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Shear Force and Bending Moments in Beams

* Cut beam at any location x,

¢ Internal shear force V" and bending moment M must ensure
equilibrium

i Y

B S'S S l@ x
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 Distributed load ¢g(x) is taken positive upwards

q(x)

Relationships between Load, Shear, and Bending

dmM

V=— (3-3)
dx
v  d’M
(— — a _) b—t q (3_4)
dx dx-
va Xp
f dV =Vg — V4 = f qgdx (3-5)
VA XA
Mp Ry
f dM = Mp — M, = f Vdx (3-6)
I‘IA XA

* The change in shear force from 4 to B is equal to the area of the
loading diagram between x , and x ;.

* The change in moment from A to B is equal to the area of the
shear-force diagram between x, and x;.
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Shear-Moment Diagrams
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Plot the shear and moment diagrams.

BASE UNITS DERIVED UNITS
LENGTH MASS FORCE STRESS ENERGY VELOCITY ACCELER.
m kg N Pa J m/s m/s?
in Ibm Ibf ps Ibf-in infs infs*

Multiply Input By Factor
X A

inch, in 0.0254
inch, in 254
foot, ft 0.305
pound, Ibf 4.45
kilopound/inch?, 6.89
kpsi (ksi)

To Get Output
¥

meter, m

millimeter, mm

meter, m

newton, N

megapascal, MPa
{N/mm?)

Shigley’s Mechanical Engineering Design

Continued..

Shigley’s Mechanical Engineering Design




Moment Diagrams — Two Planes

Compute the maximum bending moment developed in the shaft.
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Example 3-3

Figure 3—-6a shows the loading diagram for a beam cantilevered at A with a uniform
load of 20 1bf/in acting on the portion 3 in < x < 7in, and a concentrated counter-
clockwise moment of 240 1bf - in at x = 10 in. Derive the shear-force and bending-
moment relations, and the support reactions M; and R;.

¥

Fig. 3-6 q 10in

7 in
~—3in—>  201bfin
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Stress

Normal stress 1s normal to a surface, designated by o

Tangential shear stress is tangent to a surface, designated by 7

Normal stress acting outward on surface is tensile stress

Normal stress acting inward on surface is compressive stress

U.S. Customary units of stress are pounds per square inch (psi)
1 1bf/in? =1 psi

ST units of stress are newtons per square meter (N/m?)
1 N/m? = 1 pascal (Pa)

Stress element

Figure 3-8

(a) General three-dimensional
stress. (b) Plane stress with

“cross-shears™ equal.

(a) (b
* Represents stress at a point
» Coordinate directions are arbitrary

» Choosing coordinates which result in zero shear stress will
produce principal stresses




Cartesian Stress Components

Defined by three mutually orthogonal surfaces at a point within
a body

Each surface can have normal and shear stress

Shear stress is often resolved into perpendicular components

First subscript indicates direction of surface normal

Second subscript indicates direction of shear stress

v y

Cartesian Stress Components

» In most cases, “cross shears” are equal
T:yx — T(x'y -C:)' — T’y: I:x: — rzx (3_7)

e Plane stress occurs when stresses on one surface are zero

Fig. 3-8
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Plane-Stress Transformation Equations

» Cutting plane stress element at an arbitrary angle and balancing
stresses gives plane-stress transformation equations

oy + oy Oy — O,

o=— + = 5 L C082¢ + Tyy Sin 2¢ (3-8)
Oy — 0Oy
T = —— 5 = 8in2¢ 4 1., c08 2¢ (3-9)
A% \
e T
| Tey (b\
—— < :
. Yo T
2 3 Y o
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Principal Stresses for Plane Stress

 Differentiating Eq. (3-8) with respect to ¢ and setting equal to
zero maximizes o and gives

2Ty
tan2¢, = ' (3-10)

* The two values of 2¢, are the principal directions.
» The stresses in the principal directions are the principal stresses.
» The principal direction surfaces have zero shear stresses.

» Substituting Eq. (3-10) into Eq. (3-8) gives expression for the
non-zero principal stresses.

oy + o, Oy — Oy .
o1,0) = "2 >4+ ('xz ") —I—‘C'g}. (3-13)

e Note that there is a third principal stress, equal to zero for plane
stress.




Extreme-value Shear Stresses for Plane Stress

Performing similar procedure with shear stress in Eq. (3-9), the
maximum shear stresses are found to be on surfaces that are
+45° from the principal directions.

The two extreme-value shear stresses are

Oy — Oy 2
Tl,‘l'zzzi:\/< - > > +T-\2.\' (3—]4)

Direction for maximum shear stress can be found from

tan 2¢S = M

Ty

: 1 ane
Since tan2¢, =— YR the angle between 2¢, and 2¢, 1s 90

P
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Maximum Shear Stress

There are always three principal stresses. One is zero for plane
stress.

There are always three extreme-value shear stresses.

o — 03 0y — 03 g1 — 03
)3 = T3 =
2 J 2 f 2

(3-16)

T1)2 =

The maximum shear stress is always the greatest of these three.

Eq. (3-14) will not give the maximum shear stress in cases where
there are two non-zero principal stresses that are both positive or
both negative.

If principal stresses are ordered so that o; > o, > o,
then 7. = 7,3

18




Mohr’s Circle Diagram

A graphical method for visualizing the stress state at a point
Represents relation between x-y stresses and principal stresses
Parametric relationship between o and 7 (with 2¢ as parameter)
Relationship is a circle with center at
C=(co,D=[(c,+07,)2,0]
and radius of &
.- - y
2 f | |
R — O-X Gy + Z_Z [ | C] ,: I .
2 v iy . 'r'll"-._ f,.f'
N |
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Mohr’s Circle Diagram

Construction of circle
. Establish a coordinate system where abscissa represents the normal stress o (positive to the right), and the
ordinate represents the shear stress 1 (positive downward).
. Locate the center of the circle C, which lies on o axis at a distance 0, _ = [ g, . t+a, ]/2 from the origin.
. Locate a reference point A, which has coordinates 4(o,.7 ] .
. Connect the points C and A, and compute the distance CA (the radius of the circle) by trigonometry.

Principal stresses

. The circle intersect the o axis at two points (B and D). They are the principal stresses g, = 7, .
. The angle between CA and CB is 26,,, and the angle between CA and CD is 26,,.
. A rotation of 26 in the circle corresponds to a rotation of & in the element.

Maximum shear stress
. The radius of circle is equal to the maximum shear stress value.
. The angle between CA and CE is 26, , and the angle between CA and CFis 28, .

. Again, a rotation of 2& in the circle corresponds to a rotation of & in the element.
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Example 3-4

A stress element has o, = 80 MPa and 7,y = 50 MPa cw, as shown in Fig. 3-11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show 7| and 72, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part ¢ using the transformation equations only.

y
50 ——
- X
50
—_—
(@)
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General Three-Dimensional Stress

» All stress elements are actually 3-D.
 Plane stress elements simply have one surface with zero stresses.

» For cases where there is no stress-free surface, the principal
stresses are found from the roots of the cubic equation

3 2 2 2 2
o° —(0x +0y+0;)0” + (o.\-a_\‘ +o0.0;+0y0;, — T, — T, — ‘E:_\‘)a
2 p) g,
— (a\- OyO7 + 2TxyTysTyx — OxT,, — OyT,, — Oy ‘L';\.) =0 (3-15)
] . .

The coefficients of this equation
is called “stress invariants.”
They are independent of the
coordinate system used.

Fig. 3—12
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The Cubic Equation®

A stress vector parallel to the normal vector 11 is given by:
T® = \p = oyn
where )\ is a constant of proportionality, and in this particular case corresponds to the magnitudes @y, of the normal stress vectors or principal stresses.
i (n) =8
Knowing that T,V = oM and 1; = 5,JTLJ. we have
in) _
"= Mn;
O'.gjﬂ.j = Aﬂ.g
oy — An; =0
(ET!J' - Aﬁlj) ﬂ.j =0
This is a homogeneous system, i.e. equal to zero, of three linear equations where 5 are the unknowns. To obtain a nontrivial (non-zero) solution for 72,

the determinant matrix of the coefficients must be equal to zero, i.e. the system is singular.

Thus,
oy — A J12 013
|Uaj - /\5aj| = Ta1 Top — A T23 =0
031 O3z T3z — A

Expanding the determinant leads to the characteristic equation The mate rial presented
low; —Adi| = =X + LN — LA+T;=0

where here is taken from
fi=out ot on Wikipedia.

= Okk
I, = 022 O3 O11 013 011 012
O3z Oaz Jar Oaz O21 022

2 2 2
= 011022 + 032033 + F11033 — Ojp — Tp3 — T3y
A
2

13 = det-(cr%-j)

— 2 2 2
= 011093033 + 2013093031 — T19033 — 093011 — 031032

0:lj; — 0ijTji)




General Three-Dimensional Stress

» Always three extreme shear values

o] — 0 09 — 03 0|1 — 03
72/3 = T3 =
2 i 2 d 2

T2 =

(3-16)

» Maximum Shear Stress is the largest

 Principal stresses are usually ordered such that o, > o, > o3,
in which case 7., = 7,3

T

I3
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Elastic Strain

e Hooke's law

o = Ee (3-17)

* FE1s Young’s modulus, or modulus of elasticity

» Tension in on direction produces negative strain (contraction) in
a perpendicular direction.

e For axial stress in x direction,

I €, =€, = —vﬁ (3-18)
E | E

6,’&‘ =
e The constant of proportionality v 1s Poisson s ratio

e See Table A-5 for values for common materials.

v = 0.333 for aluminum
v =0.292 for carbon steel

26




Elastic Strain

e For a stress element undergoing o,, o,, and o, simultaneously,

€, = % [OX — v(a}. + g,)]

&y = 5 [oy = vioy 00 (3-19)
|

€; = £ [Uz —v(oy + U)‘)]
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Elastic Strain

Hooke’s law for shear:
Tt =Gy (3-20)

Shear strain yis the change in a right angle of a stress element
when subjected to pure shear stress.

G 1s the shear modulus of elasticity or modulus of rigidity.

For a linear, 1sotropic, homogeneous material,

E=2G(+v) (3-21)

28
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Uniformly Distributed Stresses

Uniformly distributed stress distribution is often assumed for
pure tension, pure compression, or pure shear.

For tension and compression,
o =— (3-22)
For direct shear (no bending present),

r= (3-23)

30
Normal Stresses for Beams in Bending

Straight beam in positive bending |
M

X axis i1s neutral axis

xz plane is neutral plane

Neutral axis is coincident with the M x
centroidal axis of the cross section Fig. 3—13

° requires symmetric cross section




Normal Stresses for Beams in Bending

» Bending stress varies linearly with distance from neutral axis, y

M )
o= - (3-24)
1

e [ 1s the second-area moment about the z axis

I = f VvdA (3-25)

Y Compression

; C . s s
5 Neutral axis, Centroidal axis

R B R

Tension

Fig. 3—14
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Assumptions for Normal Bending Stress

Pure bending (though effects of axial, torsional, and shear
loads are often assumed to have minimal effect on bending
stress)

Material is isotropic and homogeneous

Material obeys Hooke’s law

Beam is initially straight with constant cross section

Beam has axis of symmetry in the plane of bending

Proportions are such that failure is by bending rather than
crushing, wrinkling, or sidewise buckling

Plane cross sections remain plane during bending

32
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Example 3-5

A beam having a T section with the dimensions shown in Fig. 3—15 is subjected to a bend-
ing moment of 1600 N - m, about the negative z axis, that causes tension at the top surface.
Locate the neutral axis and find the maximum tensile and compressive bending stresses.

Y

g r ® "l

12 1

¥ Cy
z

—
>

Fig. 3-15 v

e

Dimensions in mm
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Two-Plane Bending

» Consider bending in both xy and xz planes

» Cross sections with one or two planes of symmetry only
M.y M,z

_I_Z + [)‘

Oy =

(3-27)

» For solid circular cross section, the maximum bending stress is

Mc (My+MH'"*@r2)y 32 L,
= % = M? + M2 3-28
I md*/64 er3( g T M) ( )

Om =
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Example 3-6

As shown in Fig. 3-16a, beam OC is loaded in the xy plane by a uniform load of
50 Ibt/in, and in the xz plane by a concentrated force of 100 Ibf at end C. The beam is
8 in long.

(a) For the cross section shown determine the maximum tensile and compressive
bending stresses and where they act.

(b) If the cross section was a solid circular rod of diameter, d = 1.25 in, determine
the magnitude of the maximum bending stress.

50 Ibf/in

&

Fig.3-16
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Shear Stresses for Beams in Bending

w(x)

T
- 1 N

1 dx 4 >
(@)

Fig. 3-17 ®

Equilubrium in x-direction:

< (dM)y
tbd)(:f( YA
Vi

[

(©

c

Vv
T =— vdA (3-29)
Ib J,,

40
Transverse Shear Stress

- b=

o d
> r B
< ¢ . c
<*|» - _ ;7/ x Z }hi- = i— h
0 .O

,L Fig. 3—18

0= f ydA =7 A (3-30)
T

T=—

b

» Transverse shear stress is always accompanied with bending
stress.

(3-31)
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Transverse Shear Stress in a Rectangular Beam

¥ y

-t

A
(a) (b) (c)
c c byZ c b
o= | ydA:bf\_ vdy == =3( =)
Vi Vi Vi
VQ Vv 2 2 AC2
T=——= — —
Ib 21 (¢ =) ! 3
3V y2
T = 5 (1 — C—;) (3-33)
parabolic
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Maximum Values of Transverse Shear Stress

Beam Shape Formula Beam Shape Formula

3v v 2V

v
~ Tave T A Tmax — 5, =T TweT g Tmax — —
2A % A
il |

Rectangular

Hollow, thin-walled round

Circular

4v IA——- v
i web - —
Tmax 3A % Tmax Aweb

Structural I beam (thin-walled)

Table 3—2

Shigley’s Mechanical Engineering Design
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Significance of Transverse Shear Compared to Bending

e Example: Cantilever beam, rectangular cross section
* The beam is subjected to bending and shear
¢ Maximum shear stress, including bending stress (My/I) and
transverse shear stress (VQ/Ib),
_ (e L L 3F 2(v /)2 — (v/2T?
= (3) + 2= 2L 202+ [1 - (v/0?]

The effect of the transverse shear 1s negligible if L > 10h.

44

Example 3-7

A beam 12 in long is to support a load of 488 Ibf acting 3 in from the left support, as
shown in Fig. 3-20a. The beam is an | beam with the cross-sectional dimensions
shown. To simplify the calculations, assume a cross section with square corners, as
shown in Fig. 3-20c. Points of interest are labeled (a, b, ¢, and d) at distances y from
the neutral axis of 0 in, 1.2407 in, 1.240" in, and 1.5 in (Fig. 3-20c). At the critical
axial location along the beam, find the following information.

(a) Determine the profile of the distribution of the transverse shear stress, obtain-
ing values at each of the points of interest.

(b) Determine the bending stresses at the points of interest.

(¢) Determine the maximum shear stresses at the points of interest, and compare them.
-

488 Ibf

<—3in 9in 0.260 in
L].Z()Om d
+
l.me

—O-—-—-—-—-—-—-—-—-—-—-——X 3.00 in 0.170 in Yy ,17
1.08 in ﬂ<—>
y A |<—2.33 in—
(c)
R, =366 Ibf R, =122 Ibf

“ Fig. 3-20
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Power, Speed, and Torque

» Power equals torque times speed
H=Tw (3-43)
where H = power, W
T = torque, N-m

@ = angular velocity, rad/s

* A convenient conversion with speed in rpm
H
T =955— (3-44)
n

where H = power, W
n = angular velocity, revolutions per minute

47

Power, Speed, and Torque

e In U.S. Customary units, with unit conversion built in

FV 2nTn Tn

H = - - (3-42)
33000 33000(12) 63025

where H = power, hp
T = torque, Ibf - in
n = shaft speed, rev/min
F = force, Ibf

V = velocity, ft/min

48




49
Torsion

» Torque vector — a moment vector collinear with axis of a
mechanical element

» A bar subjected to a torque vector is said to be in torsion

» Angle of twist, in radians, for a solid round bar

Tl
0 =— 3-85
7 (3-35)

50
Torsional Shear Stress

» For round bar in torsion, torsional shear stress is proportional to
the radius p

_TIp (3-36)

T
J

e Maximum torsional shear stress i1s at the outer surface

Tr
— (3-37)

Tmax —
J
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Assumptions for Torsion Equations

» Equations (3-35) to (3-37) are only applicable for the following
conditions

> Pure torque

> Remote from any discontinuities or point of application of
torque

> Material obeys Hooke’s law

> Adjacent cross sections originally plane and parallel remain
plane and parallel

o Radial lines remain straight

Depends on axisymmetry, so does not hold true for
noncircular cross sections

» Consequently, only applicable for round cross sections

52
Torsional Shear in Rectangular Section

o Shear stress does not vary linearly with radial distance for
rectangular cross section

 Shear stress is zero at the corners
» Maximum shear stress is at the middle of the longest side
» For rectangular b x ¢ bar, where b is longest side

r . T 34 1.8 (3-40)
Tl]lllX — T 5 = 7T 5 o -
abc?  bc? b/c
Tl
= —— (3-41)
Bbc*G

be | 100 150 175 200 250 300 400 600 800 10 o0
« | 0208 0231 0239 0246 0258 0267 0282 0299 0307 0313 0333

B 0.141 0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333
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Example 3-8

Figure 3-22 shows a crank loaded by a force ' = 300 Ibf that causes twisting and
bending of a %—in—diameter shaft fixed to a support at the origin of the reference system.
In actuality, the support may be an inertia that we wish to rotate, but for the purposes
of a stress analysis we can consider this a statics problem.

(a) Draw separate free-body diagrams of the shaft AB and the arm BC, and com-
pute the values of all forces, moments, and torques that act. Label the directions of the
coordinate axes on these diagrams.

(h) Compute the maxima of the torsional stress and the bending stress in the arm
BC and indicate where these act.

(¢) Locate a stress element on the top surface of the shaft at A, and calculate all the
stress components that act upon this element.

(d) Detern}ine the maximum normal and shear stresses at A.

Shigley’s Mechanical Engineering Design
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Example 3-9

The 1.5-in-diameter solid steel shaft shown in Fig. 3—24a is simply supported at the ends.
Two pulleys are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of
diameter 8.0 in. Considering bending and torsional stresses only, determine the locations
and magnitudes of the greatest tensile, compressive, and shear stresses in the shaft.

Shigley’s Mechanical Engineering Design
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Closed Thin-Walled Tubes

Wall thickness ¢ << tube
radius r

Product of shear stress
times wall thickness is
constant

Shear stress is inversely
proportional to wall
thickness

Median line

Total torque 7 is Fig. 3—-25

T = f Tirds = (rr)fr ds =t1(2A,,) = 2A,1t

4,, 1s the area enclosed by
the section median line

62

Closed Thin-Walled Tubes

Solving for shear stress

= — 3-45
Ay 13-49)

Angular twist (radians) per unit length
TLy

~ 4GA21

m

0 (3-46)

e L, is the length of the section median line

Median line
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Example 3-10

A welded steel tube is 40 in long, has a é-in wall thickness, and a 2.5-in by 3.6-in
rectangular cross section as shown in Fig. 3-26. Assume an allowable shear stress of
11 500 psi and a shear modulus of 11.5(10°) psi.

(a) Estimate the allowable torque 7.

(b) Estimate the angle of twist due to the torque.

Shigley’s Mechanical Engineering Design
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Example 3-11

Compare the shear stress on a circular cylindrical tube with an outside diameter of 1 in
and an inside diameter of 0.9 in, predicted by Eq. (3-37), to that estimated by
Eq. (3-45).

Solution

Eq. (3-37),
lir

Tmax = 7

66
Open Thin-Walled Sections

¢ When the median wall line 1s not closed, the section is said to be
an open section

¢ Some common open thin-walled sections
| e

T = =
L | | Fig. 3-27
i_ L::q R
e Torsional shear stress
RYA
T = GQ]C = L_(,Z (3_47)

where T = Torque, L = length of median line, ¢ = wall thickness,
G = shear modulus, and 6, = angle of twist per unit length
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Open Thin-Walled Sections

Shear stress is inversely proportional to ¢?

Angle of twist is inversely proportional to ¢?
For small wall thickness, stress and twist can become quite large

Example:
o Compare thin round tube with and without slit

o Ratio of wall thickness to outside diameter of 0.1
o Stress with slit is 12.3 times greater
o Twist with slit is 61.5 times greater

Shigley’s Mechanical Engineering Design
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Stress Concentration

* Localized increase of stress near discontinuities
» K, 1s Theoretical (Geometric) Stress Concentration Factor

Ky = (3-48)

Stress
distribution

ama‘

Stress
trajectories

Shigley’s Mechanical Engineering Design
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Theoretical Stress Concentration Factor

» Graphs available for
standard configurations Figure A-15-1

Bar in tension or simple

» See Appendix A-15 and
A= (w—d)t and i isthe

A-16 for common i
examples

e Many more in Peferson s
Stress-Concentration
Factors

* Note the trend for higher | Fiovre A-15-9
Found shaft with shoulder filliet
K. at sharper discontinuity | = ver e
radius, and at greater

disruption

70

Example 3-13

The 2-mm-thick bar shown in Fig. 3-30 is loaded axially with a constant force of 10 kN.
The bar material has been heat treated and quenched to raise its strength, but as a con-
sequence it has lost most of its ductility. It is desired to drill a hole through the center
of the 40-mm face of the plate to allow a cable to pass through it. A 4-mm hole is suf-
ficient for the cable to fit, but an 8-mm drill is readily available. Will a crack be more
likely to initiate at the larger hole, the smaller hole, or at the fillet?

I mm rad
A L
40 mm O 34 mm — 10 kN
| ' -
[ >

Fig. 3-30
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Maximum stresses at the 4-mm and 8-mm holes

3.0
Oomax = K100
¢
28 R
F < w - — [
| )
2.6
Kf
24
2.2
2.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
diw

Shigley’s Mechanical Engineering Design




Example 3-13

Maximum stress at the fillet Omax = K00

2.6

0 0.05 0.10 0.15 0.20 0.25 0.30
rld
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Stresses in Pressurized Cylinders

 Cylinder with inside radius 7;, outside radius r,, internal
pressure p,, and external pressure p,

» Tangential and radial stresses,

) 2 _ .33 2
piry — pory — rir5(po — pi)/1

oy =
") .2
’0 — ’I
2 9 ... 2 (3_49)
_piry = poly +171r;(po — pi)/re
O, = > 3
Fo — 7
Po

by

Fig. 3-31
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Stresses in Pressurized Cylinders

* Special case of zero outside pressure, p, = 0

(3-50)

e If ends are closed,
then longitudinal
stresses also exist

-

P:' rf'

(3-51)

distribution

(a) Tangential stress Flg 3_32 (b) Radial stress

distribution

76

Thin-Walled Vessels

Cylindrical pressure vessel with wall thickness 1/10 or less of
the radius

Radial stress 1s quite small compared to tangential stress

Average tangential stress
pd;

(01)av = BT (3-52)

e Maximum tangential stress

) (d; +t
(Gl)nu\x = : D ) (3_53)
A

Longitudinal stress (if ends are closed)

_ pd;

= 3-54
o= ( )
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Example 3-14
An aluminum-alloy pressure vessel i1s made of tubing having an outside diameter of 8 in
and a wall thickness of % in.
(a) What pressure can the cylinder carry if the permissible tangential stress is
12 kpsi and the theory for thin-walled vessels is assumed to apply?

Solution

78
Stresses in Rotating Rings

» Rotating rings, such as flywheels, blowers, disks, etc.

e Tangential and radial stresses are similar to thick-walled
pressure cylinders, except caused by inertial forces

¢ Conditions:
o Qutside radius is large compared with thickness (>10:1)
> Thickness is constant
o Stresses are constant over the thickness

» Stresses are

3 2r2 143
o = o (TE) (12 T L2

r? 34w

3-55
2 3+v 2 2 ’”fzfg 2 | |
0, = po o R A
8 r?




Press and Shrink Fits

» Two cylindrical parts are assembled with radial interference 6

e Pressure at interface

p= < (3-56)

o] rf—l—Rz_I_ N I (R*+7r}
e Vo o — Vi
E, \r2—R? E; 2 _r?

» If both cylinders are of the same material

ES [(r2 — R*)(R*> —r})
2R3

(3-57)

P = 2 _ 2
’() ’i

1T
e L\
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Press and Shrink Fits

» Eq. (3-49) for pressure cylinders applies

2 2 2.2 2
_Dili = Pol'y — T r5(po— pi)/i

Ot o 5
ro —Ti
2 2 ) (3_49)
_piry = pory +1iry(po — pi)/r?
a i
 For the inner member, p, = p and p, =0
R% + r?
Ot )i = —D I7 3-58
(01) . / R _ 2 ( )
* For the outer member, p, =0 and p, =p
r’ 4+ R?
o - 2 3_59
(07) L prg — R2 ( )
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Temperature Effects

Normal strain due to expansion from temperature change
€x =€, =€; = a(AT) (3-60)
where « is the coefficient of thermal expansion

Thermal stresses occur when members are constrained to
prevent strain during temperature change

For a straight bar constrained at ends, temperature increase will
create a compressive stress

o0 =—€F =—a(AT)E (3-61)

Flat plate constrained at edges
o= AL (3-62)

l—v
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Coefficients of Thermal Expansion
Table 3-3 Material Celsius Scale (°C~!)  Fahrenheit Scale (°F1)
Coefficients of Thermal Al 23.9(10)° 13.3(10)°°
Expansion (Linear Bizics, 6ast 18.7(10)° 10.4(10)~°
Mean Coefficients Carbon steel 10.8(10)° 6.0(10)~°
for the Temperature Cast iron 10.6(10)~° 5.9(10)~°
Range 0-100°C) Magnesium 25.2(10)"6 14.0(10) ¢
Nickel steel 13.1(10) ¢ 7.3(10)°°
Stainless steel 17.3(10)~° 9.6(10)°°
Tungsten 4.3(10)=° 2.4(10)°
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