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Stress Concentration

� Localized increase of stress near discontinuities

� Kt is Theoretical (Geometric) Stress Concentration Factor
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Stress Concentration for Static and Ductile Conditions

� Stress concentration effect is commonly ignored for static 

loads on ductile materials

◦ Upon localized yielding, the load is shared with neighboring fibers

◦ The structure can carry load untill all fibers yield

� Stress concentration must be included for dynamic loading on 

ductile materials (See Chapter 6)

� Stress concentration must be included for brittle materials, 

since localized yielding may reach brittle failure rather than 

sharing the load.

� In this course, we will include stress concentration effect for 

all materials and all loading conditions, to be conservative.
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Need for Static Failure Theories

� Uniaxial stress element (e.g. tension test)

� Multi-axial stress element 

◦ One strength, multiple stresses

◦ How to compare stress state to single strength?
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Selection of Failure Criteria in Flowchart Form
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Maximum Normal (Principal) Stress Theory

� Theory: Yielding begins when the maximum principal stress in 

a stress element exceeds the yield strength.

� For any stress element, use Mohr’s circle to find the principal 

stresses.  

� Compare the largest principal stress to the yield strength.

� Is it a good theory? No!
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Maximum Normal (Principal) Stress Theory

� Experimental data 

shows the theory is 

unsafe in the 4th

quadrant.

� Similar behavior is also 

observed for brittle 

materials.

� Not recommended for 

use

� Included for historical 

comparison
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Maximum Shear Stress Theory (MSS)

� Theory: Yielding begins when the maximum shear stress in a 

stress element exceeds the maximum shear stress in a tension 

test specimen of the same material when that specimen begins to 

yield.

� For a tension test specimen, the maximum shear stress is 1 /2.  

� At yielding (i.e., 1 = SY), the maximum shear stress is SY /2 .

� Could restate the theory as follows:

◦ Theory: Yielding begins when the maximum shear stress in a 

stress element exceeds SY / 2.
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Maximum Shear Stress Theory (MSS)

� For any stress element, use Mohr’s circle to find the maximum 

shear stress. Compare the maximum shear stress to SY / 2.

� Ordering the principal stresses such that 1 ≥ 2 ≥ 3,

� Incorporating a design factor n

� Or solving for factor of safety
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Maximum Shear Stress Theory (MSS)

� To compare to experimental data, express max in terms of 

principal stresses and plot.

� To simplify, consider a plane stress state

� Let A and B represent the two non-zero principal stresses, then 

order them with the zero principal stress such that 1 ≥ 2 ≥ 3

� Assuming A ≥ B there are three cases to consider

◦ Case 1: A ≥ B ≥ 0

◦ Case 2: A ≥ 0 ≥ B

◦ Case 3: 0 ≥ A ≥ B
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Maximum Shear Stress Theory (MSS)

� Case 1: A ≥ B ≥ 0

◦ For this case, 1 = A and  3 = 0

◦ Failure condition: A ≥ SY

� Case 2: A ≥ 0 ≥ B

◦ For this case, 1 = A and  3 = B

◦ Failure condition: A − B ≥ SY

� Case 3: 0 ≥ A ≥ B

◦ For this case, 1 = 0 and  3 = B

◦ Failure condition: B ≤ −SY

or |B | ≥ SY
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Maximum Shear Stress Theory (MSS)

� Plot three cases on 

principal stress axes

� Case 1: A ≥ B ≥ 0

◦ A ≥ SY

� Case 2: A ≥ 0 ≥ B

◦ A − B ≥ SY

� Case 3: 0 ≥ A ≥ B

◦ B ≤ −SY

� Other lines are 

symmetric cases

� Inside envelope is 

predicted safe zone
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Maximum Shear Stress Theory (MSS)

� Comparison to 

experimental data

� Conservative in all 

quadrants

� Commonly used for 

design situations
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Distortion Energy (DE) Failure Theory

� Also known as:

◦ Octahedral Shear Stress

◦ Shear Energy

◦ Von Mises

◦ Von Mises – Hencky

� Originated from observation that ductile materials stressed 

hydrostatically (equal principal stresses) exhibited yield 

strengths greatly in excess of expected values.

� Theorizes that if strain energy is divided into hydrostatic 

volume changing energy and angular distortion energy, the 

yielding is primarily affected by the distortion energy.
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Distortion Energy (DE) Failure Theory

� Theory: Yielding occurs when the distortion strain energy per 

unit volume reaches the distortion strain energy per unit volume 

for yield in simple tension or compression of the same material.
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Derivation of the Distortion Energy

� To be handled in the class.
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Continued..
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Von Mises Stress

� In terms of principal stresses, in 3-D

� For plane stress, if the 2-D principal stresses are A and B

� In terms of xyz components, in 3-D

� For plane stress, in terms of xyz components

Shigley’s Mechanical Engineering Design

20

Distortion Energy Theory With Von Mises Stress

� Von Mises Stress can be thought of as a single, equivalent, or 

effective stress for the entire general state of stress in a stress 

element.

� Distortion Energy failure theory simply compares von Mises 

stress to yield strength.

� Introducing a design factor,

� Expressing as factor of safety,
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DE Theory Compared to Experimental Data

� Plot von Mises stress on 

principal stress axes to 

compare to experimental 

data (and to other failure 

theories)

� DE curve is typical of data

� Commonly used for 

analysis situations

� MSS is more conservative 

than DE
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MSS vs DE Theory – Special Case

� If the stress state consists only of 

◦ a single normal stress component ()

◦ and a single shear stress component ()

� MSS:

� DE:
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Example 5-1
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Continued..
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Example 5-3

Shigley’s Mechanical Engineering Design

� A certain force F is applied at D. OABC bar is made of AISI 1035 steel, having yield

strength of 560 MPa. Find the value of F that initiates yielding, using MSS and DE 

failure theories.
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Continued..
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Example 5-3
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Example 5-3
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Mohr Theory

� Some materials have compressive strengths different from 

tensile strengths

� Mohr theory is based on three simple tests: tension, 

compression, and shear

� Plotting Mohr’s circle for each, bounding curve defines failure 

envelope
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Coulomb-Mohr Theory

� Curved failure curve is difficult to determine analytically

� Coulomb-Mohr theory simplifies to linear failure envelope using 

only tension and compression tests (dashed circles)
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Coulomb-Mohr Theory

� The failure criteria is

� Using factor of safety

� For ductile material, use tensile and compressive yield strengths

� For brittle material, use tensile and compressive ultimate

strengths
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Coulomb-Mohr Theory

� Consider three cases

� Case 1: 
A 

≥ 
B

≥ 0000 For this case, 1 = 
A

and  3 = 0

◦ Eq. (5−22) reduces to

� Case 2: 
A 

≥ 0000 ≥ 
B

For this case, 1 = 
A

and  3 = 
B

◦ Eq. (5-22) reduces to

� Case 3: 0 ≥ 
A 

≥ 
B

For this case, 1 = 0000 and  3 = 
B

◦ Eq. (5−22) reduces to
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Coulomb-Mohr Theory

� Plot three cases on principal stress axes

� Similar to MSS theory, except with different strengths for 

compression and tension
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Example 5-2
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Failure Theories for Brittle Materials

� Experimental data indicates some differences in failure for brittle 

materials.

� Failure criteria is generally ultimate fracture rather than yielding

� Compressive strengths are usually larger than tensile strengths
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Brittle Coulomb-Mohr

� Same as previously derived, using ultimate strengths for failure

� Failure equations dependent on quadrant
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Brittle Failure Experimental Data

� Coulomb-Mohr is 

conservative in 4th quadrant

� Modified Mohr criteria 

adjusts to better fit the data 

in the 4th quadrant
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Modified-Mohr
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Example 5-5

Shigley’s Mechanical Engineering Design

� A certain force F is applied at D. OABC bar is made of a brittle material with 210 MPa ultimate

tensile stress and 750 MPa ultimate compressive stress. Find the value of F that leads to fracture, 

using Coulomb-Mohr and Modified Mohr failure theories.
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Continued..
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Selection of Failure Criteria

� First determine ductile vs. brittle

� For ductile

◦ MSS is conservative

◦ DE is typical, often used for analysis where agreement with 

experimental data is desired

◦ If tensile and compressive strengths differ, use Ductile 

Coulomb-Mohr

� For brittle

◦ Brittle Coulomb-Mohr is very conservative in 4th quadrant

◦ Modified Mohr is still slightly conservative in 4th quadrant, but 

closer to typical
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Selection of Failure Criteria in Flowchart Form
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Fig. 5−21


