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Stiffness

Describes the resistance of a structure to deformation in
response to an applied load.

> The inverse of stiffness is called compliance.

* Axially-Loaded Stiffness
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Deflection Due to Bending

Curvature of beam subjected to bending moment M
| M
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* From mathematics, curvature of plane curve
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Slope of beam at any point x along the length
dy
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dx

If the slope 1s very small, the denominator of Eq. (4-9)
approaches unity.

Combining Egs. (4-8) and (4-9), for beams with small slopes,
M %y
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Deflection Due to Bending

» Recall Egs. (3-3) and (3-4)
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» Successively differentiating
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Example 4-1

Using Eq. (4-12), determine the equations for the slope and deflection of the beam, the
slopes at the ends, and the maximum deflection.

y
-0 25,
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Beam Deflection Methods

e Some of the more common methods for solving the integration
problem for beam deflection

° Superposition
> Moment-area method
o Singularity functions

> Numerical integration

e Other methods that use alternate approaches
o Castigliano energy method

o Finite element software

Beam Deflection by Superposition

» Superposition determines the effects of each load separately,
then adds the results.

e Separate parts are solved using any method for simple load
cases.

* Conditions to use Superposition Method
> Each effect is linearly related to the load that produces it.

o A load does not create a condition that affects the result of
another load.

> The deformations are not large enough to appreciably alter the
geometric relations of the parts of the structural system.
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Example 4-3

Consider the beam in Fig. 4-4a and determine the deflection equations using
superposition.

T
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Fig. 4-4(a)
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Strain Energy

» External work done on elastic member in deforming it is
transformed into strain energy, or potential energy.

 Strain energy equals product of average force and deflection.

F  F?

M ET:

(4-15)

 Strain energy density is equal to the area under stress-strain
curve.
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Some Common Strain Energy Formulas

e For axial loading, applying k = AE/I from Eq. (4-4),

17

F?l
= (4-16)
2ALE , _
or Fz tension and compression
U=f2Ade (4-17)
» For torsional loading, applying k = GJ/I from Eq. (4-7),
T
~2GJ | 18
or torsion
TZ
U= f dx (4-19)
2GJ
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Some Common Strain Energy Formulas
e For direct shear loading,
F?l
= (4-20)
2AG
or direct shear
F2 d 21
U= ; -
f 2AG " (4-21)
e For bending loading,
M2l
- (4-22)
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Some Common Strain Energy Formulas

e For transverse shear loading,

cVv?
or CV2 transverse shear
2AG

where C is a modifier dependent on the cross sectional shape.

Table 4-1

Strain-Energy Correction Beam Cross-Sectional Shape Factor C
Factors for Transverse Rectangular 1.2
Shear Circular 1.11
Source: Richard G. Budynas, Thin-walled tubular, round 2.00
Advanced Str‘englh and Applied Box seetions 1.00
Stress Analysis, 2nd ed.,

McGraw-Hill, New York, 1999. Structural sections’ 1.00
Copyright © 1999 The

McGraw-Hill Companies. Use area of web only.
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Summary of Common Strain Energy Formulas
F?l )
U=
2AE ‘ _
tension and compression
F2
U= d>
f 2AE "
T2l ‘ F2
= —_— U —
2GJ _ 2AG
S torsion direct shear
T- F2
U == d. =
f 267 v f 246"
M2l - cv3i
T 2E] T 2AG
bending transverse shear
U M? J i [cv2 ;
— —_— — x
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Example 4-8

A cantilever beam with a round cross section has a concentrated load F at the end, as
shown in Fig. 4-9a. Find the strain energy in the beam.
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Fig. 4-9 (a)
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Castigliano’s Theorem

» When forces act on elastic systems subject to small
displacements, the displacement corresponding to any force, in
the direction of the force, is equal to the partial derivative of the
total strain energy with respect to that force.

oU

5 = 4-26
JF; | )

» For rotational displacement, in radians,

aU
b = 4-27
: aM; ( |
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Example 4-9

The cantilever of Ex. 4-8 is a carbon steel bar 10 in long with a 1-in diameter and is
loaded by a force F = 100 Ibf.

(a) Find the maximum deflection using Castigliano’s theorem, including that due to shear.
(b) What error is introduced if shear is neglected?

A
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Utilizing a Fictitious Force

Castigliano’s method can be used to find a deflection at a point

even if there is no force applied at that point.

Apply a fictitious force Q at the point, and in the direction, of

the desired deflection.

Set up the equation for total strain energy including the energy

due to Q.

Take the derivative of the total strain energy with respect to Q.

Once the derivative is taken, Q is no longer needed and can be

set to zero.

U
90 | g0

(4-28)

26




27

Example 4-9(b)

Using Castigliano’s method and utilizing a fictitious force, derive an
expression for the mid deflection of the cantilever beam shown.
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Finding Deflection Without Finding Energy

For cases requiring integration of strain energy equations, it is
more efficient to obtain the deflection directly without explicitly
finding the strain energy.

The partial derivative 1s moved inside the integral.
For example, for bending,

oM
2M —
aF;

AU @ Mﬂf, [0 (M . -
a3k aE\TET)T Fam\eur )" § Tam1

Derivative can be taken before integration, simplifying the math.

Especially helpful with fictitious force Q, since it can be set to
zero after the derivative is taken.

30
Common Deflection Equations

oU I oF . :
Si F—)dx tension and compression (4-29)

~ofr, ] AE\' 9F
aU I aT
b = — = | — ( —)dx  torsion (4-30)
M, 7\ 3,

oU I oM .
Si=—= | — | M—)dx bending (4-31)
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Example 4-10

Using Castigliano’s method, determine the deflections of points A and B due to the
force F applied at the end of the step shaft shown in Fig. 4-10. The second area
moments for sections AB and BC are I and 21, respectively.

b

173 i in |
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Another Example

Using Castigliano’s method, find the horizontal displacement of joint B.

20%N
5ed A B
MR
| L1 MempEps
B = B0 mm?
= E = 2006
.’L D b('
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Procedure 1 for Statically Indeterminate Problems

1. Choose the redundant reaction(s)

2. Write the equations of static equilibrium for the remaining
reactions in terms of the applied loads and the redundant
reaction(s).

3. Write the deflection equation(s) for the point(s) at the locations
of the redundant reaction(s) in terms of the applied loads and
redundant reaction(s).

4. Solve equilibrium equations and deflection equations
simultaneously to determine the reactions.

Note: Procedure 2 will not be covered in this class, but you may
want to take a look at it.
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Example 4-14

Determine the reactions using procedure 1.
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Compression Members

e Column — A member loaded in compression such that either its
length or eccentric loading causes it to experience more than
pure compression

* Four categories of columns
> Long columns with central loading
> Short columns with central loading
> Long columns with eccentric loading
o Short columns with eccentric loading

41

Euler Column Formula

* Internal moment: M =—-Py P

o Substituting into d?y/dx*=M/E]I,

d?y LPo
a2 ElY T

0

¢ Solving with boundary conditions
y=0atx=0andatx=/

P P
/i L=nr (n:1’2’...) (@) (b)
El

e The smallest critical load is

Py = Bl (Euler buckling load)

!2
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Solution of the differential equation

43
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Long Columns with Central Loading

e When P reaches critical load,
column becomes unstable and
bending develops rapidly.

 Critical load depends on end
conditions (Euler column
formula)

CrnlEl
cr=T

e More conservative values of — P — % @ie =2
C are often used.

End-Condition Constant C
Column End Theoretical Conservative = Recommended

Conditions Value Value Value*

Fixed-free L 1

Rounded-rounded
Fixed-rounded

7
1
1
Fixed-fixed 1

AR = si—

*To be used only with liberal factors of safety when the column load is accurately known.
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Comparison with Test Results

o Using I = Ak?, where A is the area and £ is the radius of gyration,
Euler column formula can be expressed as

2
Per _ CT_‘(E (4-44)
A (/K2
s, C=1
o [/k : slenderness ratio, e
o P /A : critical unit load g
- Euler curve
R
» Test results indicate that a parabolic
curve can be used before point T, and Stenderness ratio £

Euler curve can be used after point T.
Point 7'is usually defined such that P,/4 = § /2, giving

1/2
( I ) ( 272CE ) /
A’ ] S}'
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Condition for Use of Euler Equation
* For long columns, where (//k) > (I/k),,
o use Euler equation
e For intermediate-length columns, where (I/k) < (//k),,

° use a parabolic curve between S, and T

P

\\ |
N
[

P
A

Paraboli
curve

Unit load

Euler curve

Gl — — —— —

)

—

1

Slenderness ratio i
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Short Columns with Central Loading

General form of parabola

P > ’
f:{}—b(r)

Parabola starts at Sy, SO

N
@

Paraboli
curve

N
I
%)
P

Unit load 7"

Euler curve

Parabola is tangent to Euler curve i
at 7, so - (&, ()

b — i i L Slenderness ruli()i
2r ) CE
Also known as J.B. Johnson formula

P.. S, z)3 I / I
- = S\, — —_ = — S —
A : 27 k) CE I k),
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Example 4-17

Specify the diameter of a round column 1.5 m long that is to carry a maximum load
estimated to be 22 kN. Use a design factor ny; = 4 and consider the ends as pinned
(rounded). The column material selected has a minimum yield strength of 500 MPa and
a modulus of elasticity of 207 GPa.
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Columns with Eccentric Loading

* For eccentrically loaded column
with eccentricity e,
M = -P(e+y)

e Substituting into d*y/dx*=M/E]I,
d?y +i . Pe
dx2 " EI’ T El

» Solving with boundary conditions
y=0atx=0andatx =/ =

= ol B Yol B) ¢ o)
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Columns with Eccentric Loading

¢ At midspan where x = [/2

o=l 2)

P

[ ol I
Mpax = P(e +6) = Pesec| =,/ — ¥
2 (e +9) fseu(z\; El i ’FT
¢ The maximum compressive stress includes - +
"

axial and bending  _ P  Mc P Mc

AT T TAT e

e Substituting M., we get o, = P 1 +"_':5€C L / P
A k2 2kV EA

¢ Using S, as the maximum value of o, and solving for P/4, we
obtain the secant column formula

P Sye

A 1+ (ec/k2)sec|(/2k) /P AE]




Secant Column Formula

e Secant Column Formula
P Sye

A 1+ (ec/k2)sec[(l/2k)/PJAE]

(4-50)

o ec/k? is the eccentricity ratio

* Design charts of secant column formula for various eccentricity
ratio can be prepared for a given material strength

Euler's curve

Unit load P/A

0 50 100 150 200 250

Slenderness ratio I/k
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Short Columns Under Eccentric Loading

If eccentricity exists, maximum stress is at B d
with axial compression and bending. »l *

P N Mc P N PecA P |+ ec (4-55)
Op = — _ = — = — - _
A 1 A 1A A k2 )

Notice that it is not a function of length

Differs from secant equation in that it assumes
small effect of bending deflection

If bending deflection is limited to 1 percent of e, T |
P

then from Eq. (4-44), the limiting slenderness
ratio for short columns under eccentric loading is

/ 1/2
(I) = (.282 (%) (4-56)

Fig. 4-22

> ‘
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Example 4-20

Figure 4-23a shows a workpiece clamped to a milling machine table by a bolt tight-
ened to a tension of 2000 Ibf. The clamp contact is offset from the centroidal axis of the
strut by a distance e = 0.10 in, as shown in part b of the figure. The strut, or block, is

steel, | in square and 4 in long, as shown. Determine the maximum compressive stress
in the block.

il

‘P:lﬂmlbf

‘ 1-in square
— }-e 0.10 in
P

(b)
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