

Chapter Outline 5-1 Static Strength 216 5-2 Stress Concentration 217 5-3 Failure Theories 219 Maximum-Shear-Stress Theory for Ductile Materials 219 5-4 5-5 Distortion-Energy Theory for Ductile Materials 221 5-6 Coulomb-Mohr Theory for Ductile Materials 228 5-7 Failure of Ductile Materials Summary 231 5-8 Maximum-Normal-Stress Theory for Brittle Materials 235 5-9 Modifications of the Mohr Theory for Brittle Materials 235 5-10 Failure of Brittle Materials Summary 238 Selection of Failure Criteria 239 5-11 5-12 Introduction to Fracture Mechanics 239 5 - 13Stochastic Analysis 248 5-14 Important Design Equations 259

- Localized increase of stress near discontinuities
- K_t is Theoretical (Geometric) Stress Concentration Factor

Stress Concentration for Static and Ductile Conditions

- Stress concentration effect is **commonly ignored** for static loads on ductile materials
 - Upon localized yielding, the load is shared with neighboring fibers
 - The structure can carry load untill all fibers yield
- Stress concentration **must be included** for dynamic loading on ductile materials (See Chapter 6)
- Stress concentration **must be included** for brittle materials, since localized yielding may reach brittle failure rather than sharing the load.
- In this course, we will include stress concentration effect for all materials and all loading conditions, to be conservative.

Need for Static Failure Theories

• Uniaxial stress element (e.g. tension test)

$$n = \frac{Strength}{Stress} = \frac{S}{\sigma}$$

• Multi-axial stress element

• One strength, multiple stresses

• How to compare stress state to single strength?

Maximum Normal (Principal) Stress Theory

- **Theory:** Yielding begins when *the maximum principal stress* in a stress element exceeds the yield strength.
- For any stress element, use **Mohr's circle** to find the principal stresses.

• Compare the largest principal stress to the yield strength.

• Is it a good theory? No!

- **Theory:** Yielding begins when the *maximum shear stress* in a stress element exceeds the maximum shear stress in a tension test specimen of the same material when that specimen begins to yield.
- For a tension test specimen, the maximum shear stress is $\sigma_1/2$.
- At yielding (i.e., $\sigma_1 = S_y$), the maximum shear stress is $S_y/2$.
- Could restate the theory as follows:
 - Theory: Yielding begins when the *maximum shear stress* in a stress element exceeds $S_y/2$.

Shigley's Mechanical Engineering Design

10

Maximum Shear Stress Theory (MSS)

- For any stress element, use Mohr's circle to find the maximum shear stress. Compare the maximum shear stress to $S_y/2$.
- Ordering the principal stresses such that $\sigma_1 \ge \sigma_2 \ge \sigma_{3,\beta}$

$$\tau_{\max} = \frac{\sigma_1 - \sigma_3}{2} \ge \frac{S_y}{2} \quad \text{or} \quad \sigma_1 - \sigma_3 \ge S_y \quad (5-1)$$

• Incorporating a design factor *n*

$$\tau_{\max} = \frac{S_y}{2n}$$
 or $\sigma_1 - \sigma_3 = \frac{S_y}{n}$ (5-3)

• Or solving for factor of safety

$$n = \frac{S_Y / 2}{\tau_{\max}}$$

Maximum Shear Stress Theory (MSS)

- To compare to experimental data, express τ_{max} in terms of principal stresses and plot.
- To simplify, consider a plane stress state
- Let σ_A and σ_B represent the two non-zero principal stresses, then order them with the zero principal stress such that $\sigma_1 \ge \sigma_2 \ge \sigma_3$
- Assuming $\sigma_A \ge \sigma_B$ there are three cases to consider
 - Case 1: $\sigma_A \ge \sigma_B \ge 0$
 - Case 2: $\sigma_A \ge 0 \ge \sigma_B$
 - Case 3: $0 \ge \sigma_A \ge \sigma_B$

Distortion Energy (DE) Failure Theory

- Also known as:
 - Octahedral Shear Stress
 - Shear Energy
 - Von Mises
 - Von Mises Hencky
- Originated from observation that ductile materials stressed hydrostatically (equal principal stresses) exhibited yield strengths greatly in excess of expected values.
- Theorizes that if strain energy is divided into hydrostatic volume changing energy and angular distortion energy, the yielding is primarily affected by the distortion energy.

Shigley's Mechanical Engineering Design

16

Distortion Energy (DE) Failure Theory

• **Theory:** Yielding occurs when the *distortion strain energy* per unit volume reaches the distortion strain energy per unit volume for yield in simple tension or compression of the same material.

•	To be handled in the class.		
		Shigley's Mechanical Engineering	Des
	Continued		
.	Continued		
	Continued		
-	Continued		
-	Continued		
-	Continued		
-	Continued.		
-	Continued		
-	Continued.		
-	Continued.		
-	Continued.		
	Continued.		
_	Continued.		

Von Mises Stress

• In terms of *principal stresses*, in 3-D

$$\sigma' = \left[\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}\right]^{1/2}$$
(5-12)

• For plane stress, if the 2-D principal stresses are σ_A and σ_B

$$\sigma' = \left(\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2\right)^{1/2} \tag{5-13}$$

• In terms of *xyz* components, in 3-D

$$\sigma' = \frac{1}{\sqrt{2}} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]^{1/2}$$
(5-14)

• For plane stress, in terms of *xyz* components

$$\sigma' = (\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2)^{1/2}$$
(5-15)

Shigley's Mechanical Engineering Design

20

Distortion Energy Theory With Von Mises Stress

- Von Mises Stress can be thought of as a single, equivalent, or effective stress for the entire general state of stress in a stress element.
- Distortion Energy failure theory simply compares von Mises stress to yield strength.

$$\sigma' \ge S_{\nu} \tag{5-11}$$

• Introducing a design factor,

$$\sigma' = \frac{S_y}{n} \tag{5-19}$$

• Expressing as factor of safety,

$$n = \frac{S_y}{\sigma'}$$

• and a single shear stress component (τ)

• MSS:
$$\tau_{\text{max}} = \sqrt{(\sigma/2)^2 + \tau^2} = \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2}$$

 $n = \frac{S_y/2}{\tau_{\text{max}}} = \frac{S_y}{\sqrt{\sigma^2 + 4\tau^2}}$

• DE:
$$\sigma' = \sqrt{\sigma^2 + 3\tau^2}$$
$$n = \frac{S_y}{\sigma'} = \frac{S_y}{\sqrt{\sigma^2 + 3\tau^2}}$$

Example 5-1

A hot-rolled steel has a yield strength of $S_{yt} = S_{yc} = 100$ kpsi and a true strain at fracture of $\varepsilon_f = 0.55$. Estimate the factor of safety for the following principal stress states: (a) $\sigma_x = 70$ kpsi, $\sigma_y = 70$ kpsi, $\tau_{xy} = 0$ kpsi (b) $\sigma_x = 60$ kpsi, $\sigma_y = 40$ kpsi, $\tau_{xy} = -15$ kpsi $(c)\sigma_x = 0$ kpsi, $\sigma_y = 40$ kpsi, $\tau_{xy} = 45$ kpsi (d) $\sigma_x = -40$ kpsi, $\sigma_y = -60$ kpsi, $\tau_{xy} = 15$ kpsi (e) $\sigma_1 = 30$ kpsi, $\sigma_2 = 30$ kpsi, $\sigma_3 = 30$ kpsi Solution Shigley's Mechanical Engineering Design 24 Continued..

• A certain force F is applied at D. OABC bar is made of AISI 1035 steel, having yield strength of 560 MPa. Find the value of F that initiates yielding, using MSS and DE failure theories.

Shigley's Mechanical Engineering Design

26

Continued..

- Some materials have compressive strengths different from tensile strengths
- *Mohr theory* is based on three simple tests: tension, compression, and shear
- Plotting Mohr's circle for each, bounding curve defines failure envelope

Shigley's Mechanical Engineering Design

Coulomb-Mohr Theory

- Curved failure curve is difficult to determine analytically
- *Coulomb-Mohr theory* simplifies to linear failure envelope using only tension and compression tests (dashed circles)

• For brittle material, use tensile and compressive ultimate strengths

32 **Coulomb-Mohr Theory** $\frac{\sigma_1}{S_t} - \frac{\sigma_3}{S_c} = 1$ (5 - 22) Consider three cases • Case 1: $\sigma_A \ge \sigma_B \ge 0$ For this case, $\sigma_1 = \sigma_A$ and $\sigma_3 = 0$ • Eq. (5–22) reduces to (5 - 23) $\sigma_A \geq S_t$ • Case 2: $\sigma_A \ge 0 \ge \sigma_B$ For this case, $\sigma_1 = \sigma_A$ and $\sigma_3 = \sigma_B$ • Eq. (5-22) reduces to $\frac{\sigma_A}{S_t} - \frac{\sigma_B}{S_c} \ge 1$ (5 - 24)• Case 3: $0 \ge \sigma_A \ge \sigma_B$ For this case, $\sigma_1 = 0$ and $\sigma_3 = \sigma_B$ • Eq. (5–22) reduces to (5 - 25) $\sigma_B \leq -S_c$ Shigley's Mechanical Engineering Design

- Plot three cases on principal stress axes
- Similar to MSS theory, except with different strengths for compression and tension

Example 5-2

A 25-mm-diameter shaft is statically torqued to 230 N \cdot m. It is made of cast 195-T6 aluminum, with a yield strength in tension of 160 MPa and a yield strength in compression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of the shaft.

Solution

Failure Theories for Brittle Materials

- Experimental data indicates some differences in failure for brittle materials.
- Failure criteria is generally ultimate fracture rather than yielding
- Compressive strengths are usually larger than tensile strengths

Brittle Coulomb-Mohr

- Same as previously derived, using ultimate strengths for failure
- Failure equations dependent on quadrant

 σ_A , MPa

300

-700

O Gray cast-iron data

• A certain force F is applied at D. OABC bar is made of a brittle material with 210 MPa ultimate tensile stress and 750 MPa ultimate compressive stress. Find the value of F that leads to fracture, using Coulomb-Mohr and Modified Mohr failure theories.

Shigley's Mechanical Engineering Design

40

Continued..

Selection of Failure Criteria

- First determine ductile vs. brittle
- For ductile
 - MSS is conservative
 - DE is typical, often used for analysis where agreement with experimental data is desired
 - If tensile and compressive strengths differ, use Ductile Coulomb-Mohr

• For brittle

- Brittle Coulomb-Mohr is very conservative in 4th quadrant
- Modified Mohr is still slightly conservative in 4th quadrant, but closer to typical

