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Passenger aircraft structural design is based on a safety factor of 1.5, and this safety factor alone is equivalent to

a probability of failure of between 10−2 and 10−3. Yet airliners are much safer, with crashes caused by structural

failure being extremely rare based on accident records. The probability of structural failure of transport aircraft

is of the order of 10−8 per flight segment. This paper looks at two additional contributions to safety—the use

of conservative material properties and certification tests—using a simple model of structural failure. We find

that the three safety measures together might be able to reduce the calculated probability of failure to about

10−7. Additional measures, such as conservative load specifications, might be responsible for the higher safety

encountered in practice, explaining why passenger aircraft are so structurally safe. In addition, the paper sheds

light on the effectiveness of certification tests for improving safety. It is found that certification tests reduce the

calculated failure probabilities by reducing the modeling error. We find that these tests are most effective when

safety factors are low and when most of the uncertainty is caused by systemic errors rather than variability.

I. Introduction

I N the past few years, there has been growing interest in applying
probability methods to aircraft structural design (e.g., Refs. 1–4).

However, many engineers are skeptical of our ability to calculate the
probability of failure of structural designs for the following reasons.
First, data on statistical variability in material properties, geometry,
and loading distributions are not always available in full (e.g., joint
distributions), and it has been shown that insufficient information
can lead to large errors in probability calculations (e.g., Refs. 5 and
6). Second, the magnitude of errors in calculating loads and pre-
dicting structural response is not known precisely, and there is no
consensus on how to model these errors in a probabilistic setting. As
a result of these concerns, it is possible that transition to probability-
based design will be gradual. In such circumstances it is important
to understand the impact of existing design practices on safety. This
paper is a first attempt to explore the effects of various safety mea-
sures taken during aircraft structural design using the deterministic
design approach based on Federal Aviation Administration (FAA)
regulations.

The safety measures that we include here are 1) the use of safety
factors, 2) the use of conservative material properties (A-basis),
and 3) the use of final certification tests. These safety measures
are representative rather than all inclusive. For example, the use of
A-basis properties is a representative measure for the use of con-
servative material properties. We do not include in this discussion
the additional safety caused by structural redundancy and caused
by conservative design load specification. The use of A-basis prop-
erty rather than B-basis is because we did not include redundancy.
FAA suggests that (FAR 25.613) when there is a single failure path,
A-basis properties should be employed, but in case of multiple fail-
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ure paths B-basis properties are to be used. The effect of the three
individual safety measures and their combined effect on the proba-
bility of structural failure of the aircraft are demonstrated. We use
Monte Carlo simulations to calculate the effect of these safety mea-
sures on the probability of failure of a structural component.

We start with a structural design employing all considered safety
measures. The effects of variability in geometry, loads, and material
properties are readily incorporated by the appropriate random vari-
ables. However, there is also uncertainty because of various errors
such as modeling errors in the analysis. These errors are fixed but
unknown for a given airplane. To simulate these epistemic uncertain-
ties, we transform the error into a random variable by considering
the design of multiple aircraft models. As a consequence, for each
model the structure is different. It is as if we pretend that there are
hundreds of companies (Airbus, Boeing, etc.), each designing es-
sentially the same airplane, but each having different errors in their
structural analysis. This assumption is only a device to model lack
of knowledge or errors in probabilistic setting. However, pretending
that the distribution represents a large number of aircraft companies
helps to motivate the probabilistic setting.

For each model we simulate certification testing. If the airplane
passes the test, then an entire fleet of airplanes with the same design
is assumed to be built with different members of the fleet having dif-
ferent geometry, loads, and material properties based on assumed
models for variability in these properties. That is, the uncertainty
caused by variability is simulated by considering multiple realiza-
tions of the same design, and the uncertainty caused by errors is
simulated by designing different structures to carry the same loads.

We consider only stress failure caused by extreme loads, which
can be simulated by an unstiffened panel designed under uniaxial
loads. No testing of components prior to certification is analyzed
for this simple example.

II. Structural Uncertainties

A good analysis of different sources of uncertainty is provided by
Oberkampf et al.7 Here we simplify the classification, with a view to
the question of how to control uncertainty. We propose in Table 1 a
classification that distinguishes between 1) uncertainties that apply
equally to the entire fleet of an aircraft model and 2) uncertainties that
vary for the individual aircraft. The distinction is important because
safety measures usually target one or the other. Although type 2) are
random uncertainties that can be readily modeled probabilistically,
type 1 are fixed for a given aircraft model (e.g., Boeing 737-400),
but they are largely unknown.
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Table 1 Uncertainty classification

Type of uncertainty Spread Cause Remedies

Systemic error Entire fleet of components Errors in predicting structural Testing and simulation to
(modeling errors) designed using the model failure and differences between properties improve math model

used in design and average fleet properties and the solution
Variability Individual component level Variability in tooling, manufacturing Improve tooling and construction

process, and flying environments Quality control

That is, the uncertainty in the failure of a structural member can
also be divided into two types: systemic errors and variability. Sys-
temic errors reflect inaccurate modeling of physical phenomena,
errors in structural analysis, errors in load calculations, or use of
materials and tooling in construction that are different from those
specified by the designer. Systemic errors affect all of the copies
of the structural components made and are therefore fleet-level un-
certainties. They can reflect differences in analysis, manufacturing,
and operation of the aircraft from an ideal. The ideal aircraft is
an aircraft designed assuming that it is possible to perfectly predict
structural loads and structural failure for a given structure, that there
are no biases in the average material properties and dimensions of
the fleet with respect to design specifications, and that there exists
an operating environment that on average agrees with the design
specifications. The other type of uncertainty reflects variability in
material properties, geometry, or loading between different copies
of the same structure and is called here individual uncertainty.

III. Safety Measures

Aircraft structural design is still done, by and large, using code-
based design rather than probabilistic approaches. Safety is im-
proved through conservative design practices that include use of
safety factors and conservative material properties. It is also im-
proved by tests of components and certification tests that can reveal
inadequacies in analysis or construction. In the following we detail
some of these safety measures:

Safety margin: Traditionally all aircraft structures are designed
with a safety factor to withstand 1.5 times the limit load without
failure.

A-basis properties: To account for uncertainty in material prop-
erties, the FAA recommends the use of conservative material prop-
erties. This is determined by testing a specified number of coupons
selected at random from a batch of material. The A-basis property is
determined by calculating the value of a material property exceeded
by 99% of the population with 95% confidence.

Component and certification tests: Component tests and certifica-
tion tests of major structural components reduce stress and material
uncertainties for given extreme loads caused by inadequate struc-
tural models. These tests are conducted in a building-block proce-
dure. First, individual coupons are tested, and then a subassembly is
tested followed by a full-scale test of the entire structure. Because
these tests cannot apply every load condition to the structure, they
leave uncertainties with respect to some loading conditions. It is
possible to reduce the probability of failure by performing more
tests to reduce uncertainty or by extra structural weight to reduce
stresses. If certification tests were designed together with the struc-
ture, it is possible that additional tests would become cost effective
because they would allow reduced structural weight.

We simulate the effect of these three safety measures by assum-
ing the statistical distribution of the uncertainties and incorporating
them in approximate probability calculations and Monte Carlo sim-
ulation. For variability the simulation is straightforward. However,
although systemic errors are uncertain at the time of the design,
they will not vary for a single structural component on a particu-
lar aircraft. Therefore, to simulate the uncertainty, we assume that
we have a large number of nominally identical aircraft being de-
signed (e.g., by Airbus, Boeing, Bombardier, etc.), with the errors
being fixed for each aircraft. This creates a two-level Monte Carlo
simulation, with different aircraft models being considered at the
upper level and different instances of the same aircraft at the lower
level.

Fig. 1 Flowchart for Monte Carlo simulation of panel design and
failure.

To illustrate the procedure, we consider a simple example of an
unstiffened panel designed for strength under uniaxial tensile loads.
This will still simulate reasonably well more complex configura-
tions, such as stiffened panels subject to stress constraints. Aircraft
structures have more complex failure modes, such as fatigue and
fracture, that require substantially different treatment and the con-
sideration of the effects of inspections (see Ref. 8). However, this
simple example serves to further our understanding of the interac-
tion between various safety measures. The procedure is summarized
in Fig. 1, which is described in detail in the next section.

IV. Panel Example Definition

A. Design and Certification Testing

We assume that we have N different aircraft models, that is, we
have N different companies producing a model with systemic errors.
We consider a generic panel to represent the entire aircraft structure.
The true stress σtrue is found from the equation

σtrue = P/wt (1)

where P is the applied load on the panel of width w and thickness
t . In a more general situation, Eq. (1) can apply to a small element
in a more complex component.

When errors are included in the analysis, the true stress in the
panel is different from the calculated stress. We include the errors
by introducing an error factor e while computing the stress as

σcalc = (1 + e)σtrue (2)

Positive values of e yield conservative estimates of the true stress,
and negative values yield unconservative stress estimation. The other
random variables account for variability. Combining Eqs. (1) and
(2), the stress in the panel is calculated as

σcalc = (1 + e)(P/wt) (3)

The design thickness is determined so that the calculated stress in
the panel is equal to material allowable stress for a design load Pd

multiplied by a safety factor SF ; hence, the design thickness of the
panel is calculated from Eq. (3) as

tdesign = (1 + e)(SF Pd/wdesignσa) (4)
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where the design panel width wdesign is taken here to be 1.0 m and
σa is the material stress allowable obtained from testing a batch of
coupons according to procedures that depend on design practices.
Here, we assume that A-basis properties are used (Appendix A).
During the design process, the only random quantities are σa and e.
The thickness obtained from Eq. (4) (step A in Fig. 1) is the nominal
thickness for a given aircraft model. The actual thickness will vary
because of individual–level manufacturing uncertainties.

After the panel has been designed (that is, thickness determined)
from Eq. (4), we simulate certification testing for the aircraft. Here
we assume that the panel will not be built with complete fidelity
to the design due to variability in geometry (width and thickness).
The panel is then loaded with the design axial force of (SF times
Pd ), and the stress in the panel is recorded. If this stress exceeds the
failure stress (itself a random variable; see Table 2.) then the design
is rejected; otherwise, it is certified for use. That is, the airplane is
certified (step B in Fig. 1) if the following inequality is satisfied:

σ − σ f = SF Pd/wt − σ f ≤ 0 (5)

and we can build multiple copies of the airplane. We subject the
panel in each airplane to actual random maximum (over a lifetime)
service loads (step D) and decide whether it fails using Eq. (6):

P ≥ R = twσ f (6)

Here, P is the applied load, and R is the resistance or load capacity
of the structure in terms of the random width w, thickness t , and
failure stress σ f . A summary of the distributions for the random
variables used in design and certification is listed in Table 2.

This procedure of design and testing is repeated (steps A and
B) for N different aircraft models. For each new model, a different
random error factor e is picked for the design, and different allowable
properties are generated from coupon testing (Appendix A). Then
in the testing, different thicknesses and widths, and different failure
stresses are generated at random from their distributions.

Table 2 Distribution of random variables used for panel design

and certification

Variables Distribution Mean Scatter

Plate width w Uniform 1.0 (1%) bounds
Plate thickness t Uniform tdesign (3%) bounds
Failure stress σ f Lognormal 150.0 10% coefficient of variation
Service load P Lognormal 100.0 10% coefficient of variation
Error factor e Uniform 0.0 10% to 50%

Fig. 2 Initial and updated probability distribution functions of error factor e. Error bound is 50% and Monte Carlo simulation done with a sample
of 50,000.

B. Effect of Certification Tests on Distribution of Error Factor e

One can argue that the way certification tests reduce the proba-
bility of failure is by changing the distribution of the error factor e.
Without certification testing, we assume symmetric distribution of
this error factor. However, designs based on unconservative models
are more likely to fail certification, and so the distribution of e be-
comes conservative for structures that pass certification. To quantify
this effect, we calculated the updated distribution of the error factor
e. The updated distribution is calculated analytically by Bayesian
updating by making some approximations, and Monte Carlo simu-
lations are conducted to check the validity of those approximations.

Bayesian updating is a commonly used technique to obtain up-
dated (or posterior) distribution of a random variable upon obtaining
new information about the random variable. The new information
here is that the panel has passed the certification test.

Using Bayes’ theorem, the updated (posterior) distribution f U (θ)

of a random variable θ is obtained from the initial (prior) distribution
f I (θ) based on new information as

f U (θ) = P(∈|θ) f I (θ)
∫ ∞

−∞ P(∈|θ) f I (θ) dθ
(7)

where P(∈|θ) is the conditional probability of observing the exper-
imental data ∈ given that the value of the random variable is θ .

For our case, the posterior distribution f U (e) of the error factor
e is given as

f U (e) = P(C |e) f I (e)
∫ b

−b
P(C |e) f I (e) de

(8)

where C is the event of passing certification and P(C |e) is the prob-
ability of passing certification for a given e. Initially, e is assumed to
be uniformly distributed. The procedure of calculation of P(C |e) is
described in Appendix B, where we approximate the distribution of
the geometrical variables t and w as log-normal, taking advantage
of the fact that their coefficient of variation is small compared to
that of the failure stress (see Table 2).

We illustrate the effect of certification tests for the panels designed
with A-basis material properties. An initial and updated distribution
plot of error factor e with 50% bound is shown in Fig. 2. Monte Carlo
simulation with 50,000 aircraft models is also shown. Figure 2 shows
that the certification tests greatly reduce the probability of negative
error, hence eliminating most unconservative designs. As seen from
the figure, the approximate distribution calculated by the analytical
approach matches well the distribution obtained from Monte Carlo
simulations.
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C. Probability of Failure Calculation by Analytical Approximation

The stress analysis represented by Eq. (1) is trivial, so that the
computational cost of Monte Carlo simulation of the probability of
failure is not high. However, it is desirable to obtain also analytical
probabilities that can be used for more complex stress analysis and
to check the Monte Carlo simulations.

To take advantage of simplifying approximations of the distri-
bution of the geometry parameters, it is convenient to perform the
probability calculation in two stages, corresponding to the inner
and outer loops of Fig. 1. That is, we first obtain expressions for the
probability of failure of a single aircraft model (that is, given e and
allowable stress). We then calculate the probability of failure over
all aircraft models.

The mean value of the probability of failure over all aircraft mod-
els is calculated as

P̂ f =
∫

P f (tdesign) f (tdesign) dtdesign (9)

where tdesign is the nondeterministic distribution parameter and
f (tdesign) is the probability density function of parameter tdesign.

It is important to have a measure of variability in this probabil-
ity from one aircraft model to another. The standard deviation of
failure probability gives a measure of this variability. In addition, it
provides information on how accurate is the probability of failure
obtained from Monte Carlo simulations. The standard deviation can
be calculated from

σP f
=

{∫

[P f (tdesign) − P̂ f ]2 f (tdesign) dtdesign

}
1
2

(10)

D. Probability of Failure Calculation by Monte Carlo Simulations

The inner loop in Fig. 1 (steps C–E) represents the simulation of
a population of M airplanes (hence panels) that all have the same
design. However, each panel is different because of variability in
geometry, failure stress, and loading (step D). We subject the panel
in each airplane to actual random maximum (over a lifetime) service
loads (step E) and calculate whether it fails using Eq. (6).

For airplane models that pass certification, we count the number
of panels failed. The failure probability is calculated by dividing the
number of failures by the number of airplane models that passed
certification, times the number of copies of each model.

Table 3 Comparison of probability of failures Pf for panels designed using safety factor
of 1.5, mean value for allowable stress, and error bound of 50%

Analytical Monte Carlo
Value approximation simulationa % error

Average value of P f without certification Pnt 1.741 × 10−1 1.787 × 10−1 2.6

Standard deviation of Pnt 3.006 × 10−1 3.035 × 10−1 1.0

Average value of P f with certification Pt 1.010 × 10−3 1.094 × 10−3 7.6

Standard deviation of Pt 6.16 × 10−3 5.622 × 10−3 9.6

Average value of initial error factor ei 0.0000 −0.0058 ——

Standard deviation of ei 0.2887 0.2876 0.4
Average value of updated error factor eup 0.2444 0.2416 1.2
Standard deviation of eup 0.1578 0.1546 2.1

a N = 1000 and M = 100,000 is used in the Monte Carlo simulations.

Table 4 Probability of failure for different bounds on error e for panels designed using safety factor of 1.5 and A-basis

property for allowable stress

Error Average design Certification Probability of Probability of Probability Probability
bound thickness after failure failure after failure without ratio difference

e, % certificationa,b rate, % certification Pt × 10−4b
certification Pnt × 10−4b

Pt /Pnt Pnt − Pt

50 1.453 (0.18) 30.3 6.04 (8.30) 447 (2.63) 1.35 × 10−2 4.41 × 10−2

40 1.388 (0.17) 21.4 5.74 (7.01) 96.3 (2.78) 5.96 × 10−2 9.06 × 10−3

30 1.327 (0.15) 16.2 3.76 (2.91) 12.7 (2.65) 2.96 × 10−1 8.94 × 10−4

20 1.286 (0.11) 8.4 0.972 (2.55) 1.14 (2.24) 8.53 × 10−1 1.68 × 10−5

10 1.273 (0.06) 1.5 0.101 (1.53) 0.117 (1.50) 8.66 × 10−1 1.57 × 10−6

aAverage over N = 500 models. Average design thickness without certification is 1.271.
bNumbers in parenthesis denote the coefficient of variation of the quantity, as obtained from the analytical approximation.

The analytical approximation for the probability of failure suffers
because of the approximations used, whereas the Monte Carlo sim-
ulation is subject to sampling errors, especially for low probabilities
of failure. Using large samples, though, can reduce the latter. There-
fore, we compared the two methods for a relatively large sample of
1000 aircraft models with 100,000 instances of each model. In addi-
tion, the comparison is performed for the case where mean material
properties (rather than A-basis properties) are used for the design, so
that the probability of failure is high enough for the Monte Carlo sim-
ulation to capture it accurately. Table 3 shows the results for this case.

The last column of Table 3 shows the percent error of the ana-
lytical approximation compared to Monte Carlo simulations. It is
seen that the analytical approximation is in good agreement with
the values obtained through Monte Carlo simulations. Further in-
vestigations with larger Monte Carlo simulations (100,000 samples)
showed that these differences are mostly due to limited Monte Carlo
sampling. It is remarkable that the standard deviation of the proba-
bility of failure is almost twice the average value of the probability
(the ratio, the coefficient of variation, is about 170%) before certi-
fication and about six times larger after certification. This indicates
huge variability in the probability of failure for different aircraft
models, and this is because of the large error bound e = 50%. With
1000 different aircraft models N , the standard deviation in the Monte
Carlo estimates is about 3%, and the differences between the Monte
Carlo simulation and the analytical approximation are of that order.

V. Effect of Three Safety Measures
on Probability of Failure

We next investigate the effect of other safety measures on fail-
ure probability of the panels using Monte Carlo simulations. We
performed the simulation for a range of variability in error factor
e for 500 airplane models (N samples in outer loop) and 20,000
copies of each airplane model (M samples in inner loop). Here, we
compare the probability of failure of a structure designed with three
safety measures (safety factor, conservative material property, and
certification testing) to that of a structure designed without safety
measures.

Table 4 presents the results when all safety measures are used for
different bounds on the error. The second column shows the mean
and standard deviation of design thicknesses generated for panels
that passed certification. These panels correspond to the outer loop
of Fig. 1. The variability in design thickness is caused by the



34 ACAR ET AL.

randomness in the error e and in the stress allowable. The aver-
age thickness before certification was 1.271, so that the column
shows the conservative effect of certification testing. When the error
bound is 10%, 98.5% of the panels pass certification (third column in
Table 4), and the average thickness is increased by only 0.16% be-
cause of the certification process. On the other hand, when the error
bound is 50%, 30% of the panels do not pass certification, and this
raises the average thickness to 1.453. Thus, the increase in error
bound has two opposite effects. Without certification testing, in-
creasing the error bound greatly increases the probability of failure.
For example, when the error bound changes from 30 to 50%, the
probability of failure without certification changes from 0.00127 to
0.0447, or by a factor of 35. On the other hand, with the increased
average thickness, after certification the probability increases only
from 3.76 × 10−4 to 6.04 × 10−4.

The effectiveness of the certification tests can be expressed by
two measures of probability improvement. The first measure is the
ratio of the probability of failure with the test Pt to the probability
of failure without tests Pnt. The second measure is the difference
of these probabilities. The ratio is a more useful indicator for low
probabilities of failure, whereas the difference is more meaningful
for high probabilities of failure. However, when Pt is high, the ratio
can mislead. That is, an improvement from a probability of failure
of 0.5 to 0.1 is more substantial than an improvement in probability
of failure of 0.1 to 0.01 because it “saves” more airplanes. However,
the ratio is more useful when the probabilities are small, and the
difference is not very informative.

Table 4 shows that certification testing is more important for large
error bounds e. For these higher values the number of panels that did
not pass certification is higher, thereby reducing the failure prob-
ability for those that passed certification. Although the effect of
component tests (building block tests) is not simulated, their main
effect is to reduce the error magnitude e. This is primarily because
of the usefulness of component tests in improving analytical models
and revealing unmodeled failure modes. With that in mind, we note
that the failure probability for the 50% error range is 6.0 × 10−4,
and it reduces to 1.0 × 10−5 for the 10% error range, that is, by a
factor of 60.

The actual failure probability of aircraft panels is expected to be
of the order of 10−8 per flight, much lower than the best number
in the fourth column of Table 4. However, the number in Table 4
is for a lifetime for a single structural component. Assuming about
10,000 flights in the life of a panel and 100 independent structural
components, this 10−5 failure probability for a panel will translate
to a per flight probability of failure of 10−7 per airplane. This factor
of 10 discrepancy is exacerbated by other failure modes like fatigue
that have not been considered. However, other safety measures, such
as conservative load specifications, can account for this discrepancy.

Table 5 shows results when average rather than conservative mate-
rial properties are used. It can be seen from Table 5 that the average
thickness determined using the mean value of allowable stress is
lower than that determined using the A-basis value of allowable
stress (Table 4). This is equivalent to adding an additional safety
factor over an already existing safety factor of 1.5. For the distri-
bution considered in this paper, a typical value of the safety factor
caused by A-basis property is around 1.27.

Table 5 Probability of failure for different bounds on error e for panels designed using safety factor of 1.5 and mean
value for allowable stress

Error Average design Certification Probability of Probability of Probability Probability
bound thickness after failure failure after failure without ratio difference

e, % certificationa,b rate, %c certification Pt × 10−4b
certification Pnt × 10−4b

Pt /Pnt Pnt − Pt

50 1.244 (0.13) 50.1 9.44 (6.10) 1780 (1.73) 5.32 × 10−3 1.77 × 10−1

40 1.192 (0.11) 51.5 10.9 (5.43) 1060 (1.86) 1.02 × 10−2 1.05 × 10−1

30 1.137 (0.09) 52.1 15.1 (4.59) 451 (1.86) 3.36 × 10−2 4.36 × 10−2

20 1.080 (0.08) 52.9 22.9 (3.05) 142 (1.64) 1.61 × 10−1 1.19 × 10−2

10 1.025 (0.05) 47.0 27.1 (1.34) 41.8 (1.08) 6.48 × 10−1 1.47 × 10−3

aAverage over N = 500 models.
bNumbers in parenthesis denote the coefficient of variation of the quantity, as obtained from the analytical approximation.
cWith only 500 models, the standard deviation in the certification failure rate is about 2.2%. Thus, all of the numbers in this column are about 50%,
as can be expected when mean material properties are used. Average design thickness without certification is 1.000.

Without the A-basis properties, the stress in the certification test
is approximately equal to the average ultimate service stress, so that
about 50% of the panels fail certification. When the errors are large,
this raises substantially the average thickness of the panels that pass
certification, so that for an error bound of 50% the certification test
is equivalent to a safety factor of 1.244. Large errors produce some
super-strong and some super-weak panels (see Fig. 3b). The super-
weak panels are mostly caught by the certification tests, leaving the
super-strong panels to reduce the probability of failure. Another way
of looking at this effect is to note that when there are no errors, there
is no point to the tests. Indeed, it can be seen that the probability of
failure without certification tests improves with reduced error bound
e, but that the reduced effect of the certification tests reverses the
trend. Thus for this case we obtain the counterintuitive results that
larger errors produce safer designs.

Comparing the first row of Table 5 to Table 3, we see the effect
of the smaller sample for the Monte Carlo simulations. Table 3 was
obtained with 1000 models and 100,000 copies per model, whereas
Table 5 was obtained with 500 models, and 20,000 copies per model.
The difference in the probability of failure after certification between
the two tables is about 14%. However, the two values straddle the
analytical approximation.

The effects of building-block types of tests that are conducted
before certification are not included in this study. These tests reduce
the errors in analytical models. For instance, if there is 50% error
in the analytical model the building-block type of tests can reduce
this error to lower values. Hence, the difference between the rows
of Table 4 can be viewed as indicating the benefits of reducing the
error by building-block tests.

Table 6 shows the effect of not using a safety factor. Although
certification tests improve the reliability, again in a general trend of
high improvement with high error, the lack of safety factor of 1.5
limits the improvement. Comparing Tables 4 and 6, it can be seen
that the safety factor reduces the probability of failure by two to
three orders of magnitudes. It is interesting to note that the effect
of the error bound on the probability of failure after certification
is not monotonic. Certification is still done at the same loads, but
the test airplane is designed for higher loads because of the con-
servative material properties. For high errors, many airplanes will

Fig. 3 Design thickness variation with low and high error bounds.

Note that after certification testing only the designs above the minimum
thickness are built and flown. Those on the right have a much higher

average design thickness than those on the left.
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Table 6 Probability of failure for different bounds on error e for safety factor of 1.0 and A-basis property for allowable stress

Error Average design Certification Failure Failure Probability Probability
bound thickness after failure probability after probability with no ratio difference

e, % certificationa,b,c rate, % certification Pt × 10−2b
certification Pnt × 10−2b

Pt/Pnt Pnt − Pt

50 0.968 (0.18) 52.3 6.76 (2.00) 25.8 (1.29) 2.62 × 10−1 1.91 × 10−1

40 0.925 (0.17) 24.0 10.0 (1.81) 23.7 (1.33) 4.22 × 10−1 1.37 × 10−1

30 0.885 (0.15) 16.0 10.8 (1.58) 18.6 (1.33) 5.82 × 10−1 7.50 × 10−2

20 0.857 (0.11) 7.5 10.1 (1.25) 11.7 (1.18) 8.60 × 10−1 7.00 × 10−3

10 0.849 (0.06) 2.0 6.006 (0.76) 6.096 (0.76) 9.85 × 10−1 9.01 × 10−4

aAverage over N = 500 models.
bNumbers in parenthesis denote the coefficient of variation of the quantity, as obtained from the analytical approximation.
cAverage design thickness without certification is 0.847.

Table 7 Probability of failure for different error bounds for panels designed using safety factor of 1.0 and mean value

for allowable stress

Error Average design Certification Probability of Probability of Probability Probability
bound thickness after failure failure after failure without ratio difference

e, % certificationa,b rate, % certification Pt certification Pnt Pt /Pnt Pnt − Pt

50 0.830 (0.13) 50.7 0.151 (1.32) 0.598 (1.19) 2.53 × 10−1 4.47 × 10−1

40 0.794 (0.11) 51.6 0.185 (1.10) 0.519 (0.76) 3.56 × 10−1 3.35 × 10−1

30 0.758 (0.09) 53.2 0.237 (0.86) 0.514 (0.67) 4.61 × 10−1 2.77 × 10−1

20 0.720 (0.08) 49.8 0.333 (0.60) 0.510 (0.53) 6.53 × 10−1 1.77 × 10−1

10 0.683 (0.05) 50.4 0.429 (0.32) 0.510 (0.31) 8.41 × 10−1 8.08 × 10−2

aAverage over N = 500 models. bAverage design thickness without certification is 0.667.

Table 8 Probability of failure for uncertainty in failure stress for panels designed using safety factor of 1.5, 50% error bounds e, and A-basis

property for allowable stress

Coefficient of Average design Average design Certification Probability Probability Probability Probability
variation thickness without thickness after failure of failure after of failure without ratio difference

of σ f , % certificationa,b certificationa,b rate, % certification Pt × 10−4b
certification Pnt × 10−4b

Pt /Pnt Pnt − Pt

0 0.993 (0.29) 1.250 (0.12) 52.6 0.011 (4.33) 1690 (1.90) 6.26 × 10−6 1.69 × 10−1

5 1.131 (0.29) 1.324 (0.15) 37.5 1.52 (14.3) 1060 (3.01) 1.44 × 10−3 1.06 × 10−1

10 1.274 (0.29) 1.454 (0.18) 35.5 6.05 (8.30) 540 (2.63) 1.12 × 10−2 5.34 × 10−2

15 1.376 (0.29) 1.578 (0.22) 24.0 21.9 (5.50) 222 (2.66) 9.88 × 10−2 2.00 × 10−2

20 1.608 (0.29) 1.729 (0.24) 16.5 47.5 (3.79) 133 (2.55) 3.58 × 10−1 8.53 × 10−3

aAverage over N = 500 models. bNumbers in parenthesis denote the coefficient of variation of the quantity, as obtained from the analytical approximation.

Table 9 Probability of failure for uncertainty in failure stress for panels designed using safety factor of 1.5, 30% error bound e,
and A-basis properties

Coefficient of Average design Average design Certification Probability Probability Probability Probability
variation thickness without thickness after failure of failure after of failure without ratio difference

of σ f , % certificationa certificationa rate, % certification Pt × 10−4 certification Pnt × 10−4 Pt /Pnt Pnt − Pt

0 0.997 (0.17) 1.149 (0.08) 49.9 0.022 (3.71) 245 (2.44) 8.98 × 10−5 2.45 × 10−2

5 1.139 (0.17) 1.231 (0.11) 31.0 0.145 (6.93) 45.5 (2.78) 3.19 × 10−3 4.54 × 10−3

10 1.271 (0.17) 1.325 (0.15) 16.0 3.93 (2.91) 12.1 (2.65) 3.26 × 10−1 8.12 × 10−4

15 1.439 (0.17) 1.464 (0.16) 7.4 6.79 (1.80) 10.1 (1.42) 6.70 × 10−1 3.34 × 10−4

20 1.624 (0.17) 1.641 (0.17) 4.5 7.37 (1.56) 8.96 (1.41) 8.23 × 10−1 1.58 × 10−4

aAverage over N = 500 models.

still fail certification, but small errors will be masked by the con-
servative properties. Thus in Table 6, the certification failure rate
varies from 52.3% for the largest errors to 2.0% for the smallest
errors. At the highest error bound (50%), the certification process
increases the average thickness from 0.847 to 0.968, and this drops
to 0.885 for 30% error bound. This substantial drop in average cer-
tified model thicknesses increases the probability of failure. Below
an error bound of 30%, the change in thickness is small, and then
reducing errors reduces the probability of failure. This is because
small negative errors are not caught by certification, but they still
reduce the effective safety factor.

Table 7 shows results when the only safety measure is certifica-
tion testing. Certification tests can reduce the probability of failure
of panels by 45%; the highest improvement corresponds to the high-
est error. As can be expected, without certification tests and safety
measures, the probability of failure is near 50%.

Tables 4–7 illustrate the probability of failure for a fixed 10%
coefficient of variation in failure stress. The general conclusion
that can be drawn from these results is that the error bound e
is one of the main parameters affecting the efficacy of certifica-
tion tests to improve reliability of panels. Next, we will explore
how another parameter, variability, influences the efficacy of tests.
This is accomplished by changing the coefficient of variation of
failure stress σ f between 0–20% and keeping the error bound
constant.

The increase in the variability in failure stress has a large effect
on the allowable stress because A-basis properties specify an allow-
able that is below 99% of the sample. Increased variability reduces
the allowable stress and therefore increases the design thickness. It
is seen from Tables 8–10 that when the variability increases from
0 to 20% the design thickness increases by more than 60%. In spite
of this, the probability of failure still deteriorates. That is, the use
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Table 10 Probability of failure for uncertainty in failure stress for panels designed using safety factor of 1.5, 20% error bounds e,
and A-basis properties

Coefficient of Average design Average design Certification Probability Probability Probability Probability
variation thickness without thickness after failure of failure after of failure without ratio difference

of σ f , % certificationa certificationa rate, % certification Pt × 10−4 certification Pnt × 10−4 Pt /Pnt Pnt − Pt

0 1.007 (0.12) 1.099 (0.05) 47.9 0.04 (2.73) 25.2 (2.33) 1.60 × 10−3 2.51 × 10−3

5 1.127 (0.12) 1.174 (0.09) 21.0 0.253 (4.67) 2.33 (2.54) 1.09 × 10−1 2.08 × 10−4

10 1.279 (0.12) 1.285 (0.10) 7.0 0.538 (2.55) 1.55 (2.24) 3.47 × 10−1 1.01 × 10−4

15 1.436 (0.12) 1.442 (0.11) 3.5 1.17 (2.01) 1.70 (1.93) 6.91 × 10−1 5.26 × 10−5

20 1.623 (0.12) 1.629 (0.11) 3.1 1.91 (1.68) 2.40 (1.64) 7.93 × 10−1 4.96 × 10−5

aAverage over N = 500 models.

of A-basis properties fails to fully compensate for the variability in
material properties.

The variability in failure stress greatly changes the effect of certi-
fication tests. Although the average design thicknesses of the panels
increase with the increase in variability, we see that when the vari-
ability is large the value of the tests is reduced because the tested
aircraft can be greatly different from the airplanes in actual service.
We indeed see from the Tables 8–10 that the effect of certification
tests is reduced as the variability in the failure stress increases. Re-
call that the effect of certification tests is also reduced when the
error e decreases. Indeed, Table 8 shows a much smaller effect of
the tests than Table 10. Comparing the second and third columns of
Tables 8–10, we see that as the bound of error decreases the change in
the average value of design thicknesses of the panels becomes less,
which is an indication of loss in the efficacy of certification tests.

Pnt and Pt results of Tables 8–10 corresponding to a 10% co-
efficient of variation of s f are slightly different from the results
presented in Table 3 with 50, 30, and 20% error bounds. This is
an indication of the accuracy of Monte Carlo simulations. More
accurate results can be obtained by increasing the sample size.

As mentioned earlier, in this study we did not include the effects of
building-block types of tests that are conducted before certification.
These tests not only reduce the errors in analytical models but also
reduce the variability in material properties. For instance, if there is
20% coefficient of variation in the failure stress the building-block
type of tests can reduce this error to lower values. Hence, this is
another way of looking at Tables 8–10.

Up to now, both the probability difference Pnt − Pt and the proba-
bility ratio Pt/Pnt seem to be good indicators of efficacy of tests. To
allow easy visualization, we combined the errors and the variability
in a single ratio (bounds on e)/VR(s/s f ) ratio (ratio of error bound
e to the coefficient of variation of the stress ratio). The denomina-
tor accounts for the major contributors to the variability. The value
in the denominator is a function of four variables: service load P ,
width w, thickness t , and failure stress s f . Here, P and s f have log-
normal distributions, but w and t are uniformly distributed. Because
the coefficient of variations of w and t is very small, they can also
be treated as log-normally distributed to make calculation of the
denominator easy while plotting the graphs. Because the standard
deviations of the variables are small, the denominator is now the
square root of the sum of the squares of coefficient of variations of
the four variables just mentioned, that is,

VR(σ/σ f ) ∼=
√

V 2
R(P) + V 2

R(w) + V 2
R(t) + V 2

R(σ f ) (11)

The effective safety factor is the ratio of the design thickness
of the component when safety measures (such as usage of A-basis
values for material properties and safety factor) are applied to the
thickness of the component when no safety measures are taken.

Figures 4 and 5 present the Pt/Pnt ratio in visual formats. It
can be seen that as expected the ratio decreases as the (bounds
on e)/VR(s/s f ) ratio increases. However, these two figures do not
give a clear indication of how certification tests are influenced by
the effective safety factor.

Figures 6 and 7 show the probability difference Pnt − Pt . In these
cases, the dependence on the effective safety factor is monotonic. As
expected, it is seen that as the effective safety factor increases, the
improvement in the safety of component decreases, meaning that

Fig. 4 Influence of effective safety factor, error, and variability on the
probability ratio (three-dimensional view).

Fig. 5 Influence of effective safety factor, error and variability on the

probability ratio (two-dimensional contour plot).

Fig. 6 Influence of effective safety factor, error and variability on the

probability difference (three-dimensional view).
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Fig. 7 Influence of effective safety factor, error and variability on the

probability difference (two-dimensional contour plot).

the certification tests become less useful. The probability difference
is more descriptive as it is proportional to the number of aircraft
failures prevented by certification testing. The probability ratio lacks
such clear physical interpretation, even though it is a more attractive
measure when the probability of failure is very small.

Considering the results presented by Figs. 4–7, the probability
difference Pnt − Pt is the more appropriate choice for expressing
the effectiveness of tests.

VI. Conclusions

We have used a simple example of point stress design for yield
to illustrate the effects of several safety measures taken in aircraft
design: safety factors, conservative material properties, and certi-
fication tests. Analytical calculations and Monte Carlo simulation
were performed to account for both fleet-level uncertainties (such
as errors in analytical models) and individual uncertainties (such as
variability in material properties).

It was seen that an increase of the systemic errors in the analy-
sis causes an increase in the probability of failure. We found that
the systemic errors can be reduced by the use of certification tests,
thereby reducing the probability of failure. Also we found that de-
sign thicknesses of the panels increased as the bounds of systemic
errors increased.

We found that the effect of certification tests is most important
when errors in analytical models are high and when the variability
between airplanes is low. This leads to the surprising result that in
some situations larger error variability in analytical models reduces
the probability of failure if certification tests are conducted. For the
simple example analyzed here, the use of conservative (A-basis)
properties was equivalent to a safety factor of up to 1.6, depending
on the scatter in failure stresses.

The effectiveness of the certification tests is expressed by two
measures of probability improvement. The ratio of the probability
of failure with the test Pt to the probability of failure without tests
Pnt is useful when Pt is small. The difference is more meaningful
when the probability is high. Using these measures, we have shown
that the effectiveness of certification tests increases when the ratio
of error to variability is large and when the effective safety factor is
small.

The effect of building-block type tests that are conducted before
certification was not assessed here. However, these tests reduce the
errors in the analytical models, and on that basis we determined that
they can reduce the probability of failure by one or two orders of
magnitude.

The calculated probabilities of failure with all of the considered
safety margins explain why passenger aircraft are so safe struc-
turally. They were still somewhat high—about 10−7—compared to
the probability of failure of actual aircraft structural components—
about 10−8. This might be caused by additional safety measures,
such as conservative design loads or to the effect of design against
additional failure modes.

Appendix A: A-Basis Property Calculation

A-basis value is the value exceeded by 99% of the population
with 95% confidence. This is given by

A-basis = µ − s × k1 (A1)

where µ is the mean, s is the standard deviation, and k1 is the
tolerance coefficient for normal distribution given by Eq. (A2):

k1 =
(

z1 − p +
√

z2
1 − p − ab

)/

a

a = 1 − z2
1 − γ

/

2(N − 1), b = z2
1 − p − z2

1 − γ

/

N (A2)

where N is the sample size and z1 − p is the critical value of normal
distribution that is exceeded with a probability of 1 − p. The toler-
ance coefficient k1 for a log-normal distribution is obtained by first
transforming the log-normally distributed variable to a normally
distributed variable. Equations (A1) and (A2) can be used to ob-
tain an intermediate value. This value is then converted back to the
log-normally distributed variable using inverse transformation.

To obtain the A-basis values, usually 40 or 50 coupons are ran-
domly selected from a batch. Then, the mean and standard deviation
of the failure stresses of these coupons are calculated and used in
determining the A-basis allowable stress. The calculated A-basis
value itself is also a random variable. For instance, when the failure
stress is lognormal with 10% coefficient of variation and 40 tests
are performed, the coefficient of variation of A-basis value is about
4%. To suppress the uncertainty in A-basis stress, we used 10,000
batches in this study.

Appendix B: Probability Calculations

Calculations of P(C|e), the Probability of Passing Certification Test

P(C |e) = P(σ f > σ) = P(σ f > SF Pd/wt)

= P(σ f wt > SF Pd) = P(R > S) (B1)

where

R = σ f tw and S = SF Pd (B2)

S is a deterministic value, and because the coefficient of variations
of t and w is small compared to the coefficient of variation of σ f , R
can be treated as log normally distributed with parameters λR and
ζR . Then,

λR(e) = λσ f
+ λt (e) + λw and ζ 2

R = ζ 2
σ f

+ ζ 2
t + ζ 2

w (B3)

where

λt (e) = ln[tdesign(e)] − 0.5ζ 2
t (B4)

where tdesign is given in Eq. (4).
Then, P(C |e) can be calculated as

P(C |e) = P(R > S) = �

[

λR(e) − S

ζR

]

= �(β(e))

=
∫ β(e)

−∞

1√
2π

exp

(

− x2

2

)

dx (B5)

Calculations of Mean Value and Standard Deviation

of Probability of Failure

Failure is predicted to occur when the resistance of the structure
R of the problem is less than the load P; see Eq. (6). Then, the
probability of failure is given as

P f = Pr(R < P) (B6)

The load P is log-normally distributed, and, as explained in Ap-
pendix B, the distribution of R can also be approximated by a log-
normal distribution, which allows us to immediately obtain the prob-
ability of failure of a single aircraft model.
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To calculate the probability of failure over all aircraft models, we
take into account the fact that that tdesign is a random variable. Then,
the expected value of probability of failure is given as

P̂ f =
∫

P f (tdesign) f (tdesign) dtdesign (B7)

where tdesign is the nondeterministic distribution parameter and
f (tdesign) is the probability density function of parameter tdesign.

The standard deviation of failure probability can be calculated
from

σP f
=

[∫

(P f − P̂ f )
2 f (P f ) dP f

]
1
2

(B8)

where

P f = P f (tdesign), f (P f ) = f (tdesign)

∣

∣

∣

∣

dtdesign

dP f

∣

∣

∣

∣

dP f = 1

dtdesign/dP f

dtdesign (B9)

Hence, Eq. (B8) can be rewritten as

σP f
=

{∫

[P f (tdesign) − P̂ f ]2 f (tdesign) dtdesign

}
1
2

(B10)

As seen from Eqs. (B7) and (B10), the mean and standard devi-
ation of the probability of failure can be expressed in terms of the
probability density function (PDF) f of the design thickness tdesign.
Therefore, we can perform the failure probability estimations to af-
ter calculating the PDF of tdesign. The random variables contributing
to tdesign are [see Eq. (4)] e, w, and σa . Because the variations of w

and σa are small compared to e, we neglect their contribution and

calculate the PDF of tdesign from the PDF of error factor e from

f (tdesign) = fe(e)
de

dtdesign

(B11)

where fe(e) is the updated PDF of e.
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