explored. In particular, the effects of the number of coupon
tests and the number of structural element tests on the final
distribution of the failure stress were investigated. We simulated a
structural design following the FARs and explored the tradeoffs
between the number of tests, the weight, and the probability of
failure. From the results obtained in this study, the following
conclusions can be drawn:

1) As the number of coupon tests is increased, the mean allowable
stress increases, so the mean load-carrying area reduces. While the
standard deviation of the area decreases, the probability of failure
increases, as does the probability of failure in certification. This
indicates that the FAA knockdown factor for compensating for a
small number of coupon tests is conservative (as intended).

2) As the number of coupon tests is increased, maintaining the
same weight as the nominal case, the probability of failure reduces,
but the rate of the reduction diminishes with the number of coupon
tests. Overall, the number of coupon tests has only a marginal effect
on the probability of failure.

3) If the number of element tests is increased, the probability of
failure reduces for the same weight, and the rate of this reduction
decreases with the number of tests.

4) If we want to dispense with element tests, then we will need to
put about 1.5% extra structural weight to achieve the same
probability of failure.

5) If the certification test is not performed, the probability of failure
is increased by 10% for the same weight.

As noted earlier, probability distributions, the element test
redesign procedure, and some selected parameters are based on our
engineering judgment rather than published data. These assumptions
have certain effects on the probabilities of failure in service and in the
certification test. Nevertheless, a structural design practice following
the FARs is performed, and it is concluded that it is possible to do
simultaneously probabilistic design and satisfy the FARs for
deterministic design by having an additional safety factor (kf in this
paper) at the structural level. This conclusion is firm and independent
of the assumptions mentioned.

Appendix A: Bayesian Updating of the Failure Stress
Distribution from the Results of Element Tests

The initial distribution of the element failure stress is obtained by
using a failure criterion (e.g., Tsai-Wu theory) using the results of
coupon tests. There will be two sources of error in this prediction.
First, since a finite number of coupon tests are performed, the mean
and standard deviation of the failure stress obtained through the
coupon tests will be different from the actual mean and standard
deviation.

We consider a typical situation relating to updating analytical
predictions of strength based on tests. We assume that the analytical
prediction of the failure stress, ��f�calc, applies to the average failure
stress � ��f�true of an infinite number of nominally identical structures.
The error ef of our analytical prediction is defined by Eq. (A1):

� ��f�true � �1� ef���f�calc (A1)

Here, we assume that the designer can estimate the bounds be
(possibly conservative) on the magnitude of the error, and we further
assume that the errors have a uniform distribution between the
bounds. Note here that it is more convenient to define the error to be
measured from the calculated values of the failure stress as shown in
Fig. A1.

As in earlier work [30], we neglect the effect of coupon tests and
assume the initial distribution of the mean failure stress fini� ��f� is
uniform within the bounds be as

fini� ��f� �
(

1
2be��f�calc

if

���� ��f
��f�calc

� 1

����
 be
0 otherwise

(A2)

Then, the distribution of the mean failure stress is updated using the
Bayesian updating with a given ��f�1;test as

fupd� ��f� �
f1;test� ��f�fini� ��f�R1

�1 f1;test� ��f�fini� ��f� d ��f
(A3)

where

f1;test� ��f� � normal ���f�1;test; ��f; std��f��

is the likelihood function reflecting possible variability of thefirst test
result ��f�1;test. Note that f1;test� ��f� is not a probability distribution in
��f; it is the conditional probability density of obtaining test result
��f�1;test, given that the mean value of the failure stress is ��f .
Subsequent tests are handled by the same equations, using the
updated distribution as the initial one.

If the Bayesian updating procedure defined previously is used
directly within an MCS loop for design load-carrying area
determination, the computational costwill bevery high. In this paper,
instead, the Bayesian updating is performed aside from the MCS
loop. In this separate loop, we first simulate the coupon tests by

Fig. A1 Error and variability in failure stress. The error is centered around the computed value, and it is assumed to be uniformly distributed here. The

variability distribution, on the other hand, is lognormal, with the mean equal to the true average failure stress.

Table 14 Effects of certification testa

Abuilt-av ACOV Pf (�10�4)
Certification 1.238 0.0931 0.630
No certification 1.233 0.0948 0.766
No certification with adjusted
mean area

1.238 0.0948 0.692

aThe number of coupon tests is 50, and the number of element tests is
three.
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drawing random samples for the mean and standard deviation of the
calculated failure stress ��cf and std��cf�. Then, we simulate ne
number of element tests, ��ef�test. The element test results along with
the mean and the standard deviation are used to define the likelihood
function as

f1;test� ��f� � normal ���ef�1;test; ��cf; std��cf��

in Eq. (A3). The initial distribution fini� ��f� in Eq. (A3) is uniformly
distributed within some bounds, as given in Eq. (A4):

fini� ��f� �
�

1
2be ��cf

if

���� ��f��cf � 1

����
 be
0 otherwise

(A4)

We found that applying the error bounds be before the Bayesian
updating or after the updating do not matter. Applying the error
bounds before Bayesian updating means calculating the initial
distribution fini� ��f� fromEq. (A4) and then using Eq. (A3). To apply
the error bounds after the Bayesian updating, however, we first
assume very large error bounds be, calculate the initial distribution

fini� ��f� from Eq. (A4), and finally apply the error bounds be to the
distribution obtained using Eq. (A3).

Applying the error bounds after the Bayesian updating is more
useful whenwewant tofit distributions (e.g., Johnson distribution) to
the mean failure stress obtained through Bayesian updating. If we
apply the error bounds at the beginning, the distribution after
Eq. (A3) will be a truncated one, and it will be difficult to fit a
distributionwith goodfidelity. However, if we apply the error bounds
at the end, the distribution after Eq. (A3) will be a continuous one,
and we will high likely fit a good distribution.

So the overall procedure is as follows. Within an MCS loop, we
generate random mean and standard deviation values for the failure
stress to be obtained through coupon tests. Then, we assume large
error bounds to be used in Eq. (A4), simulate element tests, and use
Eq. (A3) to obtain the distribution of themean failure stress. Then,we
compute the four quantiles of the mean failure stress distribution.
Finally, we compute the mean and standard deviations of the
quantiles, andwemodel these quantiles as normal distributions. Note
that the quantiles are the values of failure stress for CDF values of
[0.067, 0.309, 0.691, 0.933].

Table A1 The mean and standard deviation of the quantiles of the mean failure stress after

element tests if 30 coupon tests are performed

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 std�Q1� std�Q2� std�Q3� std�Q4�

Test1 0.899 0.968 1.049 1.145 0.073 0.077 0.084 0.094
Test2 0.925 0.975 1.032 1.096 0.053 0.055 0.058 0.063
Test3 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.051
Test4 0.945 0.982 1.021 1.065 0.038 0.039 0.041 0.043
Test5 0.950 0.983 1.019 1.057 0.035 0.036 0.037 0.039

Table A2 The mean and standard deviation of the quantiles of the mean failure stress after

element tests if 50 coupon tests are performed

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 std�Q1� std�Q2� std�Q3� std�Q4�

Test1 0.897 0.966 1.047 1.143 0.073 0.078 0.084 0.093
Test2 0.924 0.975 1.032 1.095 0.053 0.055 0.058 0.063
Test3 0.937 0.979 1.025 1.075 0.044 0.045 0.047 0.050
Test4 0.944 0.981 1.021 1.064 0.038 0.039 0.041 0.043
Test5 0.950 0.983 1.019 1.057 0.035 0.035 0.037 0.039

Table A3 The mean and standard deviation of the quantiles of the mean failure stress after

element tests if 80 coupon tests are performed

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

�Q1
�Q2

�Q3
�Q4 std�Q1� std�Q2� std�Q3� std�Q4�

Test1 0.898 0.967 1.049 1.144 0.071 0.076 0.083 0.091
Test2 0.924 0.975 1.032 1.096 0.052 0.055 0.058 0.062
Test3 0.937 0.979 1.025 1.076 0.043 0.045 0.047 0.050
Test4 0.944 0.982 1.021 1.065 0.038 0.039 0.040 0.042
Test5 0.950 0.983 1.019 1.057 0.034 0.035 0.036 0.038

Table A4 The variation of the mean and standard deviation of the quantiles of the mean
failure stress with the error in failure stress prediction, efe

Mean values of the quantiles (Q1–4) Standard deviation of the quantiles (Q1–4)

ef �Q1
�Q2

�Q3
�Q4 std�Q1� std�Q2� std�Q3� std�Q4�

�:10 0.835 0.881 0.923 0.968 0.039 0.041 0.043 0.045
�0:05 0.890 0.930 0.974 1.022 0.042 0.043 0.045 0.048
0 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.050

0.05 0.983 1.027 1.075 1.128 0.045 0.047 0.049 0.052
0.10 1.031 1.077 1.128 1.183 0.048 0.050 0.052 0.055

ACAR, HAFTKA, AND KIM 2245



The quantiles are functions of the number of coupon tests (nc), the
number of element tests (ne), and the error in failure stress prediction
(eef). At first, we wanted to build RSA for the mean and standard
deviation of the quantiles in terms of nc and eef after each element
test, and sowewould have 10RSAs (five for themean andfive for the
standard deviation) in terms of nc and eef. Our numerical analysis
revealed, on the other hand, that nc does not have a noticeable effect
on quantiles (see Tables A1–A3 alongside Fig. A2), and the effect of
the error can be represented by just multiplying the quantiles with the
(1 � eef) term (see Table A4).

Figure A3 show the histograms of the first and second quantiles of
themean failure stress (for 50 coupon tests after the third element test
when ef � 0) obtained through MCS with 20,000 samples. We see
that the quantiles do not exactly follow normal distributions.

The results obtained in this separateMCS loop are used in themain
MCS loop for determining the built average load-carrying area. The
mean and standard deviations of the quantiles are used to fit a
Johnson distribution to the mean failure stress. The error bounds be
are then applied to the Johnson distribution, and random values from
this distribution are drawn whenever element tests are simulated.
Note also that the quantiles are strongly correlated to each other, so
this correlation is also included in our analysis while random
quantiles are generated in themainMCS loop usingGaussian copula.
The reader is referred to the work of Noh et al. [38] for further details
of reliability estimation of problems with correlated input variables
using a Gaussian Copula.

Appendix B: Separable Monte Carlo Simulations

The prediction of probability of failure via conventional MCS
requires trillions of simulations for the level of 10�7 failure
probability. To address the computational burden, the separable

Monte Carlo procedure can be used [29]. The reader is referred to
Smarslok et al. [39] for more information on the separable
Monte Carlo procedure. This procedure applies when the failure
condition can be expressed as g1�x1�> g2�x2�, where x1 and x2 are
two disjoint sets of random variables. To take advantage of this
procedure, we need to formulate the failure condition in a separable
form, so that g1 will depend only on variabilities, and g2 will depend
only on errors. The common formulation of the structural failure
condition is in the form of a stress exceeding the material limit. This
form, however, does not satisfy the separability requirement. For
example, the stress depends on variability in material properties as
well as design area, which reflects errors in the analysis process. To
bring the failure condition to the right form,we instead formulate it as
the required cross-sectional area A0req being larger than the built area
Abuilt-av. InviewofEq. (30), the relation between the built area and the
required area becomes

Abuilt-av <
Areq

�1� vt��1� vw�
� A0req (B1)

where Areq is the cross-sectional area required to carry the actual
loading conditions for a particular copy of an aircraft model, andA0req
is what the built area (fleet average) needs to be in order for the
particular copy to have the required area after allowing for variability
in width and thickness:

Areq � Pact=�f (B2)

The required area depends only on variability, while the built area
depends only on errors. When certification testing is taken into
account, the built area Abuilt-av is replaced by the certified area Acert,
which is the same as the built area for companies that pass

Fig. A2 Variation of themean and standard deviation of the first quantile of themean failure stress with number of coupon tests (after the third element

test).

Fig. A3 Histograms of the first and the second quantiles of the mean failure stress (after the third element test). The continuous lines show the normal

fits.
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certification. However, companies that fail are not included. That is,
the failure condition is written as failure without certification tests,

Abuilt-av � A0req < 0 (B3a)

and failure with certification tests,

Acert � A0req < 0 (B3b)

The separable MCS procedure is summarized in Fig. B1.
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