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Abstract Reliability-based design optimization of au-
tomobile structures for crashworthiness has been
studied by many researchers by using either single com-
ponent probabilistic constraints or single failure mode
based probabilistic constraints, while system reliability
considerations are mostly disregarded. In this paper,
we perform system reliability based design optimization
(SRBDO) of an automobile for crashworthiness and
analyze the effect of reliability allocation in different
failure modes. In addition, effects of various uncer-
tainty reduction measures (e.g., reducing variability in
material properties, reducing error of finite element
analysis) are investigated and tradeoff plots of un-
certainty reduction, system reliability and structural
weight are generated. These types of tradeoff plots can
be used by a company manager to decide whether to
allocate the company resources for employing uncer-
tainty reduction measures or allocating the resources
for the excess weight to protect against the unreduced
uncertainties. Furthermore, relative importance of au-
tomobile structural members in different crash scenar-
ios is quantified.
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1 Introduction

The computer-aided design (CAD) and the computer-
aided engineering (CAE) has been significantly im-
proved over the years to help companies to produce
better products. Automotive manufacturers have in-
vested a lot, especially in crashworthiness analysis, to
have the ability to design better products in less time
and at lower costs. The availability of CAD and CAE
products led to application of optimization techniques
to automotive structural design by many researchers
including Yang et al. (1994, 2000a, b), Esat (1999), Gu
et al. (2001), Kodiyalam and Sobieszczanski-Sobieski
(2001), Kim et al. (2002), Wang et al. (2003), Lee
et al. (2004), Fang et al. (2005), Kaya (2006), and Sinha
et al. (2007)

In design of automobiles, crashworthiness consider-
ations are particularly important. Since crash simu-
lations with acceptable accuracy are computationally
very expensive, metamodels (or surrogate models)
are effectively used in most crashworthiness design
and optimization applications. Many researchers com-
pared different metamodels to approximate the crash
responses of their interest (e.g., intrusion distance,
energy absorption, acceleration, contact force) and
each found a different metamodel worked best for
their problem. For instance, Yang et al. (2000b) and
Gu et al. (2001) recommended the use of second
order polynomial regression model and moving least
square regression, while Kurtaran et al. (2002) found
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the successive response surface approximations to be
the most effective. Hamza and Saitou (2004) suggested
the use of radial basis neural networks and Fang
et al. 2005 recommended radial basis functions, while
Stander et al. (2004) found neural networks and Kriging
had better accuracy. As seen, there is no solid answer
to question of what metamodel is the best for crash-
worthiness applications. Therefore, in this paper, we try
three different metamodels: (1) polynomial response
surface approximation, (2) radial basis functions, and
(3) Gaussian process metamodels. Then, we select the
most accurate metamodel type for the responses of
interest.

The uncertainties in design, implementation, manu-
facturing and operating conditions necessitate the use
of design under uncertainty techniques, the most pop-
ular technique being the reliability-based design op-
timization (RBDO). However, since RBDO requires
the evaluation of probabilistic constraints many times
throughout the optimization, it is computationally ex-
pensive. Successful use of metamodeling methods in
predicting critical crash responses, on the other hand,
opened door for performing RBDO studies, since crash
responses can now be estimated in matter of seconds
by the use of metamodels. Some earlier work in this
area includes the studies of Piskie and Gioutsos (1992),
Marvis and Bandte (1997), Yang et al. (2000b, 2002),
Gu et al. (2001). More recent RBDO for crashworthi-
ness studies includes the following works. Youn et al.
(2004) performed RBDO of a full vehicle system by
using performance measure approach and hybrid mean
value method while utilizing the response surfaces gen-
erated by Gu et al. (2001). Sinha (2007) used approxi-
mate moment approach and reliability index approach
for reliability calculation and response surfaces gen-
erated by Gu et al. (2001) for critical responses to
perform multi-objective crashworthiness optimization.
Rais-Rohani et al. (2006) conducted RBDO of the side
rails of an automobile, where they used advanced mean
value plus (AMV+) method to calculate probabilistic
constraints while making use of RBF for approximating
the critical crash responses. The aforementioned works
either used single component probabilistic constraints
or single failure mode based constraints. This paper, on
the other hand, uses system reliability constraints.

The traditional reliability based design relies on liv-
ing with the uncertainties and allocating the resources
for overdesigned products (e.g., thicker structures) to
protect against uncertainties. Instead, the resources can
be allocated for some measures to reduce uncertainties
(e.g., quality control measures that reduces variability

in material properties), which would in turn increase
the product safety. Qu et al. (2003) showed that ap-
plying a quality control measure that can detect bad
designs below two-sigma (i.e., below two standard de-
viations) can increase the safety of composite panels by
three orders of magnitude. Alternatively, the potential
of increased safety can be traded for improved perfor-
mance. That is, instead of increasing the product safety
to very high levels, the safety can be kept at its nominal
value, while the product performance can be improved.
Acar et al. (2006) analyzed the effect of improved
failure models on the uncertainty of fracture toughness
predictions for sandwich panels. It was shown that
improved failure models can reduce the coefficient of
variation of fracture toughness predictions from 22% to
15%. This reduction indicated that a small percentage
of the designs could be used in more relaxed operation
conditions, while most of the designs could be used
for harsher operating conditions. In this paper, we
aim to investigate the effects of uncertainty reduction
measures (URMs) on improving the system reliability,
which can also be traded for structural weight saving.

This paper has following main unique contribu-
tions. First, system reliability-based crashworthiness
optimization is performed and allocation of reliability
in different failure modes of the automobile structural
components is analyzed. Second, the effects of reduc-
ing uncertainty are investigated and tradeoff plots of
uncertainty reduction, system reliability improvement
and weight savings are generated. These types of plots
along with appropriate cost models can be used by a
company manager to decide whether to allocate the
company resources for employing URMs (e.g., tighter
quality control, improved structural analysis models) or
allocating the resources for the excess weight to protect
against the unreduced uncertainties. Third, the sensi-
tivities of crashworthiness responses and system relia-
bility are analyzed in detail and relative importance of
the structural members in different crash scenarios is
quantified.

The remainder portion of the paper is organized as
follows. Section 2 discusses the details of the crash-
worthiness analysis and critical responses. Section 3
presents metamodel construction for critical responses.
Section 4 discusses system reliability based optimiza-
tion for crashworthiness. Section 5 presents the results
of the sensitivity analysis of the critical responses, the
system reliability, as well as results of system reliability-
based optimization and effects of various URMs. The
paper culminates with the concluding remarks listed in
Section 6.
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Table 1 Summary of the features of the FEA models

Item Vehicle model Barrier model

Full frontal Side

Component 328 N/A 23
Node 320,872 N/A 232,984
Shell element 546,812 N/A 54,761
Solid element 30,649 N/A 192,174
Beam element 63 N/A 0
Total mass (kg) 1,210 N/A 1,388

2 Crashworthiness analysis and critical responses

As noted earlier, crashworthiness considerations are
particularly important in safety design of automobiles.
An automobile is designed such that the impact en-
ergy in a possible crash scenario needs to be absorbed
through structural deformation, while the intrusion dis-
tances of some structural elements must be smaller than
their tolerable values. The selection of the structural
elements is based on an earlier study of one of the au-
thors (Fang et al. 2005). In this paper, we consider two
crash scenarios: (a) full-frontal impact (FFI), and (b)
side impact (SI), whereas other possible scenarios such
as offset-frontal impact, roof crash and rear impact are
not included. In these two crash scenarios, the energy
absorption of the selected structural elements and the
intrusion distances of the selected structural elements
are taken as critical responses. That is, we have four
critical responses of interest: (1) energy absorption of
the selected structural elements in FFI scenario, (2)
intrusion distances of the selected structural elements
in FFI, (3) energy absorption of the selected structural
elements in SI scenario, (4) intrusion distances of the
selected structural elements in SI.

In this study, we used a single full-scale finite ele-
ment analysis (FEA) model of a 1996 Dodge Neon
in simulations of full frontal, and side impacts. The
model was originally developed at the US National
Crash Analysis Center (Zaouk et al. 2000a, b) and used
by other researchers (Horstemeyer et al. 2004; Fang
et al. 2005). The FEA model has detailed meshes of 328
components that consist of 320,872 nodes and 577,524
elements. Approximately 95% of the elements were
shell elements. The total vehicle mass is 1,210 kg. As
noted earlier, we use this unified model in simulating
two types of impacts, FFI in which the vehicle impacted
a rigid wall in the front and SI in which a moving
deformable barrier (MDB) impacted the vehicle from
the side. The MDB model in SI has a mass of 1,388 kg
and consists of 232,984 nodes and 246,935 elements with

78% being solid elements. Combining the FEA models
of the vehicle and MDB, the model for SI has 553,856
nodes and 824,459 elements. Details of the FFI and SI
models are given in Table 1 and the two FE models are
illustrated in Fig. 1.

A simulation of 100 ms FFI using LS-DYNA MPP
v970 takes approximately 17 h with 36 processors on an
IBM Linux Cluster with Intel Pentium III 1.266 GHz
processors and 607.5 GB RAM. A simulation of 100 ms
SI takes approximately 29 h with the same condition as
that of the FFI simulation. The initial speed for FFI and
SI is set to 35 mph. Figure 2 illustrates in detail of the
test configurations for FFI and SI.

2.1 Design variables

Safety performance of a vehicle can be measured by pa-
rameters such as intrusion distance, intrusion velocity,
peak acceleration, and contact force. These safety pa-
rameters are closely related to the vehicle’s energy ab-
sorption history that consists of both energy absorption
capacity and energy absorption rate. The more energy
that can be absorbed by the vehicle in the early stage

(a) 

(b) 

Fig. 1 FE model of a1996 Dodge Neon in two cases of impact
scenario a full frontal impact, b side impact



314 E. Acar, K. Solanki

Fig. 2 Plan view of test
configurations (not drawn in
scale) a full frontal impact,
b side impact

(a) (b)

rigid-wall  

direction of 
impact 

vehicle 

of an impact, the less injury will incur on the occupant.
Therefore, an analysis on the energy absorption history
will help identifying those important components. The
time histories of the vehicle’s total strain energies or
internal energies for FFI and SI are shown in Fig. 3a
and b, respectively.

Since a vehicle impact finishes in a short period (in
the magnitude of 100 ms), both the energy absorp-
tion capacity and absorption rate are important. A
large energy absorption capacity is necessary but not
sufficient, because the energy wave passes through a
component if the energy cannot be absorbed quickly.
Based on this understanding, the energy absorption of
all components at 20, 40, and 60 ms were examined in
an earlier work of one of the authors (Fang et al. 2005).
They selected the structural elements with large energy
absorptions in a single or both impacts. In addition,
the structural elements with large mass but small or no

contribution to the energy absorption were selected for
the purpose of mass reduction. A total of 21 structural
elements were selected and they are shown in Fig. 4.

Figure 3 shows the time histories of energy absorp-
tions of selected components compared to those of
the whole vehicle in FFI and SI. The 21 components
account for 45%, 61%, and 61% of the vehicle’s total
internal energy in FFI at 20, 40, and 60 ms, respec-
tively. They also contribute 45%, 43%, and 43% of
the vehicle’s total internal energy in SI at 20, 40, and
60 ms, respectively. These contributions are significant
considering the fact that the 21 components only hold
8% of the total mass of the vehicle. Table 2 gives the
initial mass and thickness of the 21 components. The
thicknesses of the selected components are used as
design variables for size optimization. A total of 13 de-
sign variables were needed for the 21 components due
to component symmetry.

Fig. 3 Time histories of the
vehicle’s strain energy a
full-frontal impact, b side
impact

(a) (b) 
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Fig. 4 Selected 21 structural components. There are 13 design
variables due to symmetry

In addition to the energy absorption of the selected
components, the intrusion distance of the front panel
for the case of FFI and intrusion distance of the side
door for the cases of SI are also selected as critical
responses, because the distance between the front panel
and the occupant as well as the distance between the
side door and the occupant is very small. For FFI, the
average intrusion distance of six points on the front
panel is used as a response of our interest. Similarly,
the average intrusion distance of 12 points on the door
under SI is used as a response of our interest. The
approximate locations of these points are illustrated in
Fig. 5.

Table 2 The description of the design variables and their initial
(or baseline) values

ID Design Component Initial thick-
number variable ness (mm)

V1 DV1 Left and right front doors 0.85
V2 DV2 Left and right rear doors 0.83
V3 DV3 Inner hood 0.65
V4 DV4 Left and right outer

B-pillars 1.61
V5 DV5 Left and right middle

B-pillar 0.71
V6 DV6 Inner front bumper 1.96
V7 DV7 Front floor panel 0.71
V8 DV8 Left and right outer CBN 0.83
V9 DV9 Left and right front fenders 1.52
V10 DV10 Left and right inner

front rails 1.90
V11 DV11 Left and right outer

front rails 1.52
V12 DV12 Rear plate 0.71
V13 DV13 Suspension frame 2.61

(a) 

(b) 

Fig. 5 Plan view of approximate locations for intrusion measure-
ment a full frontal impact, b side impact

2.2 Random variables

Engineering systems contain many different kinds of
uncertainties found in material and component struc-
tures, computational models, input variables, and con-
straints. Potential sources of uncertainty in a system
include human errors, manufacturing or processing
variations, operating condition variations, inaccurate
or insufficient data, assumptions and idealizations, and
lack of knowledge. Manufacturing variations are man-
ifested as tolerances in part dimensions, missing small
sized parts or joints, and porosity in the base material.
Operating conditions, such as the ambient tempera-
ture and air flowrate, may vary as well. In addition to
these sources of uncertainty, the finite element analy-
sis requires for systems behaviour evaluation incorpo-
rate a number of simplifying assumptions. Examples
include idealized modeling of boundary conditions as
well as mesh size. Many of these simplifying assump-
tions are required in order to make the analyses fast
enough for a complex, iterative design process. Since
nondeterministic factors in a system sometimes pro-
duce considerable variations in predicted system re-
sponses, uncertainty is an important factor for designers
to consider when making decisions regarding design
specifications.

In present study, five random variables are used to
introduce uncertainty into the crash simulations: (1) a
material uncertainty parameter, (2) the occupant mass,
(3) the impact speed, (4) the uncertainty term responsi-
ble for error in finite element analysis on predicting the
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Table 3 The probability distribution types and the distribution
parameters of the random variables

ID# Random Description Distribution Parameters
variable

V14 RV1 Material parameter Normal 1, 0.1667
V15 RV2 Occupant mass (lb) Normal 200, 0.1667
V16 RV3 Impact speed (mph) Normal 35, 0.1667
V17 RV4 Error in FEA Uniform −20% , 20%
V18 RV5 Error in our ignorance Uniform −10% , 10%

The parameters of the normal distribution are the mean and the
coefficient variation, respectively. The parameters of the uniform
distribution are the lower and the upper bound, respectively.

crash responses and error in constructed metamodels
for the responses, and (5) the error due to excluding
some randomness in our analysis (e.g., ignoring uncer-
tainty in impact direction). The probability distribution
types and the distribution parameters of the random
variables are provided in Table 3. Interpretation of
the uncertainties in the occupant mass and the impact
speed is fairly obvious, but the other uncertainty terms
deserve some explanation as provided in the followings.

2.2.1 Material uncertainty

Since materials are complex, hierarchical, heteroge-
neous systems, it is not reasonable or sufficient to
adopt a deterministic approach to materials design.
First, microstructure is inherently random at some
scales. Second, parameters of a given model are sub-
ject to variation associated with variation of material
microstructure from specimen to specimen. Further-
more, variation is associated with the structures and
morphologies of realized materials due to variations in
processing history and other factors. Figure 6a shows
the effect of strain rate on the true stress-strain curve.
Often, it is expensive or impossible to remove and
measure these sources of variability, but their impact on
model predictions and final system performance can be
profound. As suggested by Horstemeyer et al. (2005),
small variability (∼1%) in microstructures can result in
very large (∼13%) variation in failure stress. Here, we

incorporate material uncertainty due to microstructural
features, manufacturing processes, and their history
effects by using an uncertainty stress-strain parameter
defined by random variable RV1. This random variable
is assumed to have a normal distribution and it de-
scribes the variability in the plastic portion of material
stress-strain curves, as illustrated in Fig. 6b.

2.2.2 Error in finite element predictions
of crashworthiness responses and metamodels

Uncertainty is associated with crash response pre-
dictions of finite element analysis. Finite element
models inevitably incorporate assumptions and approx-
imations that impact the precision and accuracy of
predictions. In addition, the element types used and
the mesh size have a profound effect in finite element
predictions. Furthermore, in this study these crash re-
sponses will be approximated via metamodels during
reliability assessment. That brings another layer of un-
certainty. In this study, we consider two crash responses
of our interest: intrusion distance and energy absorp-
tion. For both of the responses, we assume that the
uncertainity term responsible for the error in finite ele-
ment predictions and errors in metamodel approxima-
tions is limited to ±20%. This error bound is selected
based solely on our experience, and the distribution for
the error is assumed to be uniform in order to reflect
our lack of prior information on this error term.

2.2.3 Error due to excluding some randomness
in crash analysis

Random variables RV1-RV4 are used to introduce
uncertainty into crash simulations. Apart from these
four random variables, there may exist some other
random variables that we treated as deterministic. For
instance, in this study we consider two crash scenario of
our interest (full frontal impact and side impact) and
we assume that the impact direction is straight. That
is, we ignored the potential randomness in the impact

Fig. 6 Effect of strain rate on
a material constitutive
relationship and b the band
of uncertainty

(a) (b)
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angle, which may have a significant effect on the crash
responses. To compensate for these kinds of ignorance,
we introduce an error term, the fifth random variable
(RV5), that follows a uniform distribution and bounded
by ±10%.

3 Metamodel construction for critical responses
and weight

Since crash simulations with acceptable accuracy are
computationally very expensive, metamodels are widely
used in most crashworthiness optimization applica-
tions. The metamodels are used to construct a mathe-
matical relationship between the critical responses of
interest as well as the structural weight and the de-
sign as well as the random variables. Most commonly
used metamodels are: polynomial response surface
(PRS) approximations (see Myers and Montgomery
2002), radial basis function (RBF) metamodels (see
Dyn et al. 1986; Mullur and Messac 2004), Kriging
(see Lophaven et al. 2002; Martin and Simpson 2005),
Gaussian process (GP) metamodels (see Wang et al.
2005; Rasmussen and Williams 2006), and support
vector regression (see Gunn 1997; Clarke et al. 2005).

In this study, we generate three different types of
metamodels for each critical response: quadratic PRS
(QPRS), RBF, and GP. For the weight, on the other
hand, we only generate linear polynomial response
surface (LPRS), because the weight must be linearly
related to component thicknesses. We use two different
leave-one-out cross validation error metrics to evalu-
ate the accuracies of the metamodels: (1) the mean
absolute cross validation error, and (2) the correlation
coefficient between the actual and the predicted values
of the responses. We find for all the critical responses
that GP provide the most accurate predictions. The
accuracy evaluations of metamodels are provided in
Appendix 1. The constructed metamodels will be used
on system reliability calculation as discussed in the next
section.

We use the maximin space filling technique proposed
by Mourelatos et al. (2006) to generate the necessary
training points for the metamodels. In maximin tech-
nique, the location of a new point to be added into the
design of experiments is selected such that the min-
imum distance between the points is maximized. We
have 13 design variables and three random variables.
A quadratic polynomial in terms of 16 variables has
153 coefficients. It is a common practice to choose the
number of training points as 1.5–2.0 times the number
of coefficients in a quadratic polynomial, so we decided
to generate 300 training points.

4 System reliability based optimization

In this section, we first discuss the simple error model
used in this study and system reliability estimation.
Then, we present two alternative system reliability-
based optimization formulations.

4.1 Error model and the system reliability

We use a simple error model that we introduced in
our earlier studies (see Acar et al. 2006, 2007). The
actual values of the responses of our interest (in-
trusion distances and energy absorption), Ract, and
the estimated values of these responses, Rest, can be
related to each other through

Rest = (1 + e) Ract (1)

where e is the error term. In this study, we have two
separate error terms (RV4 and RV5). Thus, we write

Rest = (1 + e1) (1 + e2) Ract (2)

where e1 accounts for the error in finite element predic-
tions and the error of metamodel predictions for the
responses, and e2 accounts for the error due to our
ignorance of some of the randomness.

We have two critical responses of our interest under
two separate crash conditions. Therefore, the system
reliability is governed by the consideration of four limit-
state functions given in the followings.

g1 = EFFI
est

(1 + e1) (1 + e2)
− EFFI

crit (3.1)

g2 = DFFI
crit − DFFI

est

(1 + e1) (1 + e2)
(3.2)

g3 = ESI
est

(1 + e1) (1 + e2)
− ESI

crit (3.3)

g4 = DSI
crit − DSI

est

(1 + e1) (1 + e2)
(3.4)

where E is the energy absorbed by the structural com-
ponents in crash, D is the intrusion distance, the super-
scripts ‘FFI’ and ‘SI’ refers to the full frontal impact
and side impact scenarios, the subscript ‘est’ stands for
the estimated value of the response, and the subscript
‘crit’ refers to the critical values of these responses,
which are set to EFFI

crit = 89.5 MPa, DFFI
crit = 158.5 mm,

ESI
crit = 28.6 MPa, and DSI

crit = 573.7 mm.
The most robust way of computing system reliability

is through the Monte Carlo simulation (MCS) method
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(Robert and Casella 2004). The correlation between
different failure modes is taken care of by itself auto-
matically. Since the existence of metamodels renders
the MCS in reliability estimations, we use MCS in
system reliability assessment.

4.2 System reliability-based design optimization,
SRBDO

Several alternative formulations can be utilized for
SRBDO for crashworthiness. For instance, the structu-
ral weight can be minimized such that the system
reliability can be maintained above a pre-specified
target value. In this case, the SRBDO problem can be
written as

Find DV (4.1)

Min W (DV) (4.2)
Such that RS (DV) ≤ Rtarget (4.3)

DVL ≤ DV ≤ DVU (4.4)

where DV is the design variable vector, W is the
structural weight, RS is the system reliability, Rtarget is
the target reliability that must be ensured, and DVL

and DVU are the lower and the upper bound vectors
for the design variables, respectively. In our case,
DV vector consists of the thicknesses of the selected
structural parts, and Rtarget is taken as the system
reliability of the baseline design.

Alternatively, one may want to keep the weight of
the structure unchanged while maximizing the system
reliability via efficient allocation of reliability between
different failure modes (see Yang et al. 1999; Ivanovic
2000; Acar and Haftka 2005). In that case, the SRBDO
problem can be written as

Find DV (5.1)

Min − RS (DV) (5.2)

Such that W (DV) ≤ Wbase (5.3)

DVL ≤ DV ≤ DVU (5.4)

where Wbase is the baseline weight of the vehicle. Here
we use normalized value of the weight such that the
baseline weight is set to 1.0.

Solution of Eqs. 4.1–4.4 or 5.1–5.4 requires the calcu-
lation of the system reliability RS for many times. Even
though the calculation of failure probabilities is not

very expensive with the existence of metamodels, we
construct metamodels for the system reliability index
in terms of the design variables since the metamodels
are also useful in sensitivity analysis and can filter out
the numerical noise. The system reliability, RS, and its
corresponding reliability index, βS, are related to each
other through

βS = �−1 (RS) (6)

where � is the cumulative distribution function of the
standard normal distribution.

An FQRS in terms of 13 variables has 105 coeffi-
cients, so we use 200 training points while construct-
ing the metamodels for the system reliability index in
terms of design variables. We construct three different
types of metamodels (QPRS, RBF, and GP) and find
that the GP metamodel is the most accurate (similar
to the case of the metamodels constructed earlier for
the critical responses). The evaluation of accuracies of
these different metamodels is provided in Appendix 2.
The mean absolute cross validation error is computed
as 3.28%, indicating a reasonably good fit. If the error
in the metamodels for the reliability index was large,
then we would consider using the probabilistic suffi-
ciency factor (PSF) of Qu and Hafka (2004) instead of
reliability index, as Qu and Haftka (2004) showed that
the metamodels built for PSF could be more accurate
than the ones built for reliability index.

5 Results

In this section, we first calculate the sensitivities of
the critical responses to the design variables and the
random variables. Next, the sensitivities of the sys-
tem reliability to the design variables are computed
and the reliability allocation between different failure
modes is explored. Then, SRBDO for crashworthiness
is performed. Finally, the effects of reducing uncer-
tainties on the structural safety and weight savings are
investigated.

5.1 Sensitivities of the estimated critical responses
and the weight

The easiest way of calculating the sensitivities is to
fit a LRS to the estimated values of the responses of
interest, where the coefficients in the LRS give the
sensitivities. Figure 7 shows that for all the critical
responses, the impact speed (16th variable) is the most
dominant parameter. Figure 8 shows the effect of other
variables (than the impact speed) on the critical re-
sponses. We see for the FFI scenario that the energy
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Fig. 7 Sensitivities of the
estimated values of the
critical responses to the
design variables and the
random variables

(a) (b)

(c) (d)

absorption is highly affected by the occupant mass (15th
variable) such that as the occupant mass is increased the
energy absorption is increased. The intrusion distance
in FFI scenario is mainly controlled by the thickness
of the left and the right outer CBN (8th variable) and
the material uncertainty parameter (14th variable). As
the thicknesses of the left and the right outer CBN
are reduced, the intrusion distance is increased, which
is no surprise. Also, when the material uncertainty
parameter takes negative values (that is the material
becomes softer), the intrusion distance is increased.

For the SI scenario, the material uncertainty para-
meter is particularly important. As noted earlier, as the
material uncertainty parameter takes negative values,
the energy absorption and the intrusion distance in SSI
increases. We do not see this behavior in the energy
absorption in FFI scenario because in that case the
automobile is moving, so the kinetic effects become
important that explains the strong dependence to the
occupant mass.

5.2 Sensitivities of the system reliability index

To calculate the sensitivity of system reliability, we
follow a similar approach as in the previous section.

We fit LRS metamodels to the system reliability index,
where the coefficients of the LRS metamodel depict the
sensitivities.

Figure 9 shows that the overall system reliability
is dominated by the following design variables: the
thicknesses of the front doors (DV1), the thicknesses of
the front floor panels (DV7), the thicknesses of the left
and right outer CBN (DV8), and the thicknesses of the
left and right front fenders (DV9). Amongst these three
parameters, the thickness of the left and right outer
CBN (DV8) is the most effective. Figure 10 also shows
that increasing the thicknesses of the front floor panel
(DV7) and the thicknesses of the left and right outer
CBN (DV8), and decreasing the thicknesses of the left
and right front fenders (DV9) leads to system reliability
improvement.

5.3 System reliability-based design optimization results

The results of RBDO for different failure modes and
SRBDO for weight and failure probability minimiza-
tion are presented in Table 4. The columns 2–5 of
Table 4 present the results of RBDO for individual fail-
ure modes (RBDO_1 through RBDO_4). In RBDO_1
case, the reliability of energy absorption under FFI is
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Fig. 8 Sensitivities of the
critical responses to the
design variables and the
random variables when the
impact speed is kept constant

(a) (b)

(c) (d)

maximized, while in RBDO_2 case the reliability of
intrusion distance under FFI is maximized. Similarly,
in RBDO_3 case, the reliability of energy absorption
under SI is maximized, while in RBDO_4 case the
reliability of intrusion distance under SI is maximized.

Fig. 9 Sensitivity of the system reliability index to design
variables

The last two columns present the SRBDO results for
maximum system reliability (SRBDO_R) and for the
minimum weight (SRBDO_W), respectively.

In Table 4, comparison of the column 7 to the
columns 3–6 motivates the need for the use of system

Fig. 10 Effect of uncertainty reduction measures on the system
reliability
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Table 4 RBDO and SRBDO
optimization results

Reliability estimations are
performed via MCS with
sample size of 100,000. The
maximum component
reliabilities and the system
reliability attained are
denoted with bold font

Baseline RBDO_1 RBDO_2 RBDO_3 RBDO_4 SRBDO_R SRBDO_W

DV1 0.5 0.7317 0 1 0 1.0 0
DV2 0.5 1 0 0.7989 0 0.1133 0
DV3 0.5 0 1 1 0 0.0 0
DV4 0.5 1 0.0835 0 1 0.0 0
DV5 0.5 0 0 0 1 0.9373 0
DV6 0.5 1 0.0504 0 0 1.0 0
DV7 0.5 1 0.8398 0 1 0.3332 0
DV8 0.5 0 1 1 1 0.9711 0.7904
DV9 0.5 0.1285 0.0559 0 0.5850 0.4847 0
DV10 0.5 0 0 0 0 0.0 0
DV11 0.5 0 0 1 0 0.0 0.1870
DV12 0.5 1 1 0 0 0.0 0
DV13 0.5 1 0.2220 0.2430 0 0.0 0
R1_MCS 0.9842 0.9965 0.9711 0.9855 0.9697 0.9931 0.9791
R2_MCS 0.9902 0.9988 1.0 0.9999 1.0 0.9997 0.9961
R3_MCS 0.9862 0.9732 0.9852 0.9960 0.9837 0.9949 0.9903
R4_MCS 0.9898 0.9881 0.9983 0.9940 1.0 0.9988 0.9917
SR_MCS 0.9712 0.9613 0.9695 0.9799 0.9696 0.9919 0.9704
SR_GP 0.9705 0.9718 0.9742 0.9765 0.9865 0.9917 0.9712
Weight 1.0 1.0 0.9940 1.0 1.0 1.0 0.9702

reliability based design optimization. We see that even
though none of the individual reliabilities is pushed to
its maximum value, the reliabilities of different fail-
ure modes are optimally allocated in such a way that
the system reliability is maximized. We notice that
by redistributing the total structural weight amongst
the selected components, the system reliability can be
increased from 0.9712 to 0.9919, which is 2.1% improve-
ment. If the reliabilities are converted to probabilities
of failure, the conclusion is much stronger such that
the system failure probability is reduced from 0.0288 to
0.0081, about 72% reduction! Alternatively, the system
reliability can be kept constant and the total structural
weight can be reduced. The last column shows that the
weight can be reduced from 1.0 to 0.9702, around 3%
reduction.

The Gaussian process metamodel predictions of sys-
tem reliability are compared to MCS estimations (with
sample size of 100,000) in Table 4. We notice that
the metamodel predictions match well with the MCS

predictions when the optimum design is not very close
to the boundaries of the design domain (e.g., for
RBDO_2 and SRBDO_R). However, the GP predic-
tion is not very accurate for RBDO_4 optimum, which
has only one design variable away from the design
domain boundary.

5.4 The effect of reducing uncertainties

Recall that we have five random variables: (1) a ma-
terial uncertainty parameter, (2) occupant mass, (3)
impact speed, (4) the uncertainty term responsible for
error in finite element analysis on predicting the crash
responses and error in constructed metamodels for the
responses, and (5) the error due to excluding some
randomness in our analysis. Amongst these random
variables, we do not have control over the occupant
mass and the impact speed, while the other uncertain-
ties can be reduced by employing proper URMs. The
material uncertainty can be reduced by measures such

Table 5 Effect of uncertainty reduction on the system reliability of the baseline design

Uncertainty Reduction Reduction Reduction of error Reduction of all
reduction of material error in FEA in ignorance three uncertainty
coefficienta uncertainty terms

0.75 0.9718 0.9801 0.9740 0.9815
0.50 0.9727 0.9850 0.9763 0.9876
0.25 0.9731 0.9874 0.9774 0.9909

The system reliability of baseline design without any uncertainty reduction is computed as 0.9712 via MCS with sample size of 100,000
aThe nominal value of the uncertainty is multiplied by this coefficient
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Table 6 Effect of uncertainty reduction on the reliability based optimum weight

Uncertainty reduction Reduction of material Reduction of Reduction of error Reduction of all
coefficienta uncertainty error in FEA in ignorance three uncertainty terms

0.75 0.9678 0.9620 0.9659 0.9608
0.50 0.9669 0.9597 0.9647 0.9578
0.25 0.9669 0.9580 0.9637 0.9567

aThe nominal value of the uncertainty is multiplied by this coefficient
The weight of the optimum design with no URM applied is 0.9702. The system reliability of all optimum designs are maintained at
0.9712.

as controlling material process parameters or employ-
ing tighter quality control. For instance, in an extrusion
process the material uncertainty can be reduced by con-
trolling the process parameters such as the extrusion
speed, the temperature and the coefficient of friction
between the die and the blank. Similarly, the error in fi-
nite element analysis on predicting the crash responses
can be reduced by fine meshing or developing more
accurate finite element types. The error in constructed
metamodels for the responses can be reduced by in-
creasing the number of training points used in build-
ing the metamodels or employing better metamodels
strategies such as the ensemble of metamodels (see
Goel et al. 2007; Acar and Rais-Rohani 2008).

Table 5 and Fig. 10 show the effect of reducing
uncertainty on the system reliability of the baseline
design. We observe that as the uncertainties are re-
duced, the system reliability is improved as expected.
However, the reliability improvement is more profound
at the earlier stages of a URM. That is, the reliabil-
ity improvement obtained by reducing the uncertainty
from its nominal value to 75% of its nominal value

Fig. 11 Effect of uncertainty reduction measures on structural
weight

is greater than the reliability improvement obtained
by reducing the uncertainty from 75% of its nominal
value to 50%. We also found that the error reduction
was more effective than the variability reduction. The
tradeoff plot in Fig. 10 can be utilized by the company
manager to decide whether to assign the expenditures
for overdesigned (i.e., heavier) structures or assign the
expenditures to employ URMs, and if so what type of
URM is preferable over the others. For making this
kind of a decision, Fig. 10 needs to be accompanied by
cost models of structural weight and the URMs as well
as structural weight versus URM tradeoff plots, which
we will generate next.

To generate structural weight versus URM tradeoff
plots, we perform system reliability based optimization
for minimum weight (Eqs. 4.1–4.4) within the presence
of URMs. For that purpose, we generate metamodels
for the system reliability index when a URM of interest
is applied. We consider reduction of three separate
uncertainty terms as well as simultaneous reduction
of all the terms. The results are presented in Table 6
and Fig. 11. Table 6 shows that application of URMs
can increase the weight savings further down to 4.3%
(compare to 3% weight saving with no URM). The
trend in Fig. 11 is similar to that of Fig. 10 in that as the
uncertainties are reduced, more weight can be saved,
while the weight saving rate is reduced as uncertainty is
reduced further to very small values.

6 Concluding remarks

System reliability-based crashworthiness optimization
of an automobile is performed and reliability allocation
in different failure modes is analyzed. The effect of var-
ious uncertainty reduction measures is evaluated and
the tradeoff plots of uncertainty reduction measures,
system reliability, and structural weight are generated.
These types of tradeoff plots along with proper cost
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models can be used by a company manager to decide
whether to assign the expenditures to employ URMs
(e.g., tighter quality controls, reduced manufacturing
variability, improved structural analysis models) or to
the excess weight to protect against the unreduced un-
certainties. The sensitivity analysis of crashworthiness
responses and system reliability are analyzed and rela-
tive importance of the structural members in different
crash scenarios is quantified. From the results obtained
in this study, we drew the following conclusions.

• SRBDO for maximum system reliability did not
maximize any of the individual failure probabilities.
However, the reliabilities of different failure modes
were optimally allocated within the system such
that the system failure probability was minimized.
The system failure probability could be reduced by
72% for the same weight.

• Similarly, when SRBDO for weight minimization
was performed, 3% structural weight saving could
be achieved without jeopardizing the overall struc-
tural safety.

• Reducing uncertainties greatly improved the sys-
tem reliability, and the improvement in system reli-
ability was translated into weight savings. We found
that as uncertainties are reduced, even though more
weight can be saved, the rate of weight saving is
reduced.

• For this specific problem, we found that reducing
errors was more effective than reducing material
uncertainty.

• The most dominant parameter affecting the crash
responses of an automobile was found to be the
impact speed. The most important design variable
influencing the system reliability was the thickness
of the outer CBN, followed by the thicknesses of
front fenders, floor panels and front doors.
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Appendix 1 Evaluation of the accuracies
of metamodels constructed to approximate
the critical system responses and the weight

We generate three types of metamodels: QPRS, RBF,
and GP for each critical response and LPRS for the

Table 7 Accuracy of metamodels constructed for energy absorp-
tion in full frontal impact

Error metric QPRS RBF GP

% Mean absolute cross
validation error 4.50 8.02 2.53

Correlation coefficient 0.9971 0.9930 0.9963

Table 8 Accuracy of metamodels constructed for intrusion dis-
tance in full frontal impact

Error metric QPRS RBF GP

% Mean absolute cross
validation error 26.64 40.99 13.26

Correlation coefficient 0.9912 0.9828 0.9945

Table 9 Accuracy of metamodels constructed for energy absorp-
tion in side impact

Error metric FQPRS RBF GP

% Mean absolute cross
validation error 9.74 11.39 2.88

Correlation coefficient 0.9875 0.9833 0.9914

Table 10 Accuracy of metamodels constructed for intrusion dis-
tance in side impact

Error metric FQPRS RBF GP

% Mean absolute cross
validation error 3.29 3.82 2.14

Correlation coefficient 0.9981 0.9978 0.9985

Table 11 Accuracy of the LPRS metamodel constructed for
weight

Error metric Value

% Mean absolute cross validation error 0.005
Correlation coefficient 0.99998
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weight. We use two error metrics to evaluate the ac-
curacies of these metamodels: (1) the mean absolute
cross validation error, and (2) the correlation coeffi-
cient between the actual and the predicted values of the
responses.

The mean absolute cross validation error is an esti-
mator of the global mean absolute error, and it can be
calculated from

macve = 1

N

N∑

k=1

∣∣∣∣
yk − ŷ(k)

yk

∣∣∣∣ (A.1)

where yk is the true response at xk and ŷ(k) is the
corresponding predicted value from the metamodel
constructed using all except the kth design point.

Tables 7, 8, 9 and 10 show that for all the critical
responses, the GP metamodels yields the most accurate
metamodels. The two error metrics indicate that the
accuracies of the metamodels are acceptable. Table 11
shows that the LPRS constructed for structural weight
is also very accurate.

Appendix 2 Evaluation of the accuracies
of metamodels constructed to approximate
the reliability indices for different failure modes

We generate three types of metamodels: QPRS, RBF,
and GP for the system reliability index. We use two
error metrics to evaluate the accuracies of these meta-
models: (1) the mean absolute cross validation error,
and (2) the correlation coefficient between the actual
and the predicted values. Table 12 shows that for the
system reliability index, the GP metamodel is the most
accurate.

Table 12 Accuracy of the metamodels built for system reliability
index

Error metric QPRS RBF GP

% Mean absolute cross
validation error 4.98 7.02 3.28

Correlation coefficient 0.9746 0.9601 0.9858

References

Acar E, Haftka RT (2005) Reliability based aircraft structural
design optimization with uncertainty about probability dis-
tributions. In: Proceedings of the 6th world congress
on structural and multidisciplinary optimization, Rio de
Janeiro, Brazil, 30 May–3 June 2005

Acar E, Rais-Rohani M (2008) Enhanced surrogate modeling
via optimum ensemble of metamodels. Struct and Multidisc
Optim (published online). doi:10.1007/s00158-008-0230-y

Acar E, Haftka RT, Sankar BV, Qui X (2006) Increasing allow-
able flight loads by improved structural modeling. AIAA J
44(2):376–381

Acar E, Haftka RT, Johnson TF (2007) Tradeoff of uncer-
tainty reduction mechanisms for reducing structural weight.
J Mech Des 129(3):266–274

Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support
vector regression for approximation of complex engineering
analyses. ASME J Mech Des 127(11):1077–1087

Dyn N, Levin D, Rippa S (1986) Numerical procedures for sur-
face fitting of scattered data by radial basis functions. SIAM
J Sci Statist Comput 7(2):639–659

Esat I (1999) Genetic algorithm-based optimisation of a vehicle
suspension system. Int J Veh Des 21(2/3):148–160

Fang H, Solanki K, Horstemeyer M (2005) Numerical sim-
ulations of multiple vehicle crashes and multidisciplinary
crashworthiness optimization. Int J Crashworthiness 10(2):
161–172

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of
Surrogates. Struct Multidisc Optim 33(3):199–216

Gu L, Yang RJ, Tho CH, Makowski M, Faruque O, Li Y (2001)
Optimization and robustness for crashworthiness of side
impact. Int J Veh Des 25(4):348–360

Gunn SR (1997) Support vector machines for classification and
regression. In: Image speech and intelligent systems research
group, University of Southampton, Southampton

Hamza K, Saitou K (2004) Crashworthiness design using
meta-models for approximating of box-section members.
In: Proceedings of the 8th Cairo University international
conference on mechanical design and production, Cairo,
Egypt, vol 1, pp 591–602, 4–6 January

Horstemeyer M, Fang H, Solanki K (2004) Energy-based crash-
worthiness optimization for multiple vehicle impacts. Trans-
portation 2004: Transportation and Environment, pp 11–16

Horstemeyer MF, Solanki K, Steele WG (2005) Uncertainty
methodologies to characterize a damage evolution model.
In: Plasticity 2005 conference, Kauai, Hawaii, 4–8 Jan

Ivanovic G (2000) The reliability allocation application in vehicle
design. Int J Veh Des 24(2–3):274–286

Kaya N (2006) Optimal design of automotive diaphragm spring
with fatigue resistance. Int J Veh Des 40(1/2/3):126–143

Kim H-S, Chen W, Wierzbicki T (2002) Weight and crash
optimization of foam-filled three-dimensional “S” frame.
Comput Mech 28:417–424

Kodiyalam S, Sobieszczanski-Sobieski J (2001) Multidisciplinary
design optimisation - some formal methods, framework re-
quirements, and application to vehicle design. Int J Veh Des
25(1/2):3–22

http://dx.doi.org/10.1007/s00158-008-0230-y


System reliability based vehicle design 325

Kurtaran H, Eskandarian A, Marzougui D, Bedewi NE (2002)
Crashworthiness design optimization using successive re-
sponse surface approximations. Comput Mech 29:409–421

Lee K, Joo W, Song S, Cha I, Park G (2004) Optimization of an
automotive side door beam, considering static requirement.
In: Proceeding of the institution of mechanical engineers,
part D. J Automobile Engineering 218:51–57

Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE - a
MATLAB kriging toolbox. In: Informatics and mathemat-
ical modelling, Technical University of Denmark, Lyngby

Martin JD, Simpson TW (2005) Use of Kriging models to ap-
proximate deterministic computer models. AIAA J 43(4):
853–863

Marvis D, Bandte O (1997) A probabilistic approach to multi-
variate constrained robust design simulation. SAE 97–5508

Mourelatos ZP, Kuczera RC, Latcha M (2006) An efficient
Monte Carlo reliability analysis using global and local meta-
models. In: Proceedings of 11th AIAA/ISSMO multidisci-
plinary analysis and optimization conference, September,
Portsmouth, VA

Mullur AA, Messac A (2004) Extended radial basis functions:
more flexible and effective metamodeling. In: Proceedings of
10th AIAA/ISSMO symposium on multidisciplinary analysis
and optimization, Albany, NY, August 30–Sept 1

Myers RH, Montgomery DC (2002) Response surface methodol-
ogy: process and product optimization using designed exper-
iments. Wiley, New York

Piskie MA, Gioutsos T (1992) Automobile crash modeling and the
Monte Carlo method. In: SAE technical paper series, pub.
No. 920480. Society of Automotive Engineers, Warrendale

Qu X, Haftka RT, Venkataraman S, Johnson TF (2003) De-
terministic and reliability-based optimization of composite
laminates for propellant tanks. AIAA J 41(10):2029–2036

Qu X, Haftka RT (2004) Reliability-based design optimization
using probabilistic sufficiency factor. Struct Multidisc Optim
27(5):314–325

Rais-Rohani M, Solanki K, Eamon C (2006) Reliability-
based optimization of lightweight automotive structures
for crashworthiness. In: 11th AIAA/ISSMO multidisciplin-
ary analysis and optimization conference, Portsmouth,
Virginia, 6–8 September, AIAA Paper 2006-7004

Rasmussen CE, Williams CKI (2006) Gaussian processes for ma-
chine learning. MIT, Cambridge

Robert CP, Casella G (2004) Monte Carlo statistical methods,
2nd edn. Springer, New York

Stander N, Roux W, Giger M, Redhe M, Fedorova N, Haarhoff J
(2004) A comparison of metamodeling techniques for crash-
worthiness optimization. In: 10th AIAA/ISSMO multidisci-
plinary analysis and optimization conference, Albany, NY,
30 August-1 September, AIAA Paper No. 2004–4489

Sinha K (2007) Reliability-based multiobjective optimization
for automotive crashworthiness and occupant safety. Struct
Multidisc Optim 33(3):255–268

Sinha K, Krishnan R, Raghavendra D (2007) Multi-objective ro-
bust optimisation for crashworthiness during side impact. Int
J Veh Des 43(1/2/3/4):116–135

Wang L, Basu PK, Leiva JP (2003) Design optimization of auto-
mobile welds. Int J Veh Des 31(4):377–391

Wang L, Beeson D, Wiggs G (2005) Gaussian process metamod-
els for efficient probabilistic design in complex engineering
design spaces. In: ASME 2005 international design engineer-
ing technical conferences & computers and information in
engineering conference, Long Beach, CA, September

Yang RJ, Tseng L, Nagy L, Cheng J (1994) Feasibility study of
crash optimization. In: Gilmore BJ et al (eds) Advances in
design automation DE 69(2):549–556.

Yang J, Hwang M, Sung T, Jin Y (1999) Application of genetic
algorithm for reliability allocation in nuclear power plants.
Reliab Eng Syst Saf 65:229–238

Yang RJ, Chuang C-H, Che X, Soto C (2000a) New applications
of topology optimization in automotive industry. Int J Veh
Des 23(1/2):1–15

Yang RJ, Gu L, Liaw L, Gearhart C, Tho CH, Liu X, Wang BP
(2000b) Approximations for safety optimization of large sys-
tems. In: ASME design automation conference, Paper No:
DETC-00/DAC-14245, Baltimore, MD, 10–13 September

Yang RJ, Gu L, Tho C, Choi KK, Youn BD (2002) Reliability-
based design optimization of a full vehicle system. AIAA-
2002-1758. In: Proc. 43rd AIAA SDM conference, Denver,
CO

Youn BD, Choi KK, Yang RJ, Gu L (2004) Reliability-based de-
sign optimization for crashworthiness of side vehicle impact.
Struct Multidisc Optim 26:272–283

Zaouk AK, Marzougui D, Bedewi NE (2000a) Development of
a detailed vehicle finite element model, Part I: methodology.
Int J Crashworthiness 5(1):25–35

Zaouk AK, Marzougui D, Kan CD (2000b) Development of a
detailed vehicle finite element model, Part II: material char-
acterization and component testing. Int J Crashworthiness
5(1):37–50


	System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures
	Abstract
	Introduction
	Crashworthiness analysis and critical responses
	Design variables
	Random variables
	Material uncertainty
	Error in finite element predictions of crashworthiness responses and metamodels
	Error due to excluding some randomness in crash analysis


	Metamodel construction for critical responses and weight
	System reliability based optimization
	Error model and the system reliability
	System reliability-based design optimization, SRBDO

	Results
	Sensitivities of the estimated critical responses and the weight
	Sensitivities of the system reliability index
	System reliability-based design optimization results
	The effect of reducing uncertainties

	Concluding remarks
	Appendix 1 Evaluation of the accuracies of metamodels constructed to approximate the critical system responses and the weight
	Appendix 2 Evaluation of the accuracies of metamodels constructed to approximate the reliability indices for different failure modes
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


