

|       | Chapter Outline                                             |
|-------|-------------------------------------------------------------|
| 11-1  | Bearing Types 570                                           |
| 11-2  | Bearing Life 573                                            |
| 11-3  | Bearing Load Life at Rated Reliability 574                  |
| 11-4  | Bearing Survival: Reliability versus Life 576               |
| 11-5  | Relating Load, Life, and Reliability 577                    |
| 11-6  | Combined Radial and Thrust Loading 579                      |
| 11-7  | Variable Loading 584                                        |
| 11-8  | Selection of Ball and Cylindrical Roller Bearings 588       |
| 11-9  | Selection of Tapered Roller Bearings 590                    |
| 11-10 | Design Assessment for Selected Rolling-Contact Bearings 599 |
| 11-11 | Lubrication 603                                             |
| 11-12 | Mounting and Enclosure 604                                  |
|       |                                                             |

## **Three Types of Bearings**

- Straight roller bearings can carry large radial loads, but **no axial load**.
- Ball bearings can carry moderate radial loads, and small axial loads.
- Tapered roller bearings rely on roller tipped at an angle to allow them to carry large radial and large axial loads.



Straight roller bearing (Silindirik makaralı rulman)



Ball bearing (Bilyalı rulman)



Tapered roller bearing (Konik makaralı rulman)



# **Most Popular Types of Ball Bearings**



- **Deep groove ball bearings** are used to transmit loads from rotating parts to housings with minimal friction losses.
- Deep groove bearings support axial and radial loads in both directions and are suitable for high speeds.
- A distinct advantage over angular contact ball bearings is that they can accept axial load in both directions.



- **Angular contact ball bearings** are typically used in machinery that requires high performance and high accuracy.
- They can carry both radial and axial loads.
- The loads are transferred from one raceway to other through the bearing balls along a specifically designed contact angle.
- Angular contact bearings have a much higher speed rating than radial ball bearings because of the constant contact of the balls to both raceways.

Shigley's Mechanical Engineering Design

6

#### Definitions

- *Life*: Number of revolutions (or hours @ given speed) to failure.
- *Rating Life*: *Life* required for 10% of sample to fail.
   Also called *Minimum Life* or *L*<sub>10</sub> *Life*
- *Catalog Load Rating*,  $C_{10}$ : Constant radial load that causes 10% of a group of bearings to fail at the manufacturer's rating life.
- Static Load Rating, C<sub>o</sub>: Static radial load which corresponds to a permanent deformation of 0.0001*d*, where *d* = diameter of roller
- *Equivalent Radial Load*, *F<sub>e</sub>*: Constant stationary load applied to bearing with r

Constant stationary load applied to bearing with rotating inner ring which gives the same life as actual load and rotation conditions.

- Nominally identical groups of bearings are tested to the life-failure criterion at different loads.
- A plot of load vs. life on log-log scale is approximately linear.



#### Load-Life Relationship

• Given the desired design load  $F_D$  and life  $L_D$ , the catalog load rating  $C_{10}$  is calculated to find a suitable bearing in the catalog.

$$C_{10} = F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathcal{L}_D n_D 60}{\mathcal{L}_R n_R 60}\right)^{1/a}$$
(11-3)

- The rated life  $L_R$  will be stated by the specific bearing manufacturer. Many catalogs rate at  $L_R = 10^6$  revolutions.
- The units of L are revolutions. If life  $\mathcal{L}$  is given in hours at a given speed *n* in rev/min, we apply a conversion of 60 min/h,

$$L = 60 \ \mathcal{L}n$$

• It is often convenient to define a dimensionless *multiple of rating* life  $x_D = L_D/L_R$ 

## Example 11–1

Consider SKF, which rates its bearings for 1 million revolutions. If you desire a life of 5000 h at 1725 rev/min with a load of 1.8 kN with a reliability of 90 percent, for which catalog rating would you search in an SKF catalog?

Shigley's Mechanical Engineering Design

10

## **Representative Catalog Data for Ball Bearings (Table 11–2)**

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

| Bore,<br>mm | OD, | OD, Width, | Fillet  | Shou                | ulder          | Load Ratings, kN |            |                 |      |
|-------------|-----|------------|---------|---------------------|----------------|------------------|------------|-----------------|------|
|             |     |            | Radius, | idius, Diameter, mm |                | Deep 0           | Groove     | Angular Contact |      |
|             | mm  | mm         | mm      | ds                  | d <sub>H</sub> | <b>C</b> 10      | <b>C</b> 0 | <b>C</b> 10     | Co   |
| 10          | 30  | 9          | 0.6     | 12.5                | 27             | 5.07             | 2.24       | 4.94            | 2.12 |
| 12          | 32  | 10         | 0.6     | 14.5                | 28             | 6.89             | 3.10       | 7.02            | 3.05 |
| 15          | 35  | 11         | 0.6     | 17.5                | 31             | 7.80             | 3.55       | 8.06            | 3.65 |
| 17          | 40  | 12         | 0.6     | 19.5                | 34             | 9.56             | 4.50       | 9.95            | 4.75 |
| 20          | 47  | 14         | 1.0     | 25                  | 41             | 12.7             | 6.20       | 13.3            | 6.55 |
| 25          | 52  | 15         | 1.0     | 30                  | 47             | 14.0             | 6.95       | 14.8            | 7.65 |
| 30          | 62  | 16         | 1.0     | 35                  | 55             | 19.5             | 10.0       | 20.3            | 11.0 |
| 35          | 72  | 17         | 1.0     | 41                  | 65             | 25.5             | 13.7       | 27.0            | 15.0 |
| 40          | 80  | 18         | 1.0     | 46                  | 72             | 30.7             | 16.6       | 31.9            | 18.6 |
| 45          | 85  | 19         | 1.0     | 52                  | 77             | 33.2             | 18.6       | 35.8            | 21.2 |
| 50          | 90  | 20         | 1.0     | 56                  | 82             | 35.1             | 19.6       | 37.7            | 22.8 |
| 55          | 100 | 21         | 1.5     | 63                  | 90             | 43.6             | 25.0       | 46.2            | 28.5 |
| 60          | 110 | 22         | 1.5     | 70                  | 99             | 47.5             | 28.0       | 55.9            | 35.5 |
| 65          | 120 | 23         | 1.5     | 74                  | 109            | 55.9             | 34.0       | 63.7            | 41.5 |
| 70          | 125 | 24         | 1.5     | 79                  | 114            | 61.8             | 37.5       | 68.9            | 45.5 |
| 75          | 130 | 25         | 1.5     | 86                  | 119            | 66.3             | 40.5       | 71.5            | 49.0 |
| 80          | 140 | 26         | 2.0     | 93                  | 127            | 70.2             | 45.0       | 80.6            | 55.0 |
| 85          | 150 | 28         | 2.0     | 99                  | 136            | 83.2             | 53.0       | 90.4            | 63.0 |
| 90          | 160 | 30         | 2.0     | 104                 | 146            | 95.6             | 62.0       | 106             | 73.5 |
| 95          | 170 | 32         | 2.0     | 110                 | 156            | 108              | 69.5       | 121             | 85.0 |

#### Representative Catalog Data for Cylindrical Roller Bearings 11 (Table 11–3)

|       |     | 02-5   | ieries          |                |     | 03-Series |             |          |  |  |
|-------|-----|--------|-----------------|----------------|-----|-----------|-------------|----------|--|--|
| Bore, | OD, | Width, | Load Rat        | ting, kN       | OD, | Width,    | Load Ra     | ting, kN |  |  |
| mm    | mm  | mm     | C <sub>10</sub> | C <sub>0</sub> | mm  | mm        | <b>C</b> 10 | Co       |  |  |
| 25    | 52  | 15     | 16.8            | 8.8            | 62  | 17        | 28.6        | 15.0     |  |  |
| 30    | 62  | 16     | 22.4            | 12.0           | 72  | 19        | 36.9        | 20.0     |  |  |
| 35    | 72  | 17     | 31.9            | 17.6           | 80  | 21        | 44.6        | 27.1     |  |  |
| 40    | 80  | 18     | 41.8            | 24.0           | 90  | 23        | 56.1        | 32.5     |  |  |
| 45    | 85  | 19     | 44.0            | 25.5           | 100 | 25        | 72.1        | 45.4     |  |  |
| 50    | 90  | 20     | 45.7            | 27.5           | 110 | 27        | 88.0        | 52.0     |  |  |
| 55    | 100 | 21     | 56.1            | 34.0           | 120 | 29        | 102         | 67.2     |  |  |
| 60    | 110 | 22     | 64.4            | 43.1           | 130 | 31        | 123         | 76.5     |  |  |
| 65    | 120 | 23     | 76.5            | 51.2           | 140 | 33        | 138         | 85.0     |  |  |
| 70    | 125 | 24     | 79.2            | 51.2           | 150 | 35        | 151         | 102      |  |  |
| 75    | 130 | 25     | 93.1            | 63.2           | 160 | 37        | 183         | 125      |  |  |
| 80    | 140 | 26     | 106             | 69.4           | 170 | 39        | 190         | 125      |  |  |
| 85    | 150 | 28     | 119             | 78.3           | 180 | 41        | 212         | 149      |  |  |
| 90    | 160 | 30     | 142             | 100            | 190 | 43        | 242         | 160      |  |  |
| 95    | 170 | 32     | 165             | 112            | 200 | 45        | 264         | 189      |  |  |
| 100   | 180 | 34     | 183             | 125            | 215 | 47        | 303         | 220      |  |  |
| 110   | 200 | 38     | 229             | 167            | 240 | 50        | 391         | 304      |  |  |
| 120   | 215 | 40     | 260             | 183            | 260 | 55        | 457         | 340      |  |  |
| 130   | 230 | 40     | 270             | 193            | 280 | 58        | 539         | 408      |  |  |
| 140   | 250 | 42     | 319             | 240            | 300 | 62        | 682         | 454      |  |  |
| 150   | 270 | 45     | 446             | 260            | 320 | 65        | 781         | 502      |  |  |

#### **Relating Load, Life, and Reliability**

• If the desired reliability is different than 90%, the formula for the catalog load rating  $C_{10}$  should be updated.

$$C_{10} \doteq a_f F_D \left[ \frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90 \tag{11-7}$$

- The Weibull distribution parameters  $x_0$ ,  $\theta$ , and b are usually provided by the catalog.
- Typical values of Weibull parameters are shown below.
- Manufacturer 1 parameters are common for tapered roller bearings
- Manufacturer 2 parameters are common for ball and straight roller bearings

|              | Rating Life,         | Weibull Parameters<br>Rating Lives |       |       |  |
|--------------|----------------------|------------------------------------|-------|-------|--|
| Manufacturer | Revolutions          | X0                                 | θ     | Ь     |  |
| 1            | 90(10 <sup>6</sup> ) | 0                                  | 4.48  | 1.5   |  |
| 2            | 1(10 <sup>6</sup> )  | 0.02                               | 4.459 | 1.483 |  |

12

#### **Recommended Load Application Factors (Table 11–5)**

| Type of Application                  | Load Factor |
|--------------------------------------|-------------|
| Precision gearing                    | 1.0-1.1     |
| Commercial gearing                   | 1.1–1.3     |
| Applications with poor bearing seals | 1.2         |
| Machinery with no impact             | 1.0–1.2     |
| Machinery with light impact          | 1.2–1.5     |
| Machinery with moderate impact       | 1.5-3.0     |
|                                      |             |

- The load application factors serve as factors of safety
- We use them to increase the equivalent load before selecting a bearing

Shigley's Mechanical Engineering Design

14

#### Example 11–3

The design load on a ball bearing is 1.8 kN and an application factor of 1.2 is appropriate. The speed of the shaft is to be 300 rev/min, the life to be 30 kh with a reliability of 0.99. What is the  $C_{10}$  catalog entry to be sought (or exceeded) when searching for a deep-groove bearing in a manufacturer's catalog on the basis of 10<sup>6</sup> revolutions for rating life? The Weibull parameters are  $x_0 = 0.02$ ,  $(\theta - x_0) = 4.439$ , and b = 1.483. Solution

## **Combined Reliability of Multiple Bearings**

- If the combined reliability of multiple bearings on a shaft, or in a gearbox, is desired, then the total reliability is equal to the product of the individual reliabilities.
- For two bearings on a shaft,  $R = R_A R_B$
- If the bearings are to be identical, each bearing should have a reliability equal to the square root of the total desired reliability.
- If the bearings are not identical, their reliabilities need not be identical, so long as the total reliability is realized.



| Equivalent Radial Load Factors for Ball Bearings |             |                                                   |            |                     |                |  |  |
|--------------------------------------------------|-------------|---------------------------------------------------|------------|---------------------|----------------|--|--|
|                                                  | $F_e = X_i$ | $VF_r + Y_iF$                                     | a          | (11–9)              |                |  |  |
| Table 11–1                                       |             |                                                   |            |                     |                |  |  |
|                                                  |             | <b>F</b> <sub>a</sub> /( <b>VF</b> <sub>r</sub> ) | ) ≤ e      | F <sub>a</sub> /(VI | r) > e         |  |  |
| $F_a/C_0$                                        | е           | <b>X</b> 1                                        | <b>Y</b> 1 | <b>X</b> 2          | Y <sub>2</sub> |  |  |
| 0.014*                                           | 0.19        | 1.00                                              | 0          | 0.56                | 2.30           |  |  |
| 0.021                                            | 0.21        | 1.00                                              | 0          | 0.56                | 2.15           |  |  |
| 0.028                                            | 0.22        | 1.00                                              | 0          | 0.56                | 1.99           |  |  |
| 0.042                                            | 0.24        | 1.00                                              | 0          | 0.56                | 1.85           |  |  |
| 0.056                                            | 0.26        | 1.00                                              | 0          | 0.56                | 1.71           |  |  |
| 0.070                                            | 0.27        | 1.00                                              | 0          | 0.56                | 1.63           |  |  |
| 0.084                                            | 0.28        | 1.00                                              | 0          | 0.56                | 1.55           |  |  |
| 0.110                                            | 0.30        | 1.00                                              | 0          | 0.56                | 1.45           |  |  |
| 0.17                                             | 0.34        | 1.00                                              | 0          | 0.56                | 1.31           |  |  |
| 0.28                                             | 0.38        | 1.00                                              | 0          | 0.56                | 1.15           |  |  |
| 0.42                                             | 0.42        | 1.00                                              | 0          | 0.56                | 1.04           |  |  |
| 0.56                                             | 0.44        | 1.00                                              | 0          | 0.56                | 1.00           |  |  |
| 4                                                | <b>.</b> .  |                                                   |            |                     | ~              |  |  |

• X and Y are functions of e, which is a function of  $F_a/C_0$ .

•  $C_0$  is the *basic static load rating*, which is tabulated in the catalog.

Shigley's Mechanical Engineering Design

## Example 11–4

An SKF 6210 angular-contact ball bearing has an axial load  $F_a$  of 1.8 kN and a radial load  $F_r$  of 2.2 kN applied with the outer ring stationary. The basic static load rating  $C_0$  is 19.8 kN and the basic load rating  $C_{10}$  is 35.1 kN. Estimate the  $\mathcal{L}_{10}$  life at a speed of 720 rev/min.

Solution

# Örnek



Katalog bilgileri:

 $C_{10}$  değerleri  $L_R$ =10<sup>6</sup> çevrim için verilmektedir. Weibull dağılımı parametreleri aşağıdaki tabloda verilmiştir.

| <b>X</b> 0 | θ     | b     |  |
|------------|-------|-------|--|
| 0.02       | 4.459 | 1.483 |  |

a) Şekildeki şaft 1200 rpm ile
dönmektedir. O ve B'deki bilyalı
rulmanların (*single row, angular contact*)
her birinden en az %95 güvenilirlik ile
15,000 saat ömür beklenmektedir.

O ve B'de aynı rulman kullanılacaktır. • Rulman seçiminde kullanılacak C<sub>10</sub> yük sayısını (*load rating*) hesaplayınız. Dış bileziğin sabit olduğunu varsayınız. a<sub>r</sub>=1.2 kullanınız.

b)  $F_A$  ve  $F_C$  yüklerine ek olarak,  $F_a$ =1 kN eksenel kuvvet uygulanmakta olduğu durum için problemi tekrar çözünüz.

Shigley's Mechanical Engineering Design

20

Continued..

Shigley's Mechanical Engineering Design

22

#### Example 11–7

Shown in Figure 11–12 is a gear-driven squeeze roll that mates with an idler roll. The roll is designed to exert a normal force of 5.25 N/mm of roll length and a pull of 4.2 N/mm on the material being processed. The roll speed is 300 rev/min, and a design life of 30 kh is desired. Use an application factor of 1.2, and select a pair of angular-contact 02-series ball bearings from Table 11–2 to be mounted at 0 and A. Use the same size bearings at both locations and a combined reliability of at least 0.92.





# Example 11–7

#### **Representative Catalog Data for Ball Bearings (Table 11–2)**

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

|                    |        |         | Fillet       | Shou | ulder          |             | Load Ra                | tings, kN         |            |
|--------------------|--------|---------|--------------|------|----------------|-------------|------------------------|-------------------|------------|
| Bore, OD,<br>mm mm | Width, | Radius, | Diameter, mm |      | Deep Groove    |             | Angular Contact        |                   |            |
|                    | mm     | mm      | mm           | ds   | d <sub>H</sub> | <b>C</b> 10 | Co                     | C <sub>10</sub>   | <b>C</b> 0 |
| 10                 | 30     | 9       | 0.6          | 12.5 | 27             | 5.07        | 2.24                   | 4.94              | 2.12       |
| 12                 | 32     | 10      | 0.6          | 14.5 | 28             | 6.89        | 3.10                   | 7.02              | 3.05       |
| 15                 | 35     | 11      | 0.6          | 17.5 | 31             | 7.80        | 3.55                   | 8.06              | 3.65       |
| 17                 | 40     | 12      | 0.6          | 19.5 | 34             | 9.56        | 4.50                   | 9.95              | 4.75       |
| 20                 | 47     | 14      | 1.0          | 25   | 41             | 12.7        | 6.20                   | 13.3              | 6.55       |
| 25                 | 52     | 15      | 1.0          | 30   | 47             | 14.0        | 6.95                   | 14.8              | 7.65       |
| 30                 | 62     | 16      | 1.0          | 35   | 55             | 19.5        | 10.0                   | 20.3              | 11.0       |
| 35                 | 72     | 17      | 1.0          | 41   | 65             | 25.5        | 13.7                   | (27.0)            | 15.0       |
| 40                 | 80     | 18      | 1.0          | 46   | 72             | 30.7        | 16.6                   | 31.9              | 18.6       |
| 45                 | 85     | 19      | 1.0          | 52   | 77             | 33.2        | 18.6                   | 35.8              | 21.2       |
| 50                 | 90     | 20      | 1.0          | 56   | 82             | 35.1        | 19.6                   | 37.7              | 22.8       |
| 55                 | 100    | 21      | 1.5          | 63   | 90             | 43.6        | 25.0                   | 46.2              | 28.5       |
| 60                 | 110    | 22      | 1.5          | 70   | 99             | 47.5        | 28.0                   | 55.9              | 35.5       |
| 65                 | 120    | 23      | 1.5          | 74   | 109            | 55.9        | 34.0                   | 63.7              | 41.5       |
| 70                 | 125    | 24      | 1.5          | 79   | 114            | 61.8        | 37.5                   | 68.9              | 45.5       |
| 75                 | 130    | 25      | 1.5          | 86   | 119            | 66.3        | 40.5                   | 71.5              | 49.0       |
| 80                 | 140    | 26      | 2.0          | 93   | 127            | 70.2        | 45.0                   | 80.6              | 55.0       |
| 85                 | 150    | 28      | 2.0          | 99   | 136            | 83.2        | 53.0 <sub>Shigle</sub> | y's Meenafical En | ngine      |
|                    |        |         |              |      |                |             | 0.1                    | -                 |            |

Continued..

Shigley's Mechanical Engineering Design

26

#### **Realized Bearing Reliability**

• To determine a suitable catalog rated load for a given design situation and reliability goal, we use

$$C_{10} \doteq a_f F_D \left[ \frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90$$
(11-7)

- An actual bearing is selected from a catalog with a rating greater than  $C_{10}$ .
- Sometimes it is desirable to determine the realized reliability from the actual bearing (that was slightly higher capacity than needed).
- Solving Eq. (11–6) for the reliability,

$$R \doteq 1 - \left\{ \frac{x_D \left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0} \right\}^b \qquad R \ge 0.90 \tag{11-19}$$

#### Example 11–9

Compute the realized reliability of the bearings in Example 11-7.

Solution  

$$R_{o} = 1 - \left\{ \frac{540 \left(\frac{1.2 \times 640.6}{27000}\right)^{3} - 0.02}{4.439} \right\}^{1.483} \approx 1.0$$

$$R_{A} = 1 - \left\{ \frac{540 \left(\frac{1.2 \times 1792}{27000}\right)^{3} - 0.02}{4.439} \right\}^{1.483} = 0.9857$$

Reliability of the bearing system:  $R = R_O \times R_A = (1)(0.9857) = 0.9857$ 

(Recall that the reliability goal was 0.92)

Shigley's Mechanical Engineering Design

## **Tapered Roller Bearings**

- Straight roller bearings can carry large radial loads, but **no axial load**.
- Ball bearings can carry moderate radial loads, and small axial loads.
- Tapered roller bearings rely on roller tipped at an angle to allow them to carry large radial and large axial loads.
- Tapered roller bearings were popularized by the Timken Company.
  - Similar catalogs as in ball bearings are used to select bearings.
  - Read Chapter 11.9 in Shigley's book.





