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CHAPTER 1. STRESS 

 

OUTLINE 

 

1.1-1.2. Recall Statics 

1.3. Stress 

1.4. Average Normal Stress in an Axially Loaded Bar 

1.5. Average Shear Stress 

1.6. Allowable Stress 

1.7. Design of simple connections 
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1.1-1.2. Recall Statics 

 

A body can be subjected to several different types of 

external loads. They can be classified as either 

 surface forces (concentrated or distributed) 

 body forces 

 

In addition to the external loads, the support reactions 

should also be shown in free body diagrams (FBD). 

-- If the support prevents translation, a reaction force is 

developed on the body 

-- If the support prevents rotation, a reaction moment is 

developed on the body 

 

 

 
 

Equations of equilibrium  (Denge denklemleri) 

 

 

 

 

 

Use equations of equilibrium to compute 

 unknown support reactions 

 Internal resultant loadings (N,V,M,T) 
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Internal resultant loadings  (İç bileşke kuvvetler) 

 
 

 

 
 

 

Coplanar Loading  (Düzlemsel yükleme) 
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Example 1: 
Determine the resultant internal loadings acting on the cross section at C of the beam. 
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Example 2: 
Determine the resultant internal loadings acting on the cross section at B of the pipe. The pipe has a mass of 2 kg/m 

and is subjected to both a vertical force of 50 N and a moment of 70 N·m at its end A. It is fixed to the wall at C. 
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1.3. Stress 

                                                      
 

 

 

 

 

 
 

Normal stress:  

 denoted with σ.  

 described with one index only. 

 

 

Shear stress: 

 denoted with τ. 

 described with two indices.  

 the first index defines the orientation of the area that the stress acts 

 the second index defines the axis along which the stress acts 

 

MAK 104 STATICS 

MAK 206 MECHANICS OF MATERIALS 
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General state of stress: 

Consider a cubic element taken out of a body under loading 

 
 

Now, let’s use moment equilibrium to show that cross shear terms are equal (that is, shear stress 

tensor is symmetric). 
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1.4. Average Normal Stress in an Axially Loaded Bar 
- truss members 

- we can neglect their weight (small compared to loading) 

 

Assumptions 

1. The bar remains straight before and after the load is 

applied, and the cross-section remains plane after 

deformation  → uniform deformation 

2. The load should be applied along the centroidal axis 

3. The material should be homogenous and isotropic 

 

 

 
Equations of equilibrium 

Rz zF F   

 

 

where σ is the average normal stress, N is the internal resultant 

normal force, and A is the cross-sectional area. 

 

Rx xM M   

 

 

 

Ry yM M   

 

 

 

Equations (1) and (2) are automatically satisfied, because N pass 

through the centroid, for which 0x dA  and 0y dA  . 

 

 

Maximum average normal stress 

 

N

A
   

 

Thus, it is important to find the maximum of (N/A). It may be helpful to draw a normal force diagram. 

may change along the length of the bar due to various external loads 

section area may change along the length of the bar 
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Example: 
The thrust bearing is subjected to the loads shown. Determine the average normal stress developed on cross sections 

through points B, C, and D.  
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1.5. Average Shear Stress (Ortalama Kayma Gerilmesi) 

 

 

 

 

 

avgaverage shear stress 

V = shear force (internal load) 

A = shear area 

 

 

 

 

 

 

 
bolted (or riveted)                               glued 

thin plates 

 

 

 

 
 

 

As the plates are thin, the bending moment due to F can be neglected. 

For thick plates, F will have a bending effect in addition to shearing.  
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Example: 
The bar is held in equilibrium by the pin supports at A and B. Note that the support at A has a single leaf and therefore it 

involves single shear in the pin, and the support at B has a double leaf and therefore it involves double shear.  

 

The allowable shear stress for both pins is τallow = 125 MPa. If x = 1 m and w= 12 kN/m, determine the smallest required 

diameter of pins A and B. Neglect any axial force in the bar. 
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1.6. Allowable Stress 

 The stress in machine element must remain below certain values. 

 These values are selected to be smaller than the true limits of the material. 

 Many unknown factors influence the actual stress in a member. 

 A factor of safety (F.S.) is needed to obtained allowable load. 

 F.S. is a ratio of the failure load divided by the allowable load 

 

 

 

 

 Usually, the load and stress are linearly related, so we have 
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1.7. Design of simple connections 
 

A)  Tension member 

 
 

B)  Connector (bolt, pin) 

  
 

 

 

 

C)  Bearing member                                                                                 D) Shear due to axial loading 
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Example 1: 
The specimen failed in a tension test at an angle of 52° when the axial load was 100 kN. If the diameter of the 

specimen is 12 mm, determine the average normal and average shear stress acting on the area of the inclined failure 

plane. Also, what is the average normal stress acting on the cross section when failure occurs? 

 

 
 



 

CHAPTER 1 NOTES    15 / 21 

Example 2: 
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Example 3: 
The 250-N lamp is supported by three steel rods connected by a ring at A. The diameter of each rod is given in the 

figure. 

 

Determine the angle of orientation θ of AC such that the average normal stress in rod AC is twice the average normal 

stress in rod AD. What is the magnitude of stress in each rod?  
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Example 4: 
The row of staples AB contained in the stapler is glued together so that 

the maximum shear stress the glue can withstand is τmax = 84 kPa.  

 

Determine the minimum force F that must be placed on the plunger in 

order to shear off a staple from its row and allow it to exit undeformed 

through the Groove at C.  

 

The outer dimensions of the staple are shown in the figure. It has a 

thickness of 1.25 mm Assume all the other parts are rigid and neglect friction. 
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Example 5: 
The beam is supported by a pin at A and a short link BC. 

Determine the maximum magnitude P of the loads the beam will 

support if the average shear stress in each pin is not to exceed 80 

MPa. All pins have the same diameter of 18 mm. 
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Example 6: 
The shaft is subjected to the axial force of 30 kN. If the shaft passes through the 53-mm diameter hole in the fixed 

support A, determine the bearing stress acting on the collar C. Also, what is the average shear stress acting along the 

inside surface of the collar where it is fixed connected to the 52-mm diameter shaft? 
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Example 7: 
The joint is fastened together using two bolts. Determine the required diameter of the bolts if the failure shear stress for the 

bolts is τfail = 350 MPa. Use a factor of safety for shear of F.S. = 2.5. 
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Example 8: 

The pins at A, B and D are made of steel, for which the 

shear failure stress is given as 100 MPa. 

Use a factor of safety of 2.5 to design the pin 

diameters. 
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CHAPTER 2. STRAIN 

 

OUTLINE 

 

2.1. Normal Strain and Shear Strain 

2.2. Cartesian Strain Components 
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2.1. Normal Strain and Shear Strain 

Deformation 

 When a force is applied to a body, it will change the body’s shape and size.  

 These changes are called deformation. 

 
 

Normal strain 

 The elongation / contraction of a line segment per unit of length is referred to as normal strain. 

 Average normal strain is defined as 

 

 

 

 If the normal strain is known, then the approximate final length is 

 

 

   

 

 

 

 

 

Shear strain 

 Change in angle between two line segments that were perpendicular to one another refers to 

shear strain. 

 

 

 

 

 

 

 

Note the before and after positions of 

3 line segments where the material is 

subjected to tension. 
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2.2. Cartesian Strain Components 

 

 

 

 

Assume that a deformed body is subdivided into small 

rectangular elements, and we concentrate on such an 

element 

 

 

 

 

 

 

 

Normal strain components   volume change 

(lengths of the sides of the rectangular element changes) 

 

∆x   

∆y   

∆z   

 

 

 

 

Shear strain components   shape change 

(angles of the sides of the rectangular element changes) 

 

2


   

2


   

2


   

 

 

Small strain analysis: 

Most engineering materials undergo small deformations, so small strains develop. ε << 1 

This allows us to use the following approximate values:  sin ε ≈ ε,  cos ε ≈ 1,  tan ε ≈ ε . 
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Example 1: 

The beam is hanging under its own weight such that 310y y   

a) Determine displacement of end A 
b) Compute the average normal strain 

 

 



CHAPTER 2 NOTES    5 / 8 

Example 2 
The rigid beam is supported by a pin at A and wires BD and CE.  

The load P on the beam causes the end C to be displaced 10 mm downward.  

Determine the normal strain developed in wire BD. 
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Example 3 
Nylon strips are fused to glass plates. When moderately 
heated, the nylon will become soft while the glass stays 
approximately rigid.  
 
Determine the average shear strain in each layer of nylon 
due to the load P when the assembly deforms as shown.  
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Example 4 
The square deforms into the position shown by the dashed lines. 

Determine the shear strain at each of its corners, A, B, C, and D.  

(Side D'B' remains horizontal.) 
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Example 5 
The plate distorts into the dashed position shown. Determine  

(a) the average normal strains and the shear strain at A,  
(b) the average normal strain along line BE. 
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CHAPTER 3. MECHANICAL PROPERTIES OF MATERIALS 

 

OUTLINE 
 
3.1. The Tension and Compression Test 

3.2. The Stress-Strain Diagram 

3.3. Stress-Strain Behavior of Ductile and Brittle Materials 

3.4. Hooke’s Law 

3.5. Strain Energy 

3.6. Poisson’s Ratio 

3.7. The Shear Stress-Strain Diagram 

3.8. Creep and Fatigue 
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CHAPTER 3:  MECHANICAL PROPOERTIES OF MATERIALS 

3.1. THE TENSION / COMPRESSION TEST 

 

Used primarily to determine the relationship between the 

average normal stress and the average normal strain 

 Metals 

 Ceramics 

 Polymers 

 Composite materials 

 

When a metal specimen is tested, generally its initial diameter is d0=13 mm. Two punch marks with 

L0 = 50 mm distance is used. The specimen is stretched at a very slow, constant rate until it reaches 

the breaking point. During the test, the applied load P and the elongations δ= L- L0 are recorded at 

frequent intervals. 

 

3.2. THE STRESS-STRAIN DIAGRAM 

Engineering stress 
0

P

A
    True stress 

P

A
   

Engineering strain 
0L


     True strain 

0

ln
L

L


 
  

 
 

 
Proportional limit …: lineer gerilme gerinim davranışı (doğrusallık sınırı) 

Elastic limit …………..: yük kaldırıldığında orjinal şekline geri döner 

Yielding …….…….…….: kalıcı deformasyon 

Strain hardening ……: gerinim sertleşmesi 

Necking …………………: boyun yapma 

Failure …………………..: kopma 
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3.3.  STRESS-STRAIN BEHAVIOR OF DUCTILE AND BRITTLE MATERIALS 

 

Ductile materials (Sünek malzemeler) 

 Large strain before rupture 

 Capability of absorbing shock and energy 

 Steel, aluminum, brass, zinc 

 

Measures of ductility 

 Percent elongation = 
0

0

fL L

L


 (100%)        (Percent elongation in Fig. 3.6 is 38%) 

 Percent reduction of area = 
0

0

fA A

A


 (100%) 

 

Engineering stress-strain diagram for low carbon steel and aluminum 

 

 

Elastic behavior → yielding at constant stress → strain 

hardening → necking → failure 

There is no well-defined yield point! 

Offset method is used to find the 

yield strength 
* For aluminum proportional limit, elastic limit, and yield point are all the same (unless otherwise specified). 
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Brittle materials (Gevrek malzemeler) 

 Little or no yielding before failure 

 Much larger resistance to compression than tension 

 Gray cast iron, concrete 

 
 

Engineering stress-strain diagram for gray cast iron and concrete 

 

 

 

 

Both ductile and brittle behavior 

Most materials exhibit both ductile and brittle behavior 

 Steel has brittle behavior when it contains high carbon 

content, and it is ductile when the carbon content is 

reduced. 

 Materials become more brittle at low temperatures, 

whereas they become more ductile at high 

temperatures 
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3.4. HOOKE'S LAW 

 

Linear relationship between stress and strain   E      (similar 

to F= k x) 

 E − modulus of elasticity (a stiffness property) 

For steel, E=200 GPa 

For aluminum, E=70 GPa 

For rubber, E=0.7 MPa 

 To use E  , the linear-elastic behavior must be 

maintained. If the stress in the material exceeds 

the proportional limit, E   is no longer valid! 
 

 

 

 

 

Strain energy 

If a ductile material is loaded into the plastic region and then unloaded, elastic strain is recovered 

whereas the plastic strain remains (Fig.3-14a). As a result, the material is subjected to a permanent set. 

 

If the material is loaded again, the yielding occurs at a higher yield point A’ (Fig.3-14a). As a consequence, 

the material hardens. 

 

If the loading/unloaded is applied in a cyclic manner, some heat or energy will be lost and mechanic 

hysteresis occurs (the colored area in Fig. 3-14b). 
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3.5. STRAIN ENERGY 

As a material is deformed by external loading, it store energy internally throughout its volume.  

 

 

     Energy = Work = Force × Displacement 

     ∆U = ∆F/2 (ε ∆z)  = ½ σ ∆x ∆y (ε ∆z)  = ½ σ ε (∆x ∆y ∆z) 

     
1

2
U V     

 

Strain Energy Density      
21 1

2 2

U
u

V E


 


  


 

 

 

Modulus of Resilience 

The area under σ-ε diagram within 

the proportional limit 

 

Modulus of Toughness 

The entire area under σ-ε 

diagram 

 

 

3.6. POISSON'S RATIO 

When a deformable body is subjected to an axial tensile force, it elongates but contracts laterally. 

 

Longitudinal and lateral strains 

long
L


       lateral

R





  

Poisson's ratio 

lateral

long





   

In principle,      0 ≤ ν ≤ 0.5 

For most engineering materials, it ranges between 

1/4 and 1/3  
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3.7. THE SHEAR STRESS-STRAIN DIAGRAM 

 

 

G       

 

pl

pl

G



         

 2 1

E
G





 

 

 

 

 

3.8. FAILURE DUE TO CREEP (SÜRÜNME) AND FATIGUE (YORULMA) 

Creep 

 When a material has to support a load for a very long period of time, the material may continue to 

deform until a sudden fracture occurs. This time-dependent permanent deformation is known as 

creep. 

 Temperature is also an important factor 

o Metals and ceramics creep at high temperature 

o Composite materials creep even at room temperature 

 

 

 
Effect of stress Effect of temperature 
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Fatigue 

 Repeated loading causes materials to fail below yield stress 

 Ductile materials exhibit brittle behavior at failure 

 Connecting rods, crankshafts, gas turbines 
 

 

 
Repeated stress S-N curve 
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CHAPTER 4. AXIAL LOAD 

 

OUTLINE 
 
4.1. Saint-Venant’s Principle 

4.2. Elastic Deformation of an Axially Loaded Member 

4.4. Statically Indeterminate Axially Loaded Member 

4.3. Principle of Superposition 

4.5. The Force Method of Analysis  

4.6. Thermal Stress 

 
(Section 4.4 intentionally precedes 4.3) 
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CHAPTER 4:  AXIAL LOADING 

Chapter 1 → * normal stress at axially loaded member: N
A

   

Chapter 4 → * deformation in this member 

                       * support reactions that cannot be found via equil. eqs. 

                       * thermal stresses 

 
 

4.1. Saint-Venant's Principle 

 

 
 
At a considerable distance away from the localized effects, stress distribution is the 

same for all statically equivalent loadings ( ,R RF M
 

 should be same). 

 

How far away? 

 As a general rule, the largest dimension of the loaded section 

 For thin-walled members and loadings with large deformations, the largest dimension is not far enough! 
 
4.2. Elastic deformation of an axially loaded member 
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Example 1 
Compute the axial deformation of the steel rod (E = 200 GPa) shown below.  
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4.4. Statically Indeterminate Axially Loaded Member 
(Section 4.4 intentionally precedes 4.3) 
 
A member is statically indeterminate when equations of equilibrium are not sufficient to 
determine the reactions on a member. 
 
Additional equations are needed.   We consider the deformed geometry and write additional 
equations that ensures a compatible deformation in a deformed body. 
These equations are called compatibility conditions. 
 

 

 
Equilibrium equation: 
 
 
 
 
 
Notice that this equation is not sufficient to determine the two reactions 
on the bar. 
 

Let’s write the compatibility condition that the length of the bar should 

remain unchanged since we have fixed support at both ends. 
 
 
 
 
 
 
Now, we can combine equilibrium equation with compatibility condition 
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Example 1. 
The assembly consists of three titanium rods (E=120GPa) rods and a rigid 

bar AC.  

Determine the horizontal displacement of point F. 
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Example 2. 
The three A-36 steel wires each have a diameter of 2 mm and unloaded lengths of LAC = 1.60 m and LAB = LAD = 

2.00 m. Determine the force in each wire after the 150-kg mass is suspended from the ring at A. 
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4.3. Principle of Superposition 
 Principle of superposition is used to simplify stress and displacement problems by subdividing the 

loading into components and adding the results. 

 The following two conditions need to be satisfied to be able to use it 
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4.5. The Force Method of Analysis  
 This method is used to solve statistically indeterminate problems. 

 Compatibility equation is written by using principle of superposition. 

 
Consider our running example 
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Example 1. 
The column is constructed from high-strength concrete and six A-36 steel reinforcing rods. If it is subjected to an axial 

force of 150 kN, determine the required diameter of each rod so that one-fourth of the load is carried by the concrete and 

three-fourths by the steel. 
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Example 2. 
If the gap between C and the rigid wall at D is initially 0.15 mm, determine the support reactions at A and D when the 

force is applied. The assembly is made of A36 steel (E=200GPa). 
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Example 3. 
Three steel rods (E 200 GPa) support a 36-kN load P.  

Each of the rods AB and CD has a 200-mm2 cross-sectional area  

and rod EF has a 625 mm2 cross-sectional area.  

Determine (a)the change in length of rod EF, (b) the stress in each rod. 
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Example 4. 
The rigid bar is supported by the two short wooden posts (Ew = 11 GPa) and a 

spring (k=1.8 MN/m, original length of 520mm).  

Each of the posts has length of 500mm and sectional area of 800mm2. 

Determine the vertical displacement of A and B. 
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Example 5. 
The 10-mm-diameter steel bolt is surrounded by a bronze sleeve. The outer diameter of this sleeve is 20 mm, and its inner 

diameter is 10 mm. If the yield stress for the steel is (σY)st = 640 MPa, and for the bronze (σY)br = 520 MPa, determine the 

magnitude of the largest elastic load P that can be applied to the assembly. Est = 200 GPa, Ebr = 100 GPa. 
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4.6. Thermal Stress 
 A change in temperature cause a material to change its dimensions 

 The experiments have shown that the expansion (or contraction) is linearly related to the 

temperature change 

 

 
 
 
 
 
 
 

 If the temperature varies throughout the length of the member 
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Example 1. 
The device is used to measure a change in temperature. Bar AB is made of steel (α=12×10-6 1/oC), and bar CD is made of 

aluminum (α=23×10-6 1/oC). When the temperature is at 25 oC, the rigid bar ACE is in horizontal position. 

Determine the vertical displacement of end E when the temperature rises to 75 oC. 
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Example 2. 

 
For brass, take α=18×10-6 1/oC, E=100 GPa 

For aluminum, take α=23×10-6 1/oC, E=70 GPa 
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Example 3. 
The AM1004-T61 magnesium alloy tube AB is capped with a rigid plate E.The gap between 

E and end C of the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm when the 

temperature is at 30° C. Determine the normal stress developed in the tube and the rod if the 

temperature rises to 80° C. Neglect the thickness of the rigid cap. 

 

For Mg, take α=26×10-6 1/oC, E=44.7 GPa 

For Al, take α=24×10-6 1/oC, E=68.9 GPa 
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Example 5. 
The assembly has the diameters and material make-up indicated. If it fits securely between its fixed supports when the 

temperature is T1 = 20°C, determine the average normal stress in each material when the temperature reaches T2 = 40°C. 

 

 

For Al, take α=23×10-6 1/oC, E=73 GPa 

For Br, take α=17×10-6 1/oC, E=103 GPa 

For SS, take α=17×10-6 1/oC, E=193 GPa 
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Example 6. 
The center rod CD of the assembly is heated from T1 = 30°C to T2 = 180°C using electrical resistance heating. At the lower 

temperature T1 the gap between C and the rigid bar is 0.7 mm. Determine the force in rods AB and EF caused by the 

increase in temperature. Rods AB and EF are made of steel, and each has a cross-sectional area of 125 mm2. CD is made 

of aluminum and has a cross-sectional area of and 375 mm2.  

Est = 200 GPa, Eal = 70 GPa, αst = 12(10-6)/°C, αal = 23(10-6)/°C. 
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CHAPTER 5. TORSION 

 

OUTLINE 
 
5.1. Torsional Deformation of a Circular Shaft 

5.2. The Torsion Formula 

5.3. Power Transmission 

5.4. Angle of Twist 

5.5. Statically Indeterminate Torque-Loaded Members 
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5.1. Torsional Deformation of a Circular Shaft 

 

During deformation 

 Circles remain circles 

 Cross sections at the ends 

of the shaft remain flat 

(no warping, no bulging) 

 Uniform deformation 

 

If angle of twist is small, 

 length and diameter of 

the shaft do not change. 

 

 

 

 

 
 

Shear strain linearly changes with  

the radial distance (ρ) from the shaft max
c


 

 
  
 
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5.2. The Torsion Formula 

 

Recall from Section 5.1 that   max
c


 

 
  
 

 

For linear-elastic materials   G   

So we have,   max
c


 

 
  
 

 

 

Consider the torque produced on the shaft  

 

 

 

 

 

 

 

 

 

Polar moment of inertia, J 

 

 2 2

0

2

c

A

J dA d       

… 

 

 

 

Torque on the shaft produces a linear shear stress distribution in each radial line of the cross section. Similarly, an 

associated shear stress is developed on an axial plane. This associated shear stress may split the wooden shafts. 
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Example 1 
The shaft shown is supported by two bearings and is subjected to three torques. Determine the shear stress 

developed at A and B, located at section a-a of the shaft. 
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Example 2. 

Determine the maximum torsional stress developed at C. 
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Example 3. 
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Example 4. 
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Example 5. 
The steel shaft is subjected to the torsional loading shown. 

Determine the absolute maximum shear stress in the shaft 

and sketch the shear-stress distribution along a radial line 

where it is maximum. 
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Example 6. 
The shaft consists of three concentric tubes, each made 

from the same material and having the inner and outer 

radii shown. If a torque of T = 800 N·m is applied to 

the rigid disk fixed to its end, determine the maximum 

shear stress in the shaft. 
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5.3. Power Transmission (Güç Aktarımı) 

 

 Shafts and tubes having circular cross sections are often used to transmit power. 

 
Work d

Power W
unit time dt

   

Work = Torque × Angle of rotation     ( W = T × θ ) 

 

So we have,    P = 
d

T T
dt


    (Watt)        ω: angular velocity (rad/s) 

 

For machinery applications, the frequency of rotation of the shaft is often reported.   

f = number of cycles per second  (Hz) 

 

Angular velocity and frequency are related through   ω  = 2π f 

 

Thus, the transmitted power can be related to the applied torque via   P = 2 π f Ta   

 

 

Shaft design 

 

2

P
T

f
     and    max allow

Tc

J
     are used to design shafts under stress considerations 

 

For tubular shafts, the polar moment of inertia is computed from  4 4

2
o iJ c c


  , where co is the outer 

radius and ci is the inner radius. 
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Example 1. 
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Example 2. 
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is 

coupled to a motor at C, which delivers 3 kW of power to the shaft while it is turning at 50 rev/s. If gears A 

and B remove 1 kW and 2 kW, respectively, determine the maximum shear stress developed in the shaft 

within regions AB and BC. The shaft is free to turn in its support bearings D and E.  
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5.4. Angle of Twist (Dönme Açısı), φ 

 In shaft design, the angle of twist of shafts are occasionally restricted. 

 In addition, angle of twist is important when analyzing the support reactions of statically 

indeterminate shafts. 

 
 

 

 

 

 

 

 

 

 

 

 

Constant torque and cross section  Varying torque or cross section 

 

 

 

Sign convention 
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5.5. Statically Indeterminate Torque-Loaded Members 

 

 If the moment equilibrium equations is inadequate to 

determine the unknown reactive torques, then additional 

equation(s) will be required. 

 

 Compatibility equations (in terms of angle of twist) are used to 

obtain additional equations. 
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Example 1. 
A composite shaft is subjected to T=T’=400 N.m. 

Determine the safety factors for the brass jacket and steel core. 

(τfail)brass = 20 MPa,  (τfail)steel = 45 MPa. 

Gbrass = 39 MPa,  Gsteel = 77.2 MPa. 
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Example 2. 
The two shafts are made of A-36 steel (G=75 GPa). Each has a diameter of 25 mm, and they are supported 

by bearings at A, B, and C, which allow free rotation. If the support at D is fixed, determine the angle of 

twist of end B when the torques are applied to the assembly as shown. 

 
 

 



CHAPTER 5 NOTES    17 / 21 



CHAPTER 5 NOTES    18 / 21 

Example 3. 
The 30-mm-diameter shafts are made of steel (G=75GPa). They are supported on journal bearings that 

allow the shaft to rotate freely. If the motor at A develops a torque of on the shaft AB, while the turbine at 

E is fixed from turning, determine the amount of rotation of gears B and C. 
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Example 4. 
The two 1-m-long shafts are made of aluminum (G=27GPa). 

Each has a diameter of 30 mm and they are connected using the 

gears fixed to their ends. Their other ends are attached to fixed 

supports at A and B. They are also supported by bearings at C 

and D, which allow free rotation of the shafts along their axes. 

If a torque of 900 N·m is applied to the top gear as shown, 

determine the maximum shear stress in each shaft. 
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Example 5. 
The two shafts AB and EF are fixed at their ends, and fixed connected to gears that are in mesh with a 

common gear at C, which is fixed connected to shaft CD If a torque of T = 80 N·m is applied to end D, 

determine the angle of twist of end D. 

Each shaft has a diameter of 20 mm, and made from A-36 steel. G = 75 GPa 
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CHAPTER 6. BENDING 

 

OUTLINE 

 

6.1-6.2. Construction of shear and bending diagrams for beams 

6.3. Bending deformation of a Straight Member 

6.4. The Flexure Formula 

6.5. Unsymmetric Bending 
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CHAPTER 6.  BENDING (EĞİLME) 

6.1-6.2: Construction of shear and bending diagrams for beams 
Beams:  Members that are slender and support loads that are applied perpendicular to their longitudinal axis 

 

 
 

 

 

Beams might be subjected to point and/or distributed loads. 

 

Beam design requires calculation of the shear and moment 

variation over the length of the beam. 

 V(x) and M(x) diagrams 

 

Sign convention 

 
 

The graphical method to draw V(x) and M(x) diagrams 

 
 

Applying equilibrium equations (∑Fy=0 and ∑Mo=0) to Fig. 6-10b we get 

 

 
dV

w x
dx

  ,   
dM

V
dx

      V w x dx   ,    M V x dx    
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Table 6-1: Application of the graphical method to some common loading cases 
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Examples 

Draw the shear and moment diagrams of the followings by using the graphical method 
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Draw the shear and moment diagrams of the followings by using the graphical method 
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6.3.  Bending deformation of a Straight Member 

 Beams made of homogenous materials 
(composite materials: Section 6.6, we do not cover) 

 Cross sectional area is symmetric with respect to an axis and bending 
moment is applied about an axis perpendicular to this axis of symmetry 

(unsymmetric bending: Section 6.5, we will cover) 
 

 

 

When bending moment is applied, 

 Horizontal lines become curved 

 Vertical lines remain straight, but 

they rotate 

 

 

 

 

Three assumptions 

1. No change in length on longitudinal axis within the neutral surface 

2. All cross sections remain plane 

3. No deformation of cross section within its own plane 
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6.4.  The Flexure Formula 
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Example 1. 

Compute the factor of safety for the aluminum beam shown.  

Take σY=414 MPa. 
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Example 2. 

Determine the absolute maximum bending stress in the beam when w=7.5 kN/m. 
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Example 3. 

The beam shown has a square cross section of b mm 

on each side. If the allowable bending stress is 400 

MPa, determine the smallest value of b. 
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Example 4. 

Determine the absolute maximum bending stress 

developed.  

Each segment has a rectangular cross section 

with a base of 100 mm and height of 200 mm. 
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6.5.  Unsymmetric Bending 

 

While developing 
M y

I
    

(flexure formula), we imposed the 

following conditions 

 The cross sectional area should 

be symmetric about an axis perpendicular to the neutral axis 

 The resultant internal moment M should act along the neutral axis 

 

 

In this section, we will show how the flexure formula can also be applied to 

 a beam having a cross sectional area of any shape 

 a beam having a resultant internal moment that acts in any direction 

 

A) Beam having a cross sectional area of any shape 

 

 
 

Equilibrium equations 

 

 

 

 

 

 

 

 

 

 

 

Positioning the principal axes 

 If the cross section is symmetric, y and z axes are naturally principal axes. 

 If the cross section is unsymmetric, the principal axes can be positioned using Mohr's circle or transformation 

equations (see Appendix A of Hibbeler's book). 
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Example.  

Find the orientation of the principal axes for the cross section shown. 
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B) Resultant internal moment acts in any direction 

 

 
 

After resolving the moment into its components, we have    
yz

z y

M zM y

I I
             

 

(DO NOT MEMORIZE THE PLUS AND MINUS SIGNS!!  TRY TO UNDERSTAND) 
 

 

Orientation of the Neutral Axis 

Normal stress is zero on the neutral axis → 0
yz

z y

M zM y

I I
    

coszM M     and   sinyM M    → tan tanz

y

I

I
    where tan y z   

 

Note:   The angles θ and α are measured positive from +z axis toward +y axis. 

My = 12.99 kN.m 

Mz = 7.50 kN.m 

Iz = 20.53×10-6 m4 

Iy = 13.92×10-6 m4 

 

tan θ = 12.99/7.50  →  θ = 60˚ 

20.53
tan tan 60

13.92
    →  α = 68.6˚ 
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Example 1. 
Determine the maximum magnitude of the bending moment M so that the bending stress in the member 

does not exceed 100 MPa. 
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Example 2. 
Determine the stresses at points A, B, C and D. 
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Example 3. 
The resultant moment acting on the cross section of the aluminum strut has magnitude of = 800 N-m and 
is directed as shown. Determine the maximum bending stress in the strut.  
Note: The location of the centroid C of the struts cross-sectional area must be determined first. 
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Example 4. 
The 30-mm-diameter shaft is subjected to the vertical and horizontal loadings of two pulleys as shown 
It is supported on two journal bearings at A and B which offer no resistance to axial loading. 
Furthermore, the coupling to the motor at C can be assumed not to offer any support to the shaft. 
Determine the maximum bending stress developed in the shaft. 
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CHAPTER 7. TRANSVERSE SHEAR 

 

OUTLINE 

 

7.1. Shear in Straight Members 

7.2. The Shear Formula 

7.3. Shear Stress Distribution in Beams 

 Rectangular Cross Section 

 Wide-Flange Beam 
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CHAPTER 7:  TRANSVERSE SHEAR (ENİNE KAYMA) 

 

7.1.  Shear in Straight Members 

 Beams generally support both shear and moment loadings 

 Due to the complementary property of shear, transverse shear stress is also 
associated to longitudinal shear stress. 

 

Why shear stress develops on the longitudinal planes of the beam ? 

Consider the beam made from three boards that are not bonded together (Fig. 7-
2). The application of a the force P will cause the boards to slide over each other.  

If the boards are bonded, then the longitudinal shear stress will prevent sliding of the boards. 

 

 

 

As a result of the shear stresses, shear strains are developed. 

These shear strains are in a complex manner (they are not linearly varying as in bending and torsion). 

This non-uniform shear strain variation will cause the cross section to warp (çarpılma). 

 

 

For axial loading, the strains are constant. Similarly, for bending and torsion, the strains are linear. Thus, we were 
able to start from strain distributions to compute stresses. 

For transverse shear, on the other hand, the strains are nonlinear and cannot be easily expressed mathematically. 
Therefore, we will not start from strains to compute stresses.  

Instead, we will compute shear stresses using the V = dM/dx formula. 
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7.2. The Shear Formula 

Consider a beam under external loading. 

 

 

Concentrate on a section that is y’ distance away from the neutral axis. 

 

Equilibrium Equation 
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7.3.  Shear Stress Distribution in Beams 

 

Rectangular Cross Section 

 
 

 

 

2
21 1

2 2 2 2 4

h h h
Q y A y y y b y b

     
            

      
 

2
2

3

6

4

VQ V h
y

It bh


 
    

 
 (parabolic distribution) 

The shear stress is MAXIMUM on the neutral plane max 1.5
V

A
       

(Recall that the normal stress is zero on the neutral plane) 

 

 

Wide-Flange Beam (Geniş Flanşlı Kiriş) 

   

As the thickness changes instantly 

A jump occurs in shear stress distribution 
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Example 1:  For the cross section shown, 

(a) Plot the shear-stress distribution over the cross section 

(b) Determine how much of the shear load is carried by the web 

(c) Determine how much of the bending moment (if acts) is carried by the flanges 
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Example 1 (continued):  
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Example 2:  Plot the shear-stress distribution over the cross section of a rod that has a radius c.  

 
 



CHAPTER 7 NOTES    8 / 10 

Example 3:  Calculate the shear stress distribution over the section shown 
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Example 4:   
The beam is made from three polystyrene strips that are glued together as shown. If the glue has a shear strength of 80 

kPa, determine the maximum load P that can be applied without causing the glue to lose its bond. 
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Example 5:   
Determine the maximum shear stress acting in the beam at the critical section. 
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CHAPTER 8. COMBINED LOADING 

 

OUTLINE 

 

8.1. Thin-Walled Pressure Vessels 

8.2. State of Stress Caused by Combined Loadings 
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CHAPTER 8:  COMBINED LOADING (BİLEŞİK YÜKLEME) 

8.1. Thin-Walled Pressure Vessels 

 Cylindrical or spherical vessels are commonly used as boilers or tanks 

 For thin walled vessels, / 10r t  .  

 If / 10r t  , then 0.96thin walled actual    

 The stress distribution throughout the thickness do not change significantly, so it is assumed to be 

uniform (or constant) 

 

Cylindrical Vessels - an element of the material will be subjected to a biaxial state of stress 

For Fig. 8-1(b),     0,xF      

 

 

For Fig. 8-1(c),     0,yF      

 

 
 

Spherical Vessels 

For Fig. 8-2(b),     0,yF   
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Example 1: 
The tank of the air compressor is subjected to an internal pressure of 0.63 MPa. If the internal diameter of the tank is 550 

mm, and the wall thickness is 6 mm, determine the stress components acting at point A. 
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Example 2: 
The open-ended pipe has a wall thickness of 2 mm and an internal diameter of 40 mm. Calculate the pressure that ice 

exerted on the interior wall of the pipe to cause it to burst in the manner shown. The maximum stress that the material can 

support at freezing temperatures is σmax = 360 MPa. 
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8.2. State of Stress Caused by Combined Loadings 

 Axial loading (N) 

 Shear loading (V) 

 Bending moment (M) 

 Torsional moment (T) 

 Internal pressure (p) 
 
 
 

 

 
 

Several of these forces may act together 

The method of superposition can be used to determine the 

resultant stress distribution 
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Example 1: 
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Example 2: 
The bar has a diameter of 40 mm. If it is subjected 
to the loadings as shown, determine the stress 
components that act at points A and B. 
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Example 3: 
Determine the state of stress at points E and F at section a-a. 
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Example 4: 
The 25-mm-diameter rod is subjected to the loads shown. Determine the state of stress at point B. 
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CHAPTER 9. STRESS TRANSFORMATION 

 

OUTLINE 

 

9.1. Plane-Stress Transformation 

9.2. Plane-Stress Transformation Equations 

9.3. Principal Stresses and Maximum Shear Stress 

9.4. Mohr Circle (for state of Plane-Stress) 

9.5. Absolute Maximum Shear Stress 
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CHAPTER 9:  STRESS TRANSFORMATION 

9.1.  Plane-Stress Transformation 

 The general state of stress is characterized by 6 independent stress components (Fig. 9-1a). 

 If there is no load on the surface of a body, then the normal and shear stress components are zero on the face 

of an element that lies on the surface (Fig. 9-1b). 

 This state of stress is called plane-stress and the body can be analyzed in a single plane. 

 Plane-stress state can be represented by 3 stress components (σx, σy,τxy) (see Fig. 9-1c). 

 
If the orientation of coordinate axes changes, the stresses 

components on the new orientation also changes. 

(σx, σy,τxy) → (σx’, σy’,τx’y’) 

 

 (σx’, σy’,τx’y’) stress components can be expressed in terms of 

(σx, σy,τxy) components using equilibrium equations. 

 

9.2.  Plane-Stress Transformation Equations 

 

 

 

 

 

 

 

 

Equilibrium Equations: 

'

'

0

0

x

y

F

F

 


 




   

'

' '

cos 2 sin 2
2 2

sin 2 cos 2
2

x y x y

x xy

x y

x y xy

   
   

 
   

 
  


  

(*) 

90     →  ' cos 2 sin 2
2 2

x y x y

y xy

   
   

 
    
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Example: 

The state of stress at a point in a machine element is shown. Determine the stress components acting on 

the inclined plane AB using stress transformation equations. 
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9.3. Principal Stresses and Maximum Shear Stress 

 (σx’, σy’,τx’y’) stress components depend on the orientation (θ angle). 

 In engineering practice, it is often important to determine the orientation of the planes that 

causes the normal stress to be a maximum or minimum, and the shear stress to be maximum. 

 

For maximum normal stress:   ' 0xd

d




    →   

 
tan 2

2

xy

p

x y




 



    

Two roots of this equation are 
1p  and 

2p , and they are 90o apart. 

 

Principal stresses: 

2

2

1,2
2 2

x y x y

xy

   
 

  
   

 
         

( 1 2  ) 

 

No shear stress acts on the principal planes. 

0xy   

 

For maximum shear stress:   
' '

0
x yd

d




    →   

  2
tan 2

x y

s

xy

 




 
     

Two roots of this equation are 
1s  and 2s , and they are 90o apart. 

 

 

Comparing the orientation of principal stresses and maximum shear stress, we see that 

 

1
tan 2

tan 2
s

p




        Thus, the angle between 2 s  and 2 p  is 90o. 

The angle between s  and p  is 45o. 

(The planes for maximum shear stress can be determined by orienting an element 45 o 

from the position of an element that defines the planes of principal stress.) 

 

2

2

max
2

x y

xy

 
 

 
  

 
 

 

Note that the normal stresses are not zero on planes of maximum shear stress!!.    
2

x y

avg

 



  
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Example: 

The stress acting on two planes at a point is indicated (realize that stress is not a point property, you 

need to specify a plane to define it). 

Determine the shear stress on plane a-a, and principal stresses at the point. 

 
 



 

CHAPTER 9 NOTES    6 / 14 

9.4.  Mohr Circle (for state of Plane-Stress) 

Mohr circle presents a graphical solution for stress transformation equations. 

 

Construction of circle 

 Establish a coordinate system where abscissa represents the normal stress σ (positive to the right), and the 

ordinate represents the shear stress τ (positive downward). 

 Locate the center of the circle C, which lies on σ axis at a distance   2avg x y     from the origin. 

 Locate a reference point A, which has coordinates  ,x xyA   . 

 Connect the points C and A, and compute the distance CA (the radius of the circle) by trigonometry. 

 

Principal stresses 

 The circle intersect the σ axis at two points (B and D). They are the principal stresses 1 2  . 

 The angle between CA and CB is 12 p , and the angle between CA and CD is 22 p . 

 A rotation of 2  in the circle corresponds to a rotation of   in the element. 

 

Maximum shear stress 

 The radius of circle is equal to the maximum shear stress value. 

 The angle between CA and CE is 
12 s , and the angle between CA and CF is 22 s . 

 Again, a rotation of 2  in the circle corresponds to a rotation of   in the element. 
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Example 1. 
By using Mohr’s circle, determine the principal stresses and maximum shear stress for the element shown. 
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Example 2. 

A point on a thin plate is subjected to two successive states of stress as shown.  

Determine the resulting state of stress. 
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Example 3. 
The wooden strut is subjected to the loading shown. If grains of wood in the strut at point C make an angle 

of 60° with the horizontal as shown, determine the normal and shear stresses that act perpendicular and 

parallel to the grains, respectively. 
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9.5.  Absolute Maximum Shear Stress 

 
 For 3-D problems, all of the 6 independent stress components may exist. 

 It is possible to rotate a 3D plane so that there are no shear stresses on that plane. 

 Then the three normal stresses at that orientation would be the three principal normal stresses: σ1, σ2, σ3. 

 These three principal stress can be found by solving the following cubic equation 

 

 
 

 Now we have 3 circles.  

 The radius of the largest circle is equal to the absolute maximum shear stress 

 
 

The absolute maximum shear stress and the corresponding average stress are calculated from 
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Plane stress 

For plane stress, one principal stress is always zero. 

We have 3 cases to consider: 
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Example 1. 

Compute the absolute maximum shear stress for the element shown. 
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Example 2. 
The tank of the air compressor is subjected to an internal pressure of 0.5 MPa. If the internal diameter of the tank is 400 

mm, and the wall thickness is 5 mm, determine the maximum absolute shear stress at point A. 
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CHAPTER 12. DEFLECTION OF BEAMS AND SHAFTS 

 

OUTLINE 

 

12.1.  Elastic Curve  

12.2.  Slope and Displacement Calculation by Integration 

12.5.  Method of Superposition 

12.6.  Statically Indeterminate Beams and Shafts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 12 NOTES    2 / 17 

CHAPTER 12: DEFLECTION OF BEAMS AND SHAFTS 

 

12.1.  Elastic Curve 

The deflection diagram of the longitudinal axis that passes through the centroid of each 

cross sectional area of the beam is called the elastic curve. It is often helpful to sketch 

the deflected shape of the elastic curve to "visualize" the computed results and 

partially check these results. 

 

If the moment diagram is known, the elastic curve can be 

constructed without much difficulty. (Recall that if the beam 

is slender, moment is more influential than shear.) 

 

 
 

Moment-Curvature Relationship 

 ' y d dds ds y

ds d

   


  

  
        or      

1

y




   

 

Use Hooke's / E     and flexure formula  /My I    

 

So we have   
1 M

EI
 .        EI: flexural rigidity (eğilme esnemezliği) 

 

 

 

 

 

 

 

     If M is (+), ρ extends above the beam 

     If M is (-), ρ extends below the beam 
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12.2.  Slope and Displacement Calculation by Integration 

The equation for the elastic curve    v f x .        
 

2 2

2 3/2

1 /

[1 / ]

d v dx M

EIdv dx
 


 

 

/dv dx << 1  → 
2

2

d v M

dx EI
   → 

2

2
( )

d v
EI M x

dx
  

/V dM dx   →  
2

2

d d v
EI V x

dx dx

 
 

 
 → 

3

3
( )

d v
EI V x

dx
  (*) 

/w dV dx   →  
2 2

2 2

d d v
EI w x

dx dx

 
  

 
 → 

4

4
( )

d v
EI w x

dx
   

 

Sign Convention 

 

  
Before solving the above differential equations (*), w(x) or M(x) is first calculated. 

Often we choose to calculate M(x) as it leads to two integration constants. 

 

Solution of any of these equations requires successive integrations. For each integration, it is 

necessary to introduce integration constants. 

To evaluate the integration constants, it is necessary to know the values of v(x), w(x), V(x) or M(x) 

at some particular locations.   →  BOUNDARY CONDITIONS  (Table 12-1) 

             (Do Not Memorize! Try To Understand) 

 

Sometimes it is not possible to use a single x coordinate to express the equation for the slope or 

the elastic curve. In that case, continuity conditions must be used to evaluate some of the 

integration constants. 

 

1 2

1 2

( ) ( )

( ) ( )

a a

v a v a

 


    

1 2

1 2

( ) ( )

( ) ( )

a b

v a v b

  


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Example 1. 
Determine the equation of the elastic curve for the beam using the x coordinate that is valid for 0 ≤ x < L / 2. 

Specify the slope at A and the beam's maximum deflection. EI is constant. 
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Example 2. 
Solve Example 1 by using symmetry boundary conditions. 
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Example 3. 
Determine the equations of the elastic curve for the beam using the x1 and x2 coordinates.  

Specify the beam's maximum deflection. EI is constant. 
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12.5.  Method of Superposition 

The differential equation 
4

4
( )

d v
EI w x

dx
  satisfies two necessary requirements: 

 The load w(x) is linearly related to the deflection v(x) 

 The load does not significantly change the original geometry 

 

Consider the example shown: 
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Example 1. 

Compute the deflection at end C. 
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Example 2. 
The assembly consists of a cantilevered beam CB and a simply supported beam AB. If each beam is made of A-36 steel 

(E=200 GPa) and has a moment of inertia about its principal axis of Ix = 46(106) mm4, determine the displacement at D.  
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Example 3. 
Determine the vertical deflection and slope at the end A of the bracket. Assume that the bracket is fixed 

supported at its base, and neglect the axial deformation of segment AB. EI is constant. 
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12.6.  Statically Indeterminate Beams and Shafts 

 For bars, we used displacements 
PL

EA
   in compatibility equations 

 For torque problems, we used angles of twist 
TL

GJ
   in compatibility equations 

 Now, for beams, we will use deflections and rotations in compatibility equations 

 

Example:  
Determine the reactions at the supports A and B. EI is constant. 
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Example 2. 
The A-36 steel beam (E=200 GPa) and rod are used to support the load of 40 kN. The diameter of the rod is 20 mm. 

The beam is rectangular, having a height of 125 mm and a thickness of 75 mm. 

Compute the deflection at B and the stress in the rod. 
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Example 3. 
Determine the deflection at the end B of the clamped A-36 steel strip. The spring has a stiffness of k = 2 N/mm. The strip 

is 5 mm wide and 10 mm high. 
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