Thermo-Mechanical Fatigue Analysis of a Stationary Jet Engine Component

Erdem Acar

Advisor: Dr. Mehmet A. Akgün Co-Advisor: Dr. Mustafa Doruk

Department of Aerospace Engineering Middle East Technical University

Motivation

- Jet engines work in highly transient conditions due to frequent and sharp maneuvers.
- Hence, the engine components are subjected to constantly changing temperatures and forces.
- In such hazardous and complex conditions, the components may fail in service. Thus, life assessment is a <u>must</u>.

The objective of this work is to assess thermomechanical fatigue life of a stationary component of a F110-GE-100 engine

Outline

The Engine Thermal Analysis Stress Analysis Fatigue Life Prediction Creep Life Prediction TMF Life Prediction Summary

The Engine

The F110-GE-100 engine is an augmented, mixed-flow, turbofan engine. It consists of a high pressure system, a low pressure system and a variable area exhaust nozzle.

The region of interest: First stage low pressure turbine (LPT)

The Region of Interest

Practical experience shows that these pins are critical components whose failure may have serious consequences.

Failure Mechanisms

- Low Cycle Fatigue (LCF)
- High Cycle Fatigue (HCF)
- Thermo-Mechanical Fatigue (TMF)
- Creep
- Corrosion
- Erosion
- Fretting
- Wear

Analysis of failure mechanisms requires detailed knowledge of stress and temperature fields throughout a mission.

Thermal Analysis

To obtain temperature history of the engine components at each phase of a given mission.

Thermal model uses

- mission profile
- gas stream and cooling air temperatures
- gas stream and cooling air velocities (convection)
- Convective velocities are calculated from the given
 - mass flow rates, static and total pressures and temperature

Using

- continuity eqn.
- Isentropic relations

Msc MARC is used as FEA solver.

Thermal Analysis Results

- Temperature distributions obtained from thermal analysis will be used in
 - stress analysis(thermal stresses)
 - creep damage assessment

Temperatures are in Kelvin

Stress Analysis

- Applied loading : Gas pressures (total pressure) and temperature
- The same mesh is used in both heat transfer and stress analysis.

Stress Analysis Results

stress history at the critical location

the critical location

Fatigue Life (N_f) Assessment

Fatigue life =
$$N_f = N_f^i + N_f^p$$

Initiation life, Nⁱ_f, is computed via strain-life relations. Propagation life, N^p_f, is computed via fracture mechanics formulations.

 At high strain amplitudes (as in our case), the majority of the fatigue life is spent propagating a crack.

Fracture Mechanics Formulation

Simplest formulation : Paris Law

* Retardation is the reduction in the crack growth rate after an overload.

Mixed-Mode Loading

- The pin is under mixed-mode loading conditions
- Mode I : opening (tensile) mode
 - crack faces are pulled apart
- Mode II : sliding (in-plane shear) mode
 - crack surfaces slide over each other
- Mode III : tearing (anti-plane shear) mode
 - crack surfaces move parallel to the leading edge of the crack

• Here we have mode I and II. Stress intensity factors K_I and K_{II} are computed via FEA.

Prediction of Mixed-Mode Crack Growth Directions

- MTS Criterion [Erdoğan & Sih]
 - crack propagation starts from crack tip along the radial direction on which the tangential stress becomes maximum

$$\frac{\partial \sigma_{\theta}}{\partial \theta} = 0 \quad \text{and} \quad \frac{\partial^2 \sigma_{\theta}}{\partial \theta} < 0$$

Using Westergaard expressions

 $K_{I} \sin \theta + K_{II} (3 \cos \theta - 1) = 0$

• S-Criterion [Sih]

 a crack grows in a direction along which the strain energy density factor reaches a minimum value

Crack Growth

Crack growth is predicted for discrete crack sizes.
For each crack size, geometry factor is calculated (next slide).

Geometry Factor Calculations

After calculating K_{l} , K_{ll} and θ

$$K_{eff} = \sqrt{K_{I}^{2} + K_{II}^{2}}$$

Crack propagation is simulated in AFGROW as mode type I with

11 discrete crack size are modeledGeometry factors are calculated from

$$\beta = \frac{K_{eff}}{\sigma \sqrt{\pi a}}$$

Fatigue Life Prediction by AFGROW

Inputs to AFGROW

Note : NDI minimum detectable flaw size is 0.015" (0.381 mm)

Case	Fatigue Life (N_f)
No-retardation	4837 hours
Closure Model (OLR = 0.3)	4919 hours
illenborg Model (SOLR = 2.5)	5136 hours

4000

Time (sec)

5000

7000

6000

Creep Life Prediction

Creep is the inelastic deformation of a material that is subjected to a stress below its yield stress when that material is at a high homologous temperature.

occurs in three stages (see figure)

- Hold times (t_h) are determined.
- For these hold periods,
 - creep rupture times (t_r) are calculated
- Creep life

$$-$$
 N_c = t_r / t_h

TMF Life Prediction

- Fatigue Life (N_f)
- Hold Times (t_h)
- Creep Rupture Times (t_r)

calculated earlier

Linear Damage Accumulation Method

$$\frac{N}{N_f} + \frac{N t_h}{t_r} = 1$$

Disadvantage: - Disregards fatigue creep interaction

Case	Fatigue Life ($N_{\rm f}$)	TMF Life (N)	% change
No retardation	4837 hours	4820 hours	-0.35
Closure Model (OLR = 0.3)	4919 hours	4902 hours	-0.35
Willenborg Model (SOLR = 2.5)	5136 hours	5116 hours	-0.39

Creep is **NOT** as effective as fatigue.

Comparison with Available Data

- MIL-STD-1783, ENSIP (Engine Structural Integrity Program) states that "all engine critical parts are to be designed to twice the life requirement."
- When retardation effects were neglected,
 - N = 4820 hours \rightarrow the life requirement is 2410 hours.
- The component retirement time given by Turkish Air Force is around 1500-1800 hours as dictated by the technical orders.
- So, TMF results of this study is reasonable value. We calculated a larger value compared to retirement time given by Turkish Air Force. This makes sense since the pins should be removed before the whole life of the pins are spent.

Summary

- A finite element model of a segment of F110-GE-100 engine is generated by using MARC for thermal analysis.
- The same model and the output of thermal analysis are used in a stress analysis to determine the most critical location in the pin.
- A crack of varying lengths was modelled by using Msc MARC. K_{I} , K_{II} , crack propagation angle and geometry factor β are calculated for each crack length.
- Calculated geometry factors and the maximum principal stress profile of the critical location are used to predict the fatigue crack propagation life (N_f) by using AFGROW.
- Hold periods (t_h) are determined. Creep rupture times (t_r) are calculated.
- Thermo-mechanical fatigue life is assessed by using a linear damage accumulation model.
- Thermo-mechanical fatigue life calculated is a reasonable value compared to the component retirement time given by Turkish Air Force.

End of presentation

Next : Back-up slides

Crack growth retardation

• Under constant amplitude loading conditions

 $\Delta a =$ function (present crack size, applied load)

• Under variable amplitude loading conditions

 $\Delta a =$ function (present crack size, applied load,

preceding cyclic history)

Retardation models

• Wheeler Model

$$\mathbf{C}_{p} = \left[\frac{r_{pi}}{a_{o} + r_{po} - a_{i}}\right]^{m} = \left[\frac{r_{pi}}{\mathbf{s} - a_{i}}\right]^{m}$$

 $(da/dN)_{retarded} = C_p (da/dN)_{linear}$

Willenborg Model

$$K_{\text{max, eff}} = K_{\text{max}} - K_{\text{red}} \qquad K_{\text{min, eff}} = K_{\text{max}} - K_{\text{red}}$$
$$K_{\text{red}} = \phi \left[K_{\text{max, o}} \sqrt{1 - \frac{a_i - a_o}{r_{\text{po}}}} - K_{\text{max}} \right] \qquad \phi = \left(1 - \frac{\Delta K_{\text{thres}}}{K_{\text{max}}} \right) (\text{SOLR} - 1)$$

Closure Model

$$C_{f} = \frac{\sigma_{open}}{\sigma_{max}} = 1 - (1 - C_{f0})(1 + 0.6 \cdot R)(1 - R)$$
 $K_{eff} = K_{max} - K_{open}$

SIF Calculation by FEA

Quarter Point Elements are used

to simulate the stress singularity at the crack tip

SIF Computation Techniques

Displacement Correlation Technique (DCT)

$$\begin{split} \mathbf{K}_{\mathrm{I}}^{\mathrm{DCT}} &= \frac{\mathbf{G}}{\kappa+1} \sqrt{\frac{2\pi}{L_{\mathrm{Q}}}} \left\{ 4 (\mathbf{v}_{\mathrm{B}}' - \mathbf{v}_{\mathrm{D}}') - (\mathbf{v}_{\mathrm{C}}' - \mathbf{v}_{\mathrm{E}}') \right\} \\ \mathbf{K}_{\mathrm{II}}^{\mathrm{DCT}} &= \frac{\mathbf{G}}{\kappa+1} \sqrt{\frac{2\pi}{L_{\mathrm{Q}}}} \left\{ 4 (\mathbf{u}_{\mathrm{B}}' - \mathbf{u}_{\mathrm{D}}') - (\mathbf{u}_{\mathrm{C}}' - \mathbf{u}_{\mathrm{E}}') \right\} \end{split}$$

Quarter Point Displacement Technique (QPDT)

$$K_{I}^{QPDT} = \frac{2 G}{\kappa + 1} \sqrt{\frac{2 \pi}{L_{Q}}} \{ v'_{B} - v'_{D} \}$$
$$K_{II}^{QPDT} = \frac{2 G}{\kappa + 1} \sqrt{\frac{2 \pi}{L_{Q}}} \{ u'_{B} - u'_{D} \}$$

Direct Extrapolation Technique (DET)

SIF values for the nodes B and D, and then C and E are calculated. Then, SIF at the crack tip node is calculated by using direct exptrapolation.

